
An Extensible Approach to Multi-level Ontology Modelling

Hermann Bense1 a and Bernhard G. Humm2 b
1bense.com GmbH, Schwarze-Brüder-Str. 1, 44137 Dortmund, Germany

2Hochschule Darmstadt - University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany

Keywords: Ontology Engineering, Multi-level Ontology Modelling, Class, Instance, Inheritance, Multi-facet Behaviour,
RDF/RDFS, SPARQL.

Abstract: One major challenge in ontology engineering is deciding whether an entity should be modelled as a class or
as an instance. Different modelling traditions and guidelines lead to different modelling decisions. This causes
problems when integrating ontologies modelled according to different guidelines and trying to query over
integrated ontologies. This article proposes a modelling approach which rigorously utilizes multi-level
ontology modelling. In particular, multi-facet behaviour allows entities to be modelled as classes and instances
simultaneously, where needed. It is argued that this supports simplicity, expressiveness, modularity, flexibility
and extensibility of ontologies. The guidelines can be fully implemented using the W3C standards RDF/RDFS
and SPARQL, allowing to implement inheritance behaviour using standardized inferencing mechanisms.

1 INTRODUCTION

One of the greatest challenges in ontology
engineering is deciding whether something should be
modelled as a class or as an instance. This is stated in
the standard textbook 0 and we agree with the
authors. They write “Since a semantic model must
respond to competency questions coming from
different stakeholders, it is quite possible that one
work practice has a tradition of considering
something to be a class, whereas another is
accustomed to thinking of it as an instance”
(Allemang et al., 2020, p. 434). They give the
example of endangered species. For field zoologists
who are tracking animals in wildlife, the species is a
class whose members are the individual animals they
are tracking. For the administrator in the federal
agency that lists endangered species, the species is an
instance to be put in such a list. The designer of a
single model who wants to answer competency
questions from both of these stakeholder
communities is faced with a challenge.

Different modelling traditions and guidelines lead
to different modelling decisions, modelling entities
either as classes or as instances. This causes problems

a https://orcid.org/0000-0002-2562-224X
b https://orcid.org/0000-0001-7805-1981
1 All code examples are typeset using a typewriter font.

when integrating ontologies modelled according to
different guidelines and trying to query over
integrated ontologies.

For example, in the Vertebrate Taxonomy
Ontology (VTO) (Phenoscape, 2021) and the NCBI
Taxonomy (NCBI, 2021), all biological species are
modelled as classes. For example, the species polar
bear (ursus maritimus) is modelled as owl:class1 in
VTO:

<owl:Class rdf:about="http://

 purl.obolibrary.org/obo/VTO_0010492">

 <rdfs:label>Ursus maritimus</rdfs:label>

</owl:Class>

In contrast, in the Wildlife Ontology (WO) (BBC,
2021) and in the Global Biodiversity Information
Facility (GBIF, 2021), biological species are
modelled as instances. Polar bear (ursus maritimus) is
modelled in GBIF under gbifID 3032077871 as an
instance of class species.

The authors of the WO state on (BBC, 2021):
“One perennial problem associated with modelling
biological taxonomies using RDF is whether to
attempt to model individual species as classes, or
whether to simply model species as instances of a

184
Bense, H. and Humm, B.
An Extensible Approach to Multi-level Ontology Modelling.
DOI: 10.5220/0010684200003064
In Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2021) - Volume 3: KMIS, pages 184-193
ISBN: 978-989-758-533-3; ISSN: 2184-3228
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

generic Species class. The latter approach is simpler
and avoids creating a huge ontology that attempts to
model all biological organisms. Existing ontologies
have taken different approaches to resolving this
issue, some choosing one style, others another. At
present there doesn’t seem to be a consensus. With
this in mind, the Wildlife Ontology adopts the simpler
of the two approaches, i.e. modelling species as
instances of a Species class, as this maximises
interoperability with many of the existing Linked
Data sources, particularly dbpedia, which adopt
similar approaches.”

We agree with the authors of the WO. For the
purpose of annotating BBC wildlife documentaries,
modelling biological species as instances is simple
and sufficient. However, for use cases where
individual animals have to be modelled, too, it is not
sufficient to model species as instances only.

While in the four ontologies mentioned above,
biological species are consistently modelled either as
classes only or as instances only, in Wikidata
(Wikimedia, 2021) as a crowd-sourced general-
purpose ontology, there is a mixture of modelling
biological species sometimes as classes and
sometimes as instances. The species dog2 is modelled
as a class (subclass of domesticated_mammal3),
with the concrete dog Laika 4 from the Soviet
spacecraft Sputnik 2 as an instance of this class. On
the other hand, the species polar_bear5 is modelled
as an instance of class taxon6. taxon is marked as a
second-order class 7 which is an example of
multi-level modelling (Neumayr et al. 2009; Almeida,
et al., 2019; Brasileiro et al., 2016a; Brasileiro et al.,
2016b; Carvalho and Almeida, 2018). Thus, the
instance polar bear can also be considered a class.
The concrete polar bear Knut8 which was born in the
Berlin Zoological Garden is modelled as an instance
of this class.

The contribution of this paper is a modelling
approach which rigorously utilizes multi-facet
(Atkinson and Kühne, 2001; Neumayr et al., 2009;
Frank, 2014) behaviour, an aspect of multi-level
modelling, allowing entities to be modelled as classes
(class facet) and instances (instance facet)
simultaneously, where needed. This approach
combines the advantages of both approaches, (a)
modelling concepts like biological species as classes
only and (b) modelling them as instances only,

2 https://www.wikidata.org/wiki/Q144
3 https://www.wikidata.org/wiki/Q57814795
4 https://www.wikidata.org/wiki/Q53662
5 https://www.wikidata.org/wiki/Q33609 (All Wikidata ex-
amples accessed 2021-03-01)

alleviating their disadvantages. It furthermore avoids
inconsistencies that may arise when no clear
modelling guidelines are specified. The multi-facet
behaviour lifts the need for an either-or decision
between class and instance and we regard it like
cutting a Gordian knot in ontology engineering. In
contrast to related work, our guidelines can be fully
implemented using the W3C standards RDF/RDFS
(W3C, 2014), and SPARQL (W3C, 2013a), allowing
to implement inheritance behaviour using
standardized inferencing mechanisms. It supports
simplicity, expressiveness, modularity, flexibility and
extensibility of ontologies. The importance of those
characteristics we know from our extensive
experience in ontology engineering and developing
ontology-based semantic applications for different
application domains, including life sciences, tourism,
industrial manufacturing, energy, robot journalism,
and culture.

The remainder of this article is structured as
follows. In Section 2 we discuss related work. Section
3 presents an example ontology which we use
throughout this paper. In Sections 4-7, we present the
multi-facet behaviour and its implications on property
types, inheritance, querying and inferencing. Section
8 discusses the approach. Section 9 concludes the
paper and indicates future work.

2 RELATED WORK

In the RDFS specification (W3C, 2014), classes are
described as groups of resources and instances as
their members. Alemang et al. complain that a
common reaction to the difficult distinction between
classes and instances is simply to define everything
as a class. They grade this as an antipattern, i.e., a bad
modelling practice, which they call “rampant
classism” (0, 2020. p.436). We agree with them.

(Noy and McGuinness, 2021) is one of the earlier
guidelines for ontology engineering. A criterium they
define for the decision to model something as a class
or an instance is the lowest level of granularity in the
representation. They see individual instances as the
most specific concepts represented in a knowledge
base. Then individual instances could be transferred
into a set of classes, if they form a natural hierarchy.

In the field of multi-level ontology modelling,
various authors recommend modelling pairs of

6 https://www.wikidata.org/wiki/Q16521
7 https://www.wikidata.org/wiki/Q24017414
8 https://www.wikidata.org/wiki/Q159697

An Extensible Approach to Multi-level Ontology Modelling

185

classes where a class is associated with a
corresponding type class e.g. (Car, Car_Model)
(Atkinson and Kühne, 2001; Pirotte et al., 1994;
Odell, 1994; Guizzardi et al., 2015; Almeida et al.,
2019; Brasileiro et al., 2016a; Brasileiro et al., 2016b;
Carvalho and Almeida, 2018; Pan and Horrocks,
2001). The modelling pattern is called materialization
pattern in (Pirotte et al., 1994); The term powertype
is used in (Odell, 1994) and (Guizzardi, et al., 2015).
In the example, Car_Model is the powertype of Car.
Instances of the powertype Car_Model like
2CV_Model have properties like maxSpeed or
Year_of_Design. 2CV is a subclass of the class
Car, corresponding to 2CV_Model. Its instances like
My_2CV have properties like Number_Plate or
Milage. With conventional modelling approaches it
is not possible to mix the properties of base class and
its powertype into one class, since it makes no sense
to have a property Number_Plate for a
Car_Model. Our approach is simpler insofar as it
does not require separate entities Car and Car Model
while still explicitly distinguishing between the
different facets.

Another approach to avoid separate entities Car
and Car Model is described in (Neumayr et al.
2009), called Multi-Level Domain Modeling.
Properties are annotated with meta attributes which
define rules for inheritance and instantiation. E.g. for
the base class Car the data property maxSpeed is
annotated with :model to refer to a Car_Model
while the data property Milage is annotated with
:physical_entity to refer to an individual car.
This allows merging the properties of Car and
Car_Model into only one class Car while keeping
the semantics of the properties clear.

In a comparable approach (Frank, 2014), level
numbers are assigned to properties. For Car the
property Milage would be defined with level=0
which corresponds to the :physical_entity
annotation in (Neumayr et al. 2009), while maxSpeed
would be annotated with level=1 which
corresponds to the :model annotation. Annotating
properties with multiple levels or with different levels
for different contexts is not possible, as is enabled in
our approach.

In (Brasileiro et al., 2016a), a fixed separation of
entities into individuals, 1st order type, 2nd order type
and 3rd order type is proposed. Our approach is more
flexible as it allows context-dependent viewpoints.

9 We made only minor changes, e.g., the use of SKOS.

So, polar bear may be an individual in one use case
context (tagging wildlife series) but a 1st order type in
another context (tracking concrete animals). The
facets of entities could also evolve during the
development time of an ontology. From our
experience in ontology modelling and developing
ontology-based semantic applications this is
important.

Multi-facet behaviour as used in (Neumayr et al.,
2009) may regard entities as classes and instances
simultaneously, where needed. In contrast, OWL 1
DL requires a strict separation between the classes
and individuals (W3C, 2012). Insofar, multi-facet
behaviour is not compatible with OWL1 DL.
However, OWL 2 DL relaxes this separation
somewhat to allow different uses of the same term
which is called Punning. In (W3C, 2012, Section
2.4.1), the following example is given: “e.g., Eagle,
to be used for both a class, the class of all Eagles, and
an individual, the individual representing the species
Eagle belonging to the (meta)class of all plant and
animal species”. However, OWL 2 DL still imposes
certain restrictions, e.g., a name can only be used for
one kind of property (W3C, 2012).

In the next sections, we present an extensible
modelling approach rigorously using multi-facet
behaviour and demonstrate it by means of a sample
ontology.

3 EXAMPLE: ANIMAL
ONTOLOGY

In this article, we use a small ontology as an
illustrating example in which we modelled some
biological species. We call this sample ontology
Animal Ontology (AO). The AO is based on the WO
(BBC, 2021) 9 . The basis of AO is the taxonomy
established in biology classifying living entities using
the taxons kingdom, phylum, class10, order, family,
genus, and species.

Like the authors of WO, we favour a simple
modelling approach modelling concrete species like
polar bear as instances. See the following example in
RDF Turtle syntax.

@prefix : <http://h-da.de/animalontology/>.
@prefix rdf: <http://
 www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://
 www.w3.org/2000/01/rdf-schema#>.

10 The biological taxon “class” is not to be confused with
the ontology concept of a class. We distinguish both by
using different namespaces.

KMIS 2021 - 13th International Conference on Knowledge Management and Information Systems

186

Figure 1: Subset of the Animal Ontology (AO).

@prefix skos: <http://
 www.w3.org/2004/02/skos/core#>.
:Species a rdfs:Class ;
 skos:prefLabel "Species" ;
 rdfs:subClassOf :Taxon .
:Polar_Bear a :Species ;
 skos:prefLabel "Polar Bear" ;
 skos:altLabel "Ursus maritimus" ;
 skos:broader :Bear .

See Fig. 1 for a visualization of a subset of AO with
one example for each taxon. Classes are depicted with
red solid lines and instances with green dashed
lines11.

In the AO, :Taxon is an rdfs:Class with
subclasses :Kingdom, :Phylum, :Class, :Order,
:Family, :Genus, and :Species. :Polar_Bear is
an instance of :Species, :Bear an instance of
:Genus, :Animals an instance of :Kingdom etc.
We use the object property skos:broader to specify
the biological taxonomy, e.g.,

:Polar_Bear skos:broader :Bear.
:Chordates skos:broader :Animals.

In addition, concrete taxons are attributed with
properties, e.g.,

:Polar_Bear skos:altLabel "Ursus maritimus".

The WO was modelled for the use case of
annotating BBC wildlife documentaries. The AO is
based on the WO and could well serve a similar use
case. But what if the use cases of AO shall be
extended, e.g., if field zoologists want to model
concrete animals that they track or the administration
of a zoo wants to manage their animals?

11 To keep the figure clear we omitted additional green
boxes for the target of object properties like

The simple modelling approach of AO presented
above is not capable of supporting such use cases
since species like:Polar_Bear are not modelled as
a class which can be instantiated with concrete
animals like :Knut.

In the next section we demonstrate how the
simple modelling approach can be extended to
support new use cases using multi-facet behaviour.

4 MULTI-FACET BEHAVIOUR

RDF and RDFS provide means for specifying classes
and instances. A class is specified as an instance of
rdfs:Class (or any of its subclasses like
owl:Class), using the object property rdf:type
(abbreviated in Turtle with a), e.g.,

:Species a rdfs:Class.

An instance is specified using a rdf:type
relationship to a class, e.g.,

:Polar_Bear a :Species.

However, the standards provide no restrictions on
the usage of classes and instances 0. It is not required
to use classes and instances whatsoever, i.e., not using
rdf:type at all is allowed. It is allowed to model
classes with several superclasses
(rdfs:subClassOf - multiple inheritance). It is
allowed to model something to be instance of more
than one class, which is not supported in object-
oriented languages like Smalltalk, Java, C# or C++.

conservation_staus :vulnerable but instead
indicated this with a dashed arrow -->

An Extensible Approach to Multi-level Ontology Modelling

187

In RDF/RDFS it is not forbidden to specify an
entity as an instance of something which has not been
specified as a class. Although this is syntactically
correct, we consider this a modelling flaw.

It is also allowed to model something as a class
and an instance simultaneously. Every class is an
example of this pattern since every class is an instance
of rdfs:Class. Also rdfs:Class is an example of
this since it is a class and additionally an instance of
itself.

In (Atkinson and Kühne, 2001) and (Neumayr et
al., 2009) this is called multi-facet. It is argued that
this may considerably reduce unnecessary
complexity in ontologies with multiple levels. We
agree with them and use the multi-facet behaviour to
add capabilities to ontologies like AO incrementally
when required by new use cases.

For example, when modelling concrete animals in
a zoo like the polar bear :Knut, then the concept
:Polar_Bear, modelled as an instance of class
:Species, can additionally be specified as a class:

:Polar_Bear a :Species , rdfs:Class.

The concrete polar bear :Knut can now be
modelled as follows.

:Knut a :Polar_Bear;
 skos:prefLabel "Knut";
 :sex "male";
 :birthDate "2006-12-05"^^xsd:date;
 :birthPlace :Berlin_Zoological_Garden;
 :deathDate "2011-03-19"^^xsd:date;
 :deathPlace :Berlin_Zoological_Garden;
 rdfs:seeAlso <https://en.wikipedia.org/
 wiki/Knut_(polar_bear)>.

See Fig. 2.

Figure 2: Modelling :Polar_Bear as an instance and as
a class simultaneously.

12 According to ICUN https://www.iucn.org/ vulnerable is
the status next to endangered.

The multi-facet behaviour of taxon :PolarBear
can be seen by the green dashed line indicating that
:PolarBear is an instance of class :Species
(instance facet) and the red solid line indicating that
:Polar_Bear is a rdfs:Class with :Knut as an
instance (class facet).

5 PROPERTY TYPES

Properties are used for specifying information about
entities like :Polar_Bear or :Knut. Datatype
properties like :birthDate or :population relate
to literal values like strings, numbers or dates, e.g.

:Polar_Bear :population 31000.
:Knut :birthDate "2006-12-05"^^xsd:date.

Object properties like conservation_status relate

to other entities, e.g.

:Polar_Bear :conservation_status
 :vulnerable.
:vulnerable a :Conservation_status.
:Conservation_status a rdfs:Class.

Datatype properties as well as object properties

always relate to the instance facet of an entity,
indicated by green dashed lines in Fig. 1 and 2. In the
example above, the property :birth_date refers to
the instance :Knut.

In the other example, :conservation status
refers to the instance facet of :Polar_Bear , not to
the class facet: the species polar bear is vulnerable12.
Does the fact that the species polar bear is vulnerable
mean that the individual polar bear Knut is
vulnerable? No: Knut may happily live in the Berlin
Zoo, while his species as a whole is vulnerable. The
same applies for the population which refers to the
species polar bear, but not to the instance Knut.

Let us look at another example of an object
property: habitat.

:Bears :habitat :Terrestrial_habitat.
:Terrestrial_habitat a :Habitat.
:Habitat a rdfs:Class.

These RDF triples express that bears live on

terrestrial habitat, i.e., that they are land animals.
Again, this information relates to the instance facet of
the biological family of bears. Does this information
also apply to all genus and species of the family
bears? Yes, indeed it can be implied that polar bears,
American black bears, Panda bears etc. all are land

KMIS 2021 - 13th International Conference on Knowledge Management and Information Systems

188

animals. And how about individual animals like
Knut? Yes, indeed it can be implied that all individual
polar bears, American black bears, Panda bears etc.,
including Knut, are land animals.

It is obvious that, although both properties
:conservation_status and :habitat relate to
the instance facet, they are semantically different. The
difference is how information can be inferred
between the facets along hierarchies within the facets.
Whereas information about the habitat can be inferred
from broader concepts to narrower concepts in the
biological taxonomy and even to instances, this is not
the case for information about the population or the
conservation status.

Please note that this semantic difference is
independent of the distinction between object
properties and datatype properties. If, e.g.,
:conservation_status had been modelled as a
datatype property (:Polar_Bear
:conservation_status "vulnerable") then
the intended inference would still be the same.

6 INHERITANCE

In the field of object-orientation, inferring
information along subclass-hierarchies is called
inheritance (Nierstrasz, 1989). We borrow this term
for inferring information between facets as well as
along hierarchies within facets, e.g.,
rdfs:subClassOf hierarchies within the class facet
or skos:broader hierarchies within the instance
facet.

In our example, the hierarchy between taxons is
specified by the object property skos:broader .

:Polar_Bear a :Species; skos:broader :Bear.
:Bear a :Genus; skos:broader :Bears.
:Bears a :Family; skos:broader :Carnivores.
:Carnivores a :Order; skos:broader :Mammals.
:Mammals a :Class; skos:broader :Chordates.
:Chordates a :Phylum; skos:broader :Animals.
:Animals a :Kingdom.

Let us now reconsider the sample properties
:birth_date, :population,
:conservation_status and :habitat.

1. :birth_date "2006-12-05" refers to an
instance of a concrete species, e.g., :Knut,
only.

2. :population 31000 refers to a concrete
species, genus, family etc., e.g.,
:polar_bear, but cannot be inherited from
broader to narrower taxons, and not to their
instances.

3. :conservation_status : vulnerable
refers to a concrete taxon, e.g., the species
:polar_bear. If a conservation status would
be specified for an entire genus or family then
it could be inferred that all species belonging
to this genus or family have the same
conservation status, hence can be inherited
along the skos:broader hierarchy.
However, it cannot be inherited to instances of
concrete species like :Knut.

4. :habitat :Terrestrial_habitat refers
to a concrete species, genus, family etc., e.g.,
:Bears, it can be inherited along the
skos:broader hierarchy, e.g., from :Bears
to :Bear and from :Bear to :Polar_bear.
Additionally, it can be inherited from concrete
species like :Polar_Bear to instances of this
species like :Knut.

In order to use inferencing for implementing
inheritance behaviour, it is necessary to explicate the
intended behaviour of properties like
:birth_date, :population,
:conservation_status, and :habitat. Consider
the following declarations.

:birth_date a rdfs:Property.
:population a rdfs:Property.
:conservation_status a rdfs:Property,
 :BroaderInheritedProperty.
:habitat a rdfs:Property,
 :BroaderInheritedProperty,
 :TypeInheritedProperty

Those RDF triples express that all four properties
are of type rdfs:Property. :birth_date and
:population have no intended inheritance
behaviour. :conservation_status and
:habitat are of type
:BroaderInheritedProperty in order to express
that those properties can be inherited along the
skos:broader hierarchy from broader to narrower
taxons. Additionally, :habitat is of type
:TypeInheritedProperty in order to express that
this property can additionally be inherited along the
rdf:type relationship from classes to their
instances.

Please note that individual properties can be of
any of all four possible combinations:

1. Of both types
:BroaderInheritedProperty and
:TypeInheritedProperty, e.g.,
:habitat;

2. Only
:BroaderInheritedProperty, e.g.,
:conservation_status;

An Extensible Approach to Multi-level Ontology Modelling

189

3. Only TypeInheritedProperty;
4. None of both, e.g. :birth_date.

Furthermore, inheritance behaviour may apply to
object properties and datatype properties alike.

In the next section we show that such property
declarations can be used for implementing
inheritance via inferencing.

7 QUERYING AND
INFERENCING

Ontology engineering is no end in itself but has the
purpose of using information modelled. Query
languages allow accessing information in ontologies.
SPARQL (W3C, 2013a) is the standardized query
language for RDF. We use SPARQL for
demonstrating examples.

The following SPARQL query selects all
information about :Knut.

SELECT *
WHERE{:Knut ?p ?o.}

This query will return for RDF triples with subject
:Knut all predicates ?p and objects ?o explicitly
specified, e.g., :sex "male". However, it will not
contain any information about Knut’s habitat.

Likewise, a similar query for all information about
the species polar bear will return all predicates and
objects explicitly specified for the subject
:Polar_Bear like :population 31000, but no
information about the habitat of polar bears.

This is because habitat information is specified for
a broader taxon, here the family of bears.

Inferencing can be used to implement inheritance
behaviour as outlined in the previous section. We
demonstrate this using SPARQL update (W3C,
2013b) for sample rules. Consider the following
SPARQL INSERT statement specifying the rule for
inheriting properties along skos:broader
hierarchies.

INSERT {?s ?p ?o.}

WHERE {?p a :BroaderInheritedProperty.

 ?s skos:broader* ?b.

 ?b ?p ?o.}

This rule applies for RDF triples with predicates
?p that have been specified of type
:BroaderInheritedProperty like, e.g.,
:conservation_status or :habitat. If a subject
?s is in a transitive skos:broader relationship to
some other subject ?b then all triples with predicate
?p and object ?o can be inherited for subject ?s .

Executing this SPARQL INSERT statement
materializes the inferencing results in the ontology.
Executing a SPARQL query about all information
about the species :Polar_Bear will now, in addition
to explicitly modelled information, also return
inferred information
:habitat :Terrestrial_habitat.

However, a query for all information about
:Knut will still not render habitat information
because it is neither specified explicitly nor cannot it
be inferred with the rule above. Therefore, now
consider the following SPARQL INSERT statement
specifying the rule for inheriting properties from
classes to instances.

INSERT {?s ?p ?o.}

WHERE {?p a :TypeInheritedProperty.

 ?s a ?c.

 ?c ?p ?o.}

This rule applies for RDF triples with predicates
?p that have been specified of type
:TypeInheritedProperty like, e.g., :habitat.
If a subject ?s is in a rdf:type relationship to some
class ?c then all triples with predicate ?p and object
?o can be inherited for subject ?s .

After executing this SPARQL INSERT statement,
querying for all information about Knut will now
additionally render
:habitat :Terrestrial_habitat.
It shall be noted that in practice, all rules have to be
executed repeatedly until no rule fires any more, as is
common in forward-chaining rule-based systems.
We would also like to add a remark on our use of
skos:broader in the example ontology AO.
skos:broader is an informal property for
expressing hierarchical relations including whole-
part, spatial, temporal, etc. There may be good
reasons for ontology engineers for preferring such an
informal relation over a more formally specified
relation like rdfs:subClassOf in a certain context.
Re-using existing ontologies for new use case
contexts is common practice in ontology engineering
and in developing ontology-based semantic
applications. We have deliberately chosen an
informal property like skos:broader for the AO in
order to demonstrate how semantics for different use
case contexts may be added incrementally,
independently of the modelling style of the initial
ontology. If a more formally specified relationship
like rdfs:subClassOf is deemed necessary in a
certain use case context then a SPARQL rule for
inferring rdfs:subClassOf relationships from
skos:broader relationships may easily be added.
This is the basis for the flexibility and extendibility of
our approach which we discuss in the next section.

KMIS 2021 - 13th International Conference on Knowledge Management and Information Systems

190

8 DISCUSSION

“Everything should be made as simple as possible,
but no simpler” is a quote that has been attributed to
Albert Einstein (although he presumably never said it
literally) (Championing Science, 2021). In software
engineering, the acronym KISS (“keep it simple,
stupid”) has been used to express the same principle
of simplicity. Also, for ontology engineering it is a
good practice to model entities as simple as possible.

In this article we suggest to model entities as
classes only if this is actually needed, i.e., if in the
domain of interest there are instances of this entity
that need to be modelled. However, the addition “but
no simpler” indicates that the expressiveness of the
model must be adequate for the domain of interest,
i.e., everything that is relevant can actually be
modelled. The requirements for an ontology may vary
between different usage contexts and over time. In the
example of the AO, in one usage context it may be
sufficient to model species as instances, e.g., for
tagging wildlife documentaries. In another context it
may be necessary to model concrete species like polar
bear as classes, e.g., for documenting individual
animals watched in wildlife. It may be the case that
different subsets of an ontology shall be used for
different contexts - this requires modularity of the
ontology. It may also be the case that the usage
context of an ontology evolves over time - this
requires extensibility of the ontology.

We argue that rigorously utilizing the multi-facet
behaviour for modelling ontologies supports
simplicity, expressiveness, modularity, extensibility
and flexibility. It does not enforce an either-or
decision of modelling entities as classes or instances.
Instead, it allows starting simple (simplicity, e.g.,
modelling :Polar_bear as an instance of class
:Species) and extending as needed (adequate
expressiveness and extensibility, e.g., modelling
:Polar_bear additionally as a class). The instance
facet (e.g., :Polar_bear as an instance) can be
separated from the class facet (e.g., :Polar_bear as
a class including its instances), supporting
modularization via different ontology files.

Conciseness is related to simplicity, aiming at
modelling entities with as few statements (e.g., RDF
triples) as possible. Utilizing the multi-facet
behaviour is more concise than using the
materialization pattern. For example, modelling the
AO with the materialization pattern would require
modelling taxons and animals as separate entities.
This impedes readability of the ontology and
complicates the implementation of queries.

Lack of redundancy is related to conciseness. We
have shown that using inferencing for implementing
inheritance, redundancy in ontologies can largely be
reduced.

Interoperability is important for linking
ontologies. In our examples, we use standards like
RDF/RDFS and SPARQL that support
interoperability on a syntactic level. However, in our
opinion, interoperability on the modelling style is as
important. In the introduction we refer to four
different animal ontologies, two of them modelling
all species as classes (VTO and NCBI Taxonomy),
the other two modelling them as instances (WO and
GBIF). Utilizing multi-facet behaviour requires no
either-or decision on class or instance. Instead, it
allows combining the strengths of both modelling
styles while alleviating their disadvantages.
However, as stated in (W3C, 2012), multi-facet
behaviour could impede OWL DL reasoning.

In contrast to (Neumayr et al., 2009) and (Frank,
2014), we use standard modelling and query
languages (RDF/ RDFS, SPARQL). In (Neumayr et
al., 2009), SQL must be extended for querying M-
Objects; In (Frank, 2014), queries are not discussed at
all.

In (Neumayr et al., 2009), inheritance behaviour
is not discussed. In (Frank, 2014), inheritance is
restricted to the definition of properties, i.e., using a
property specified in a higher-level object in a lower
level. Inferring property values between facets and
along hierarchies within facets, e.g.,
rdfs:subClassOf or skos:broader, is not
discussed.

Our approach allows a large level of flexibility, no
“one size fits all”. Depending on the application
context entities can be assigned different modelling
levels, properties can be annotated with different
inheritance behaviour and different inheritance rules
can be implemented. This extends the flexibility of
existing multi-level modelling approaches.

9 CONCLUSIONS AND FUTURE
WORK

In this paper we discuss a major challenge in ontology
engineering, namely deciding whether an entity
should be modelled as a class or as an instance.
Different modelling traditions and guidelines lead to
different modelling decisions, enforcing an either-or
decision.

In contrast, we propose to rigorously utilize multi-
facet behaviour allowing entities to be modelled as

An Extensible Approach to Multi-level Ontology Modelling

191

classes and instances simultaneously, where needed.
We argue that it supports simplicity, expressiveness,
modularity, flexibility and extensibility of ontologies.
Furthermore, we present means for implementing
inheritance behaviour between facets and along
hierarchies within facets by using inferencing. We
argue that this reduces redundancy and increases
conciseness.

We have applied the modelling approach
presented in this paper to concrete domain-specific
ontologies in practice and we continue to do so.
Currently, we are working on an ontology for
machine learning (ML) (Humm and Zender, 2021;
(Humm et al., 2021), modelling ML approaches, ML
libraries, their characteristics and interrelationships,
and more. This ontology shall be used in various use
case contexts, including teaching ML, supporting ML
engineers when designing ML applications,
supporting automated orchestration of ML
applications (AutoML) or chat bots for answering
questions about ML. The flexibility of our approach
can be particularly useful in using the ontology in
those different use case contexts.

REFERENCES

Dean Allemang, Jim Hendler, Fabien Gandon (2020).
Semantic Web for the Working Ontologist - Effective
Modeling in RDFS and OWL, Third Edition. ACM
Books series, Nbr. 33, 2020, ISBN 978-1-4503-7614-3

Phenoscape (2021): Vertebrate Taxonomy Ontology
(VTO). Online https://github.com/phenoscape/vertebra
te-taxonomy-ontology accessed 2021-04-21.

National Center for Biotechnology Information (NCBI)
(2021): NCBI Taxonomy. Online https://www.ncbi.
nlm.nih.gov/taxonomy, accessed 2021-04-21.

British Broadcasting Corporation (BBC) (2021): Wildlife
Ontology (WO). Online https://www.bbc.co.uk/
ontologies/wo, accessed 2021-04-21.

Global Biodiversity Information Facility (GBIF) (2021).
Online https://www.gbif.org, accessed 2021-04-21.

Wikimedia (2021): Wikidata. Online https://www.
wikidata.org, accessed 2021-04-21.

Colin Atkinson, Thomas Kühne (2001). The Essence of
Multilevel Metamodeling. In: Gogolla M., Kobryn C.
(eds) ≪ UML ≫ 2001 — The Unified Modeling
Language. Modeling Languages, Concepts, and Tools.
UML 2001. Lecture Notes in Computer Science, vol.
2185. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-45441-1_3.

Bernd Neumayr, Katharina Grün, Michael Schrefl (2009).
Multi-Level Domain Modeling with M-Objects and M-
Relationships. Sixth Asia-Pacific Conference on
Conceptual Modelling (APCCM 2009), Wellington,
New Zealand, January 20-23 2009. CRPIT 96,

Australian Computer Society 2009, ISBN 978-1-
920682-77-4.

Ulrich Frank (2014). Toward a New Paradigm of
Conceptual Modeling and Information Systems Design.
Business & Information Systems Engineering 6(6),
Dec. 2014, pp. 319-337. DOI: 10.1007/s12599-014-
0350-4

World Wide Web Consortium (W3C) (2014): RDF Schema
1.1, W3C Recommendation 25 February 2014. Online
https://www.w3.org/TR/rdf-schema, accessed 2021-
04-21.

World Wide Web Consortium (W3C) (2013a): SPARQL
1.1 Query Language W3C Recommendation 21 March
2013. Online https://www.w3.org/TR/sparql11-query,
accessed 2021-04-21.

World Wide Web Consortium (W3C) (2013b): SPARQL
1.1 Update, W3C Recommendation 21 March 2013.
Online https://www.w3.org/TR/sparql11-update,
accessed 2021-04-21.

Natalya F. Noy, Deborah L. McGuinness (2021). Ontology
Development 101: A Guide to Creating YourFirst
Ontology. Technical reports, Stanford University,
Stanford, CA, 94305, Online https://protege.
stanford.edu/publications/ontology_development/ontol
ogy101.pdf , accessed 2021-08-03.

Alain Pirotte, Esteban Zimanyi, David Assart, Tatiana
Yakusheva (1994). Materialization: a powerful and
ubiquitous abstraction pattern. VLDB, Morgan
Kaufmann, 1994, pp. 630-641.

James J. Odell (1994). Power Types. Journal of Object-
Oriented Programming, Volume 7(2), 1994 , pp. 8-12.

Giancarlo Guizzardi, Joao Paulo A. Almeida, Nicola
Guarino, Victorio A. Carvalho (2015). Towards an
Ontological Analysis of Powertypes. International
Workshop on Formal Ontologies for Artificial
Intelligence (FOFAI), 2015.

Joao Paulo A. Almeida, Victorio A. Carvalho, Freddy
Brasileiro, Claudenir M. Fonseca, Giancarlo Guizzardi
(2019). Multi-Level Conceptual Modeling: Theory and
Applications. 2019.

Freddy Brasileiro, Joao Paulo A. Almeida, Victorio A.
Carvalho, Giancarlo Guizzardi (2016a). Expressive
Multi-Level Modeling for the Semantic Web. 15th
International Semantic Web Conference (ISWC 2016).
Lecture Notes in Computer Science October 2016,
DOI: 10.1007/978-3-319-46523-4_4.

Freddy Brasileiro, Joao Paulo A. Almeida, Victorio A.
Carvalho, Giancarlo Guizzardi (2016b). Applying a
Multi-Level Modeling Theory to Assess Taxonomic
Hierarchies in Wikidata. Wiki Workshop at 25th Int.
Conference Companion World Wide Web, 2016, pp.
975-980.

Victorio A. Carvalho, Joao Paulo A. Almeida (2018).
Toward a Well-Founded Theory for Multi-Level
Conceptual Modeling. Software and Systems Modeling
17(1), Springer Verlag, February 2018. DOI:
10.1007/s10270-016-0538-9.

Jeff Z. Pan, Ian Horrocks (2001). Metamodeling
Architecture of Web Ontology Languages. Proc. of the

KMIS 2021 - 13th International Conference on Knowledge Management and Information Systems

192

2001 International Semantic Web Working
Symposium, 2001, pp. 131-149.

World Wide Web Consortium (W3C) (2012): OWL 2 Web
Ontology Language, New Features and Rationale
(Second Edition), W3C Recommendation 11 December
2012. Online https://www.w3.org/TR/owl2-new-
features, accessed 2021-04-27.

Bernhard G. Humm, Alexander Zender (2021): An
Ontology-Based Concept for Meta AutoML.
Proceedings of the 17th International Conference on
Artificial Intelligence Applications and Innovations
(AIAI 2021), Crete, Greece, 25 – 27 June, 2021.

Bernhard G. Humm, Hermann Bense, Michael Fuchs,
Benjamin Gernhardt, Matthias Hemmje, Thomas
Hoppe, Lukas Kaupp, Sebastian Lothary, Kai-Uwe
Schäfer, Bernhard Thull, Tobias Vogel and Rigo
Wenning (2021): Machine intelligence today:
applications, methodology, and technology.
Hauptbeitrag Informatik Spektrum 44, 104–114,
Springer Verlag Heidelberg, Germany, 2021.
https://doi.org/10.1007/s00287-021-01343-1.

Oscar Nierstrasz (1989): A Survey of Object-Oriented
Concepts. In Object-Oriented Concepts, Databases and
Applications, ed. W. Kim and F. Lochovsky, pp. 3-21,
ACM Press and AddisonWesley, 1989.

Championing Science (2021): In honor of Albert Einstein’s
birthday – Everything should be made as simple as
possible, but no simpler. Online
https://www.championingscience.com/2019/03/15/eve
rything-should-be-made-as-simple-as-possible-but-no-
simpler. accessed 2021-04-21.

An Extensible Approach to Multi-level Ontology Modelling

193

