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Organizing objects in the world into conceptual hierarchies is a key part of human cognition and general
intelligence. It allows us to efficiently reason about complex and novel situations relying on relationships
between object categories and hierarchies. Learning relationships among sets of objects from data is known
as relation learning. Recent developments in this area using neural networks have enabled answering complex
questions posed on sets of objects. Previous approaches operate directly on objects — instead of categories of
objects. In this position paper, we make the case for reasoning at the level of object categories, and we propose
the Hierarchical Relation Network (HRN) framework. HRNSs first infer a category for each object to drastically
decrease the number of relationships that need to be learned. An HRN consists of a number of distinct modules,
each of which can be initialized as a simple arithmetic operation, a supervised or unsupervised model, or as part
of a fully differentiable network. This approach demonstrates that categories in relational reasoning can allow
for major reductions in training time, increased data efficiency, and better interpretability of the network’s

reasoning process.

1 INTRODUCTION

A key component of human intelligence is the abil-
ity of associating entities (such as your best friend’s
younger brother or the chair in your grandmother’s
living room with the embroidered cushion) with cate-
gories such as people or furniture. (Alexander et al.,
2016; Krawczyk, 2012). These categories are also of-
ten referred to as “concepts” which we form to bet-
ter abstract our world (Pothos and Wills, 2011; Rosch
et al., 1976; Markman and Wisniewski, 1997; Yeung
and Leung, 2006). Forming categories allows us to
carry out efficient and robust relational reasoning.
Relational reasoning considers problems that re-
quire assessing not only individual objects in a
dataset, but how groups of such objects relate. For
example, looking at an office desk like the one in
Figure 1 on the following page, one might ask the
non-relational question “’is the lamp on?” This ques-
tion only looks at one object: the lamp. A relational
query, on the other hand, would consider more objects
— for example: “does the lamp shine light on objects
which are beside each other?” To answer this query,
one needs to compute the relationships between the
lamp, the desk, and the chair. To tackle similar chal-
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lenges, several models have been proposed (Shanahan
et al., 2020; Kazemi and Poole, 2018; Sourek et al.,
2015; Franga et al., 2014), the most versatile of which
is the Relation Network (RN) architecture, summa-
rized in the next section (Santoro et al., 2017).

Using categories when reasoning about relation-
ships is particularly useful because the number of cat-
egories is often much smaller than the number of dis-
tinct objects. For example, instead of learning a re-
lation (e.g., “sweeter than) between every type of
fruit and every type of vegetable, we can simply learn
that “fruits are sweeter than vegetables” — and apply
that relation between these two categories of objects
to all their corresponding instances. This would al-
low a learner to deduce that ”bananas are sweeter than
eggplants” even if the learner was not trained on the
(bananas, eggplants) pair.

To test the approach of utilizing categories for
neural relational reasoning, we propose the Hierarchi-
cal Relation Network (HRN) framework as a proof-
of-concept. We demonstrate HRN’s plausibility ,
massively reducing training time without sacrificing
accuracy, on a real-world dataset of complex rela-
tional queries.
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Figure 1: An example of a relational view of a scene vs. a
non-relational view.

2 PRIOR WORK

Relation Networks: The Relation Network (RN) ar-
chitecture was proposed as a general way of operating
on inputs represented as sets of objects (Santoro et al.,
2017). It takes as input a set of objects and possibly
some additional information, such as questions posed
on the set of objects. To get the final output (an an-
swer for the posed question), the objects are placed
into pairs and each pair is processed separately. This
is equivalent to considering the binary relations be-
tween every possible object pair. If there are n ob-
jects, then the network would have to evaluate n? re-
lations. This can quickly get intractable, especially
when working with complex domains.

Hierarchy Learning and Semantic Computing: A
variety of techniques in semantic computing learns
and utilizes hierarchies/categories among objects
(Wang, 2010). The algorithm Concept Semantic Hi-
erarchy Learning (CSH Learning) was proposed to
construct ontologies of concepts for semantic com-
prehension by machine learning systems (Valipour
and Wang, 2017). A similar algorithm, proposed by
Anoop et al., constructs concept hierarchies in an un-
supervised manner from natural language text cor-
puses (Anoop et al., 2016). Although these tech-
niques don’t focus on relational question answering,
they nevertheless demonstrate the value of learning
and using hierarchies as opposed to flat lists of con-
cepts.

Categorization in Cognition: Humans naturally or-
ganize perceived objects into categories. Past re-
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search has identified three main theories for human
categorization: classical, prototype, and examplar
(Pothos and Wills, 2011). We mainly utilize ideas
from the prototype view of classes, which considers
each class to be represented by a prototype vector (Ye-
ung and Leung, 2006). Additionally, it has also been
shown that instead of overly broad (e.g. all living
things) or specific (blue-cream calico British Short-
hair) classes, humans often focus on basic categories
(like cat) that are neither too general nor too restric-
tive (Rosch et al., 1976; Markman and Wisniewski,
1997). This supports our usage of one level of ob-
ject hierarchy (each class belongs to a category) as an
efficient simplification to full ontologies.
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Figure 2: A visual demonstration of using categories to
more effectively conduct relational reasoning.

3 HIERARCHICAL RELATION
NETWORKS (HRN)

In this section we describe a general framework,
termed the Hierarchical Relation Network (HRN),
that can harness hierarchical structure among input
objects to conduct efficient relational reasoning. It
first classifies input objects to their categories, and
it then applies the previously proposed Relation Net-
work approach (Santoro et al., 2017) on those cat-
egories. Three specific instantiations of this HRN
framework are presented, ranging from separate mod-
els to a single fully-differentiable neural network.

The process of hierarchical relation reasoning can
be divided into three steps which are carried out by
three distinct components in the reasoning pipeline.
The first component, called a Categorizer, assigns
each input object into a category. The second com-
ponent, called a Conceptualizer, uses the objects and
their predicted categories to generate a dense repre-
sentation for each category. The third and final com-
ponent is a network architecture that handles the rela-
tional computation, such as a Relation Network (San-
toro et al., 2017).
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Figure 3: A graphical illustration of an SCHRN with sample input from the Animals dataset below. The raw inputs are
first categorized, and then dense representations of each class/concept are built by summing the representations of all objects
classified under it. Finally the dense representation for each class is passed to an existing framework for neural relational
reasoning (the relational network).

3.1 Supervised Categorizer
Hierarchical Relation Network

(SCHRN)

The first and simplest implementation of the Hierar-
chical Relation Network framework takes the form of
two separate network models, one for assigning ob-
jects to their classes and the other for conducting rea-
soning (see Figure 3). This implementation is less
powerful than the ones presented below, but serves

as an important first step.

SCHRN are relaxed in the subsequent implementa-

tions.

To see how SCHRN works, imagine a toddler who

is just beginning to learn

ent may show a number of apples and pears, and say
that apples is one type of fruit and pears is another.
Through such supervised input, the toddler learns the
concepts (object categories) of apples and pears and
use these concepts to reason.

The first part of our framework, the categorizer

model, acts similar to the

ample, and it learns object categories through cor-
responding labeled examples. When the categorizer
model has been learned, we pass input objects (such
as horse, frog etc) to transform them into one-hot rep-
resentations in the space of categories (mammal, am-

phibian, etc).

The conceptualizer consists of a simple dot prod-

uct between the previous

the original representation of an input object. This
operation results in a category representation that is

the sum of the attributes of all member objects of that
category. This is similar to the cobweb system for
conceptual clustering proposed (Fisher, 1987).

be used.

The strict assumptions of

Finally, the previous dense category representa-
tions are passed to a network for relational reasoning
— in our implementation we use the Relation Network
(Santoro et al., 2017) but other networks could also

The main advantage of splitting categorization
and reasoning into two networks, apart from more
closely resembling human learning, is the additional

flexibility introduced. For example, if we only have

about the world. The par-

toddler in the previous ex-

enough information about an object to determine its
category, but no information on its relevant attributes,
the SCHRN is effectively unhindered while the sub-
sequent HRN models might suffer depending on their
generalization ability.

However, the two-network structure of SCHRN
also has drawbacks: it assumes prior knowledge about
the categories of some objects used as training data
for the categorizer network. It also assumes that the
available categories will be relevant to the particu-
lar reasoning task (e.g., classifying fruits into “large
fruits” versus “small fruits” does not help in determin-
ing their sweetness). SCHRNs perform well when the
previous assumptions are met.

The model UCHRN of the following subsection

one-hot representation and

relaxes the first aforementioned assumption, while
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Figure 4: An FDHRN with sample input from the Animals dataset below. The entire framework is end-to-end differentiable.
The inputs are first passed through fully connected layers with a softmax activation at the end to get the predicted probability
distribution over categories. The probabilities are then summed, yielding the approximate number of objects in each category.
They are then multiplied with an embedding matrix containing trainable class embeddings to get the dense representations

that are passed into the relation network module.

the model FDHRN of subsection 3.3 relaxes both as-
sumptions. This increase in generality and power
comes at the cost of higher variance over the training
data however.

3.2 Unsupervised Categorizer
Hierarchical Relation Network
(UCHRN)

This architecture is effectively identical to SCHRN
with one important difference: instead of using a su-
pervised model for categorization, an unsupervised
method based on object similarity is employed. This
approach is more aligned with the prototype view of
cognitive categorization (Yeung and Leung, 2006).
Here we use k-means clustering on the object repre-
sentation to map the raw objects onto one-hot vectors
in the space of categories.

Continuing the toddler and fruits analogy, the
UCHRN architecture corresponds to the toddler look-
ing at a number of different fruits (apples, pears, mel-
ons, etc.), and categorizing them without supervision
based on view, taste, smell etc.

An important advantage of UCHRN is that it al-
lows us to vary the number of categories used by the
HRN by varying the number of clusters. For con-
venience, we denote the number of categories by m.
This gives us a wide range of intermediate models be-
tween the extremes of operating on uncategorized ob-
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jects (m = n, where n is the number of objects) and
treating all objects as one category (m = 1). In the
Results section, we see that the accuracy of UCHRN
increases up to a certain point as m increases, before
starting to drop.

The UCHRN architecture relaxes the assumption
of requiring labeled data for the categorizer. However,
it still assumes that the categories found by clustering
are good in answering the questions in the test dataset.

3.3 Fully Differentiable Hierarchical
Relation Network (FDHRN)

Our third and most general architecture of the HRN
framework takes the form of an end-to-end differen-
tiable neural network. Its goal is to form artificial cat-
egories/concepts (in the form of embeddings) that are
most relevant to answering the questions posed in the
training data.

The FDHRN architecture is shown in Figure 4
above. It randomly initializes m categories, the em-
beddings of which will be trained with the rest of the
network. Each input object is first passed through
a number of fully connected layers and a softmax
function to estimate the likelihood that it belongs to
each derived class. The dense representation for each
class, which is then passed into the relational reason-
ing module, is scaled up by summing the ”soft” (prob-
abilistic) values of the number of objects it contains.
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Table 1: The training time and test accuracy of a baseline RN and three HRN architectures at 30 and 200 epochs.

Architecture  Training time Test accuracy Training time Test accuracy
(30 epochs) (30 epochs) (200 epochs) 200 (epochs)
RN (baseline) 2,080s 90.3% 13,349s 92.7%
SCHRN 81s 88.9% 549s 93.3%
UCHRN 67s 90.4% 449s 94.1%
FDHRN 90s 87.8% 545s 89.6%

The intuition behind this approach is that instead
of pre-assigning each object to a definite category, we
treat each object as belonging, say 95% to category-
one, 3% to category-five, and so on. This transi-
tion from using hard category assignments, similar to
Aristotelic logic, to using soft assignments, similar to
fuzzy logic, both allows for differentiability and in-
creases the fitting power of the network. For small m,
when many objects would fall ”on the fence” between
two classes, the increase in fitting power would result
in greater flexibility and improved performance at the
cost of training more parameters.

An important feature of the FDHRN architecture
is the use of trainable embeddings for the object cat-
egories. Imagine a zoo at which we only ask ques-
tions about features that have little to do with animal
taxonomy, such as color or size (’do brown animals
tend to be bigger than black animals?”). If we were
to groups objects by more domain-based categories,
such as “amphibian”, “mammal” etc., there would
be a mismatch between the relation questions we ask
and the given categories, which would decrease the
learning efficiency. Trainable embeddings allow the
FDHRN to derive categories that are more specific to
the reasoning task at hand.

Although advantageous, inferring categories from
data can lead to increased model complexity and
make the network more prone to overfitting.

4 RESULTS

4.1 The Zoo Animals Dataset

We used a dataset containing information about
101 animals with various attributes for each animal
(Learning, 2020).

We tested all three aforementioned HRN architec-
tures in tasks of relational queries on subsets of the
101 animals. An example query might be: ”Among
these animals, are those with lungs more likely to be
aquatic than those with fins?”” The possible answers
(balanced to occur with about the same frequency) are
”yes,” ’no,” and “about equally likely.”

Each data point consists of a single task: a subset
of animals and a query to which the network gener-

ates an answer. During training, the correct answer is
also provided as a label. The models are scored based
on the percentage of correctly performed tasks, with
arandom guess baseline achieving around 33% accu-
racy.

4.2 Testing Specifications

We use a version of the Animals dataset that contains
about 19,000 questions on different subsets of ani-
mals. Half the questions are used for training while
the other half is reserved for testing. Each subset of
animals consists of 25 animals. The choice of 25 is
arbitrary, and purely made to ensure that the baseline
RN completes training in reasonable time. Even so,
the RN model takes several hours to train while the
three HRN architectures take a few minutes each.

All models have the same fully-connected layer
depth and width, as well as the same batch size (64)
and learning rate (0.0005). The tests ran in Python 3
on an OSX operating system with GPU-support.

4.3 Comparison of Performance

We evaluated four models on the Animals dataset:
The original RN used as baseline, an SCHRN with
7 categories, an UCHRN with 8 categories, and the
FDHRN with 8 categories. We compared both train-
ing times and testing accuracies achieved. The results
are summarized in Table 1, with values averaged over
several runs and rounded. All models converge by
200 epochs.

Even for merely 25 objects, the training time of
the baseline RN is one or two orders of magnitude
higher than that of the HRN models. This is expected
as, in general, the time complexity of the HRNs scale
with m? instead of n2, where m is the number of cate-
gories and n the number of objects.

We see that, out of all the models tested, the
UCHRN achieves superior accuracy at the end of
training and also takes the shortest time to finish train-
ing. This is likely because its assumptions are satis-
fied best by the animals dataset (the questions were
posed on all animal attributes). The SCHRN performs
worse as the fixed categories given by the dataset
(mammal, bug, etc.) are not particularly suited for the
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Figure 5: Effect of the number of categories, m, on training time and testing accuracy.

query questions. FDHRN does not perform as well as
UCHRN due to its higher variance. The main advan-
tage of FDHRN is that it can infer better categories
when many object attributes are irrelevant — but that
is not the case in our data.

4.4 Exploring the Optimal Number of
Classes

HRNS that support a different number of categories,
such as UCHRNs or FDHRNSs, allow us to create a
large spectrum of models between baseline RNs and
simple MLPs. When the number of categories m is the
same as the number of objects n, the resulting HRN
is effectively a simple RN operating on uncategorized
objects, since each object becomes its own category.
Whereas when m=1, an HRN resembles more an MLP
model that operates on one vector representation of
only the objects.

For these experiments we use a subset of the An-
imals dataset with 20,000 thousand questions (again
with an equal train-test split) posed on sets of 80 an-
imals, and used an UCHRN with increasing m. We
start with m = 2 to keep the network structure consis-
tent. Figure 5 shows both how training time and test
accuracy change with m.

We see a clear increase in training time as m in-
creases As the number of categories increases, the
number of relations to compute among those cate-
gories increases as m?.

Another point in these results is that the accuracy
increases rapidly first and then curves off. Once again
this is expected as UCHRNSs that can leverage more
categories perform better, but only up to a certain
point. In this dataset, the network has sufficient in-
formation to answer the questions as well as it can
with 6 categories.

This last observation is consistent with empirical
evidence from human reasoning which suggests that
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we tend to avoid both overly specific categories and
overly generic categories in order to form the small-
est possible number of concepts that is sufficient to
understand well our environment (Rosch et al., 1976;
Markman and Wisniewski, 1997).

S CONCLUSIONS AND FUTURE
WORK

In this paper we drew inspiration from how humans
learn relations to explore grouping objects into cate-
gories as a plausible improvement to neural relational
reasoning. We proposed the Hierarchical Relation
Network (HRN) framework, and three architectures
of this framework that differ in how they categorize
objects. HRNs have comparable accuracy with Rela-
tion Networks but they run orders of magnitude faster.

Our work serves as a proof-of-concept and an ini-
tial exploration into hierarchical relational reasoning.
Indeed, there are many open questions to consider:
How can we better represent categories in a way that
is more flexible than summing objects? What hap-
pens when the objects evenly span the space of their
attributes and do not form distinct clusters? Can cat-
egories be defined in terms of the task at hand in that
case?

We believe that hierarchical object classification
and relational learning between categories have great
potential to work hand-in-hand towards more practi-
cal and general machine intelligence.
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