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Abstract: One major challenge in ontology engineering is deciding whether an entity should be modelled as a class or 
as an instance. Different modelling traditions and guidelines lead to different modelling decisions. This causes 
problems when integrating ontologies modelled according to different guidelines and trying to query over 
integrated ontologies. This article proposes a modelling approach which rigorously utilizes multi-level 
ontology modelling. In particular, multi-facet behaviour allows entities to be modelled as classes and instances 
simultaneously, where needed. It is argued that this supports simplicity, expressiveness, modularity, flexibility 
and extensibility of ontologies. The guidelines can be fully implemented using the W3C standards RDF/RDFS 
and SPARQL, allowing to implement inheritance behaviour using standardized inferencing mechanisms. 

1 INTRODUCTION 

One of the greatest challenges in ontology 
engineering is deciding whether something should be 
modelled as a class or as an instance. This is stated in 
the standard textbook 0 and we agree with the 
authors. They write “Since a semantic model must 
respond to competency questions coming from 
different stakeholders, it is quite possible that one 
work practice has a tradition of considering 
something to be a class, whereas another is 
accustomed to thinking of it as an instance” 
(Allemang et al., 2020, p. 434). They give the 
example of endangered species. For field zoologists 
who are tracking animals in wildlife, the species is a 
class whose members are the individual animals they 
are tracking. For the administrator in the federal 
agency that lists endangered species, the species is an 
instance to be put in such a list. The designer of a 
single model who wants to answer competency 
questions from both of these stakeholder 
communities is faced with a challenge. 

Different modelling traditions and guidelines lead 
to different modelling decisions, modelling entities 
either as classes or as instances. This causes problems 
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when integrating ontologies modelled according to 
different guidelines and trying to query over 
integrated ontologies. 

For example, in the Vertebrate Taxonomy 
Ontology (VTO) (Phenoscape, 2021) and the NCBI 
Taxonomy (NCBI, 2021), all biological species are 
modelled as classes. For example, the species polar 
bear (ursus maritimus) is modelled as owl:class1 in 
VTO: 

 

<owl:Class rdf:about="http:// 

  purl.obolibrary.org/obo/VTO_0010492"> 

  <rdfs:label>Ursus maritimus</rdfs:label> 

</owl:Class> 

 

In contrast, in the Wildlife Ontology (WO) (BBC, 
2021) and in the Global Biodiversity Information 
Facility (GBIF, 2021), biological species are 
modelled as instances. Polar bear (ursus maritimus) is 
modelled in GBIF under gbifID 3032077871 as an 
instance of class species. 

The authors of the WO state on (BBC, 2021): 
“One perennial problem associated with modelling 
biological taxonomies using RDF is whether to 
attempt to model individual species as classes, or 
whether to simply model species as instances of a 
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generic Species class. The latter approach is simpler 
and avoids creating a huge ontology that attempts to 
model all biological organisms. Existing ontologies 
have taken different approaches to resolving this 
issue, some choosing one style, others another. At 
present there doesn’t seem to be a consensus. With 
this in mind, the Wildlife Ontology adopts the simpler 
of the two approaches, i.e. modelling species as 
instances of a Species class, as this maximises 
interoperability with many of the existing Linked 
Data sources, particularly dbpedia, which adopt 
similar approaches.” 

We agree with the authors of the WO. For the 
purpose of annotating BBC wildlife documentaries, 
modelling biological species as instances is simple 
and sufficient. However, for use cases where 
individual animals have to be modelled, too, it is not 
sufficient to model species as instances only. 

While in the four ontologies mentioned above, 
biological species are consistently modelled either as 
classes only or as instances only, in Wikidata 
(Wikimedia, 2021) as a crowd-sourced general-
purpose ontology, there is a mixture of modelling 
biological species sometimes as classes and 
sometimes as instances. The species dog2 is modelled 
as a class (subclass of domesticated_mammal3), 
with the concrete dog Laika 4  from the Soviet 
spacecraft Sputnik 2 as an instance of this class. On 
the other hand, the species polar_bear5 is modelled 
as an instance of class taxon6. taxon is marked as a 
second-order class 7  which is an example of 
multi-level modelling (Neumayr et al. 2009; Almeida, 
et al., 2019; Brasileiro et al., 2016a; Brasileiro et al., 
2016b; Carvalho and Almeida, 2018). Thus, the 
instance polar bear can also be considered a class. 
The concrete polar bear Knut8 which was born in the 
Berlin Zoological Garden is modelled as an instance 
of this class. 

The contribution of this paper is a modelling 
approach which rigorously utilizes multi-facet 
(Atkinson and Kühne, 2001; Neumayr et al., 2009; 
Frank, 2014) behaviour, an aspect of multi-level 
modelling, allowing entities to be modelled as classes 
(class facet) and instances (instance facet) 
simultaneously, where needed. This approach 
combines the advantages of both approaches, (a) 
modelling concepts like biological species as classes 
only and (b) modelling them as instances only, 

 
2 https://www.wikidata.org/wiki/Q144 
3 https://www.wikidata.org/wiki/Q57814795 
4 https://www.wikidata.org/wiki/Q53662 
5 https://www.wikidata.org/wiki/Q33609 (All Wikidata ex-
amples accessed 2021-03-01) 

alleviating their disadvantages. It furthermore avoids 
inconsistencies that may arise when no clear 
modelling guidelines are specified. The multi-facet 
behaviour lifts the need for an either-or decision 
between class and instance and we regard it like 
cutting a Gordian knot in ontology engineering. In 
contrast to related work, our guidelines can be fully 
implemented using the W3C standards RDF/RDFS 
(W3C, 2014), and SPARQL (W3C, 2013a), allowing 
to implement inheritance behaviour using 
standardized inferencing mechanisms. It supports 
simplicity, expressiveness, modularity, flexibility and 
extensibility of ontologies. The importance of those 
characteristics we know from our extensive 
experience in ontology engineering and developing 
ontology-based semantic applications for different 
application domains, including life sciences, tourism, 
industrial manufacturing, energy, robot journalism, 
and culture. 

The remainder of this article is structured as 
follows. In Section 2 we discuss related work. Section 
3 presents an example ontology which we use 
throughout this paper. In Sections 4-7, we present the 
multi-facet behaviour and its implications on property 
types, inheritance, querying and inferencing. Section 
8 discusses the approach. Section 9 concludes the 
paper and indicates future work. 

2 RELATED WORK  

In the RDFS specification (W3C, 2014), classes are 
described as groups of resources and instances as 
their members. Alemang et al. complain that a 
common reaction to the difficult distinction between 
classes and instances is simply to define everything 
as a class. They grade this as an antipattern, i.e., a bad 
modelling practice, which they call “rampant 
classism” (0, 2020. p.436). We agree with them. 

(Noy and McGuinness, 2021) is one of the earlier 
guidelines for ontology engineering. A criterium they 
define for the decision to model something as a class 
or an instance is the lowest level of granularity in the 
representation. They see individual instances as the 
most specific concepts represented in a knowledge 
base. Then individual instances could be transferred 
into a set of classes, if they form a natural hierarchy. 

In the field of multi-level ontology modelling, 
various authors recommend modelling pairs of 

6 https://www.wikidata.org/wiki/Q16521 
7 https://www.wikidata.org/wiki/Q24017414 
8 https://www.wikidata.org/wiki/Q159697 
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classes where a class is associated with a 
corresponding type class e.g. (Car, Car_Model) 
(Atkinson and Kühne, 2001; Pirotte et al., 1994; 
Odell, 1994; Guizzardi et al., 2015; Almeida et al., 
2019; Brasileiro et al., 2016a; Brasileiro et al., 2016b; 
Carvalho and Almeida, 2018; Pan and Horrocks, 
2001). The modelling pattern is called materialization 
pattern in (Pirotte et al., 1994); The term powertype 
is used in (Odell, 1994) and (Guizzardi, et al., 2015). 
In the example, Car_Model is the powertype of Car. 
Instances of the powertype Car_Model like 
2CV_Model have properties like maxSpeed or 
Year_of_Design. 2CV is a subclass of the class 
Car, corresponding to 2CV_Model. Its instances like 
My_2CV have properties like Number_Plate or 
Milage. With conventional modelling approaches it 
is not possible to mix the properties of base class and 
its powertype into one class, since it makes no sense 
to have a property Number_Plate for a 
Car_Model. Our approach is simpler insofar as it 
does not require separate entities Car and Car Model 
while still explicitly distinguishing between the 
different facets.  

Another approach to avoid separate entities Car 
and Car Model is described in (Neumayr et al. 
2009), called Multi-Level Domain Modeling. 
Properties are annotated with meta attributes which 
define rules for inheritance and instantiation. E.g. for 
the base class Car the data property maxSpeed is 
annotated with :model to refer to a Car_Model 
while the data property Milage is annotated with 
:physical_entity to refer to an individual car. 
This allows merging the properties of Car and 
Car_Model into only one class Car while keeping 
the semantics of the properties clear. 

In a comparable approach (Frank, 2014), level 
numbers are assigned to properties. For Car the 
property Milage would be defined with level=0 
which corresponds to the :physical_entity 
annotation in (Neumayr et al. 2009), while maxSpeed 
would be annotated with level=1 which 
corresponds to the :model annotation. Annotating 
properties with multiple levels or with different levels 
for different contexts is not possible, as is enabled in 
our approach.  

In (Brasileiro et al., 2016a), a fixed separation of 
entities into individuals, 1st order type, 2nd order type 
and 3rd order type is proposed. Our approach is more 
flexible as it allows context-dependent viewpoints. 

 
9 We made only minor changes, e.g., the use of SKOS. 

So, polar bear may be an individual in one use case 
context (tagging wildlife series) but a 1st order type in 
another context (tracking concrete animals). The 
facets of entities could also evolve during the 
development time of an ontology. From our 
experience in ontology modelling and developing 
ontology-based semantic applications this is 
important. 

Multi-facet behaviour as used in (Neumayr et al., 
2009) may regard entities as classes and instances 
simultaneously, where needed. In contrast, OWL 1 
DL requires a strict separation between the classes 
and individuals (W3C, 2012). Insofar, multi-facet 
behaviour is not compatible with OWL1 DL. 
However, OWL 2 DL relaxes this separation 
somewhat to allow different uses of the same term 
which is called Punning. In (W3C, 2012, Section 
2.4.1), the following example is given: “e.g., Eagle, 
to be used for both a class, the class of all Eagles, and 
an individual, the individual representing the species 
Eagle belonging to the (meta)class of all plant and 
animal species”. However, OWL 2 DL still imposes 
certain restrictions, e.g., a name can only be used for 
one kind of property (W3C, 2012). 

In the next sections, we present an extensible 
modelling approach rigorously using multi-facet 
behaviour and demonstrate it by means of a sample 
ontology. 

3 EXAMPLE: ANIMAL 
ONTOLOGY 

In this article, we use a small ontology as an 
illustrating example in which we modelled some 
biological species. We call this sample ontology 
Animal Ontology (AO). The AO is based on the WO 
(BBC, 2021) 9 . The basis of AO is the taxonomy 
established in biology classifying living entities using 
the taxons kingdom, phylum, class10, order, family, 
genus, and species.  

Like the authors of WO, we favour a simple 
modelling approach modelling concrete species like 
polar bear as instances. See the following example in 
RDF Turtle syntax. 
 
@prefix : <http://h-da.de/animalontology/>. 
@prefix rdf: <http:// 
  www.w3.org/1999/02/22-rdf-syntax-ns#>. 
@prefix rdfs: <http:// 
  www.w3.org/2000/01/rdf-schema#>. 

10 The biological taxon “class” is not to be confused with 
the ontology concept of a class. We distinguish both by 
using different namespaces. 
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Figure 1: Subset of the Animal Ontology (AO). 

@prefix skos: <http:// 
  www.w3.org/2004/02/skos/core#>. 
:Species a rdfs:Class ; 
  skos:prefLabel "Species" ; 
  rdfs:subClassOf :Taxon . 
:Polar_Bear a :Species ; 
  skos:prefLabel "Polar Bear" ; 
  skos:altLabel "Ursus maritimus" ; 
  skos:broader :Bear . 

 

See Fig. 1 for a visualization of a subset of AO with 
one example for each taxon. Classes are depicted with 
red solid lines and instances with green dashed 
lines11.  

In the AO, :Taxon is an rdfs:Class with 
subclasses :Kingdom, :Phylum, :Class, :Order, 
:Family, :Genus, and :Species. :Polar_Bear is 
an instance of :Species, :Bear an instance of 
:Genus, :Animals an instance of :Kingdom etc. 
We use the object property skos:broader to specify 
the biological taxonomy, e.g.,  

 
:Polar_Bear skos:broader :Bear.  
:Chordates skos:broader :Animals. 

  

In addition, concrete taxons are attributed with 
properties, e.g.,  

 

:Polar_Bear skos:altLabel "Ursus maritimus". 
 

The WO was modelled for the use case of 
annotating BBC wildlife documentaries. The AO is 
based on the WO and could well serve a similar use 
case. But what if the use cases of AO shall be 
extended, e.g., if field zoologists want to model 
concrete animals that they track or the administration 
of a zoo wants to manage their animals? 

 
11 To keep the figure clear we omitted additional green 
boxes for the target of object properties like 

The simple modelling approach of AO presented 
above is not capable of supporting such use cases 
since species like:Polar_Bear are not modelled as 
a class which can be instantiated with concrete 
animals like :Knut.  

In the next section we demonstrate how the 
simple modelling approach can be extended to 
support new use cases using multi-facet behaviour. 

4 MULTI-FACET BEHAVIOUR 

RDF and RDFS provide means for specifying classes 
and instances. A class is specified as an instance of 
rdfs:Class (or any of its subclasses like 
owl:Class), using the object property rdf:type 
(abbreviated in Turtle with a), e.g.,  

 
:Species a rdfs:Class.  

 

An instance is specified using a rdf:type 
relationship to a class, e.g.,  

 
:Polar_Bear a :Species. 

 

However, the standards provide no restrictions on 
the usage of classes and instances 0. It is not required 
to use classes and instances whatsoever, i.e., not using 
rdf:type at all is allowed. It is allowed to model 
classes with several superclasses 
(rdfs:subClassOf - multiple inheritance). It is 
allowed to model something to be instance of more 
than one class, which is not supported in object-
oriented languages like Smalltalk, Java, C# or C++.  

conservation_staus :vulnerable but instead 
indicated this with a dashed arrow --> 
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In RDF/RDFS it is not forbidden to specify an 
entity as an instance of something which has not been 
specified as a class. Although this is syntactically 
correct, we consider this a modelling flaw. 

It is also allowed to model something as a class 
and an instance simultaneously. Every class is an 
example of this pattern since every class is an instance 
of rdfs:Class. Also rdfs:Class is an example of 
this since it is a class and additionally an instance of 
itself. 

In (Atkinson and Kühne, 2001) and (Neumayr et 
al., 2009) this is called multi-facet. It is argued that 
this may considerably reduce unnecessary 
complexity in ontologies with multiple levels. We 
agree with them and use the multi-facet behaviour to 
add capabilities to ontologies like AO incrementally 
when required by new use cases. 

For example, when modelling concrete animals in 
a zoo like the polar bear :Knut, then the concept 
:Polar_Bear, modelled as an instance of class 
:Species, can additionally be specified as a class: 

 
:Polar_Bear a :Species , rdfs:Class. 
 

The concrete polar bear :Knut can now be 
modelled as follows. 

 
:Knut a :Polar_Bear; 
  skos:prefLabel "Knut"; 
  :sex "male"; 
  :birthDate "2006-12-05"^^xsd:date; 
  :birthPlace :Berlin_Zoological_Garden; 
  :deathDate "2011-03-19"^^xsd:date; 
  :deathPlace :Berlin_Zoological_Garden; 
  rdfs:seeAlso <https://en.wikipedia.org/ 
    wiki/Knut_(polar_bear)>. 

 

See Fig. 2. 
 

 
Figure 2: Modelling :Polar_Bear as an instance and as 
a class simultaneously. 

 
12 According to ICUN https://www.iucn.org/ vulnerable is 
the status next to endangered. 

The multi-facet behaviour of taxon :PolarBear 
can be seen by the green dashed line indicating that 
:PolarBear is an instance of class :Species 
(instance facet) and the red solid line indicating that 
:Polar_Bear is a rdfs:Class with :Knut as an 
instance (class facet). 

5 PROPERTY TYPES 

Properties are used for specifying information about 
entities like :Polar_Bear or :Knut. Datatype 
properties like :birthDate or :population relate 
to literal values like strings, numbers or dates, e.g.  

 
:Polar_Bear :population 31000. 
:Knut :birthDate "2006-12-05"^^xsd:date. 

 
Object properties like conservation_status relate 

to other entities, e.g. 
 

:Polar_Bear :conservation_status  
  :vulnerable. 
:vulnerable a :Conservation_status. 
:Conservation_status a rdfs:Class. 

 
Datatype properties as well as object properties 

always relate to the instance facet of an entity, 
indicated by green dashed lines in Fig. 1 and 2. In the 
example above, the property :birth_date refers to 
the instance :Knut. 

In the other example, :conservation status 
refers to the instance facet of :Polar_Bear , not to 
the class facet: the species polar bear is vulnerable12. 
Does the fact that the species polar bear is vulnerable 
mean that the individual polar bear Knut is 
vulnerable? No: Knut may happily live in the Berlin 
Zoo, while his species as a whole is vulnerable. The 
same applies for the population which refers to the 
species polar bear, but not to the instance Knut. 

Let us look at another example of an object 
property: habitat.  

 
:Bears :habitat :Terrestrial_habitat. 
:Terrestrial_habitat a :Habitat. 
:Habitat a rdfs:Class. 
 
These RDF triples express that bears live on 

terrestrial habitat, i.e., that they are land animals. 
Again, this information relates to the instance facet of 
the biological family of bears. Does this information 
also apply to all genus and species of the family 
bears? Yes, indeed it can be implied that polar bears, 
American black bears, Panda bears etc. all are land 
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animals. And how about individual animals like 
Knut? Yes, indeed it can be implied that all individual 
polar bears, American black bears, Panda bears etc., 
including Knut, are land animals. 

It is obvious that, although both properties 
:conservation_status and :habitat relate to 
the instance facet, they are semantically different. The 
difference is how information can be inferred 
between the facets along hierarchies within the facets. 
Whereas information about the habitat can be inferred 
from broader concepts to narrower concepts in the 
biological taxonomy and even to instances, this is not 
the case for information about the population or the 
conservation status. 

Please note that this semantic difference is 
independent of the distinction between object 
properties and datatype properties. If, e.g., 
:conservation_status had been modelled as a 
datatype property (:Polar_Bear 
:conservation_status "vulnerable")  then 
the intended inference would still be the same. 

6 INHERITANCE 

In the field of object-orientation, inferring 
information along subclass-hierarchies is called 
inheritance (Nierstrasz, 1989). We borrow this term 
for inferring information between facets as well as 
along hierarchies within facets, e.g., 
rdfs:subClassOf hierarchies within the class facet 
or skos:broader hierarchies within the instance 
facet.  

In our example, the hierarchy between taxons is 
specified by the object property skos:broader . 

 
:Polar_Bear a :Species; skos:broader :Bear. 
:Bear a :Genus; skos:broader :Bears. 
:Bears a :Family; skos:broader :Carnivores. 
:Carnivores a :Order; skos:broader :Mammals. 
:Mammals a :Class; skos:broader :Chordates. 
:Chordates a :Phylum; skos:broader :Animals. 
:Animals a :Kingdom. 

 

Let us now reconsider the sample properties 
:birth_date, :population, 
:conservation_status and :habitat. 

1. :birth_date "2006-12-05" refers to an 
instance of a concrete species, e.g., :Knut, 
only. 

2. :population 31000 refers to a concrete 
species, genus, family etc., e.g., 
:polar_bear, but cannot be inherited from 
broader to narrower taxons, and not to their 
instances. 

3. :conservation_status : vulnerable 
refers to a concrete taxon, e.g., the species 
:polar_bear. If a conservation status would 
be specified for an entire genus or family then 
it could be inferred that all species belonging 
to this genus or family have the same 
conservation status, hence can be inherited 
along the skos:broader hierarchy. 
However, it cannot be inherited to instances of 
concrete species like :Knut. 

4. :habitat :Terrestrial_habitat refers 
to a concrete species, genus, family etc., e.g., 
:Bears, it can be inherited along the 
skos:broader hierarchy, e.g., from :Bears 
to :Bear and from :Bear to :Polar_bear. 
Additionally, it can be inherited from concrete 
species like :Polar_Bear to instances of this 
species like :Knut. 

In order to use inferencing for implementing 
inheritance behaviour, it is necessary to explicate the 
intended behaviour of properties like  
:birth_date, :population, 
:conservation_status, and :habitat. Consider 
the following declarations. 

 
:birth_date a rdfs:Property. 
:population a rdfs:Property.  
:conservation_status a rdfs:Property, 
  :BroaderInheritedProperty. 
:habitat a rdfs:Property,  
  :BroaderInheritedProperty, 
  :TypeInheritedProperty  

 

Those RDF triples express that all four properties 
are of type rdfs:Property. :birth_date and 
:population have no intended inheritance 
behaviour. :conservation_status and 
:habitat are of type 
:BroaderInheritedProperty in order to express 
that those properties can be inherited along the 
skos:broader hierarchy from broader to narrower 
taxons. Additionally, :habitat is of type 
:TypeInheritedProperty in order to express that 
this property can additionally be inherited along the 
rdf:type relationship from classes to their 
instances.  

Please note that individual properties can be of 
any of all four possible combinations:  

1. Of both types 
:BroaderInheritedProperty and 
:TypeInheritedProperty, e.g., 
:habitat;  

2. Only 
:BroaderInheritedProperty, e.g., 
:conservation_status; 
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3. Only TypeInheritedProperty;  
4. None of both, e.g. :birth_date.  

Furthermore, inheritance behaviour may apply to 
object properties and datatype properties alike.  

In the next section we show that such property 
declarations can be used for implementing 
inheritance via inferencing. 

7 QUERYING AND 
INFERENCING 

Ontology engineering is no end in itself but has the 
purpose of using information modelled. Query 
languages allow accessing information in ontologies. 
SPARQL (W3C, 2013a) is the standardized query 
language for RDF. We use SPARQL for 
demonstrating examples. 

The following SPARQL query selects all 
information about :Knut. 

 
SELECT * 
WHERE{:Knut ?p ?o.} 
 

This query will return for RDF triples with subject 
:Knut all predicates ?p and objects ?o explicitly 
specified, e.g., :sex "male". However, it will not 
contain any information about Knut’s habitat. 

Likewise, a similar query for all information about 
the species polar bear will return all predicates and 
objects explicitly specified for the subject 
:Polar_Bear like :population 31000, but no 
information about the habitat of polar bears. 

This is because habitat information is specified for 
a broader taxon, here the family of bears.  

Inferencing can be used to implement inheritance 
behaviour as outlined in the previous section. We 
demonstrate this using SPARQL update (W3C, 
2013b) for sample rules. Consider the following 
SPARQL INSERT statement specifying the rule for 
inheriting properties along skos:broader 
hierarchies. 

 

INSERT {?s ?p ?o.} 

WHERE  {?p a :BroaderInheritedProperty.  

        ?s skos:broader* ?b. 

        ?b ?p ?o.} 

 

This rule applies for RDF triples with predicates 
?p that have been specified of type 
:BroaderInheritedProperty like, e.g., 
:conservation_status or :habitat. If a subject 
?s is in a transitive skos:broader relationship to 
some other subject ?b then all triples with predicate 
?p and object ?o can be inherited for subject ?s .  

Executing this SPARQL INSERT statement 
materializes the inferencing results in the ontology. 
Executing a SPARQL query about all information 
about the species :Polar_Bear will now, in addition 
to explicitly modelled information, also return 
inferred information  
:habitat :Terrestrial_habitat.  

However, a query for all information about 
:Knut will still not render habitat information 
because it is neither specified explicitly nor cannot it 
be inferred with the rule above. Therefore, now 
consider the following SPARQL INSERT statement 
specifying the rule for inheriting properties from 
classes to instances. 

 

INSERT {?s ?p ?o.} 

WHERE  {?p a :TypeInheritedProperty.  

        ?s a ?c. 

        ?c ?p ?o.} 

 

This rule applies for RDF triples with predicates 
?p that have been specified of type 
:TypeInheritedProperty like, e.g., :habitat. 
If a subject ?s is in a rdf:type relationship to some 
class ?c then all triples with predicate ?p and object 
?o can be inherited for subject ?s .  

After executing this SPARQL INSERT statement, 
querying for all information about Knut will now 
additionally render  
:habitat :Terrestrial_habitat. 
It shall be noted that in practice, all rules have to be 
executed repeatedly until no rule fires any more, as is 
common in forward-chaining rule-based systems. 
We would also like to add a remark on our use of 
skos:broader in the example ontology AO. 
skos:broader is an informal property for 
expressing hierarchical relations including whole-
part, spatial, temporal, etc. There may be good 
reasons for ontology engineers for preferring such an 
informal relation over a more formally specified 
relation like rdfs:subClassOf in a certain context. 
Re-using existing ontologies for new use case 
contexts is common practice in ontology engineering 
and in developing ontology-based semantic 
applications. We have deliberately chosen an 
informal property like skos:broader for the AO in 
order to demonstrate how semantics for different use 
case contexts may be added incrementally, 
independently of the modelling style of the initial 
ontology. If a more formally specified relationship 
like rdfs:subClassOf is deemed necessary in a 
certain use case context then a SPARQL rule for 
inferring rdfs:subClassOf relationships from 
skos:broader relationships may easily be added. 
This is the basis for the flexibility and extendibility of 
our approach which we discuss in the next section.  
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8 DISCUSSION 

“Everything should be made as simple as possible, 
but no simpler” is a quote that has been attributed to 
Albert Einstein (although he presumably never said it 
literally) (Championing Science, 2021). In software 
engineering, the acronym KISS (“keep it simple, 
stupid”) has been used to express the same principle 
of simplicity. Also, for ontology engineering it is a 
good practice to model entities as simple as possible. 

In this article we suggest to model entities as 
classes only if this is actually needed, i.e., if in the 
domain of interest there are instances of this entity 
that need to be modelled. However, the addition “but 
no simpler” indicates that the expressiveness of the 
model must be adequate for the domain of interest, 
i.e., everything that is relevant can actually be 
modelled. The requirements for an ontology may vary 
between different usage contexts and over time. In the 
example of the AO, in one usage context it may be 
sufficient to model species as instances, e.g., for 
tagging wildlife documentaries. In another context it 
may be necessary to model concrete species like polar 
bear as classes, e.g., for documenting individual 
animals watched in wildlife. It may be the case that 
different subsets of an ontology shall be used for 
different contexts - this requires modularity of the 
ontology. It may also be the case that the usage 
context of an ontology evolves over time - this 
requires extensibility of the ontology.  

We argue that rigorously utilizing the multi-facet 
behaviour for modelling ontologies supports 
simplicity, expressiveness, modularity, extensibility 
and flexibility. It does not enforce an either-or 
decision of modelling entities as classes or instances. 
Instead, it allows starting simple (simplicity, e.g., 
modelling :Polar_bear as an instance of class 
:Species) and extending as needed (adequate 
expressiveness and extensibility, e.g., modelling 
:Polar_bear additionally as a class). The instance 
facet (e.g., :Polar_bear as an instance) can be 
separated from the class facet (e.g., :Polar_bear as 
a class including its instances), supporting 
modularization via different ontology files.  

Conciseness is related to simplicity, aiming at 
modelling entities with as few statements (e.g., RDF 
triples) as possible. Utilizing the multi-facet 
behaviour is more concise than using the 
materialization pattern. For example, modelling the 
AO with the materialization pattern would require 
modelling taxons and animals as separate entities. 
This impedes readability of the ontology and 
complicates the implementation of queries.  

Lack of redundancy is related to conciseness. We 
have shown that using inferencing for implementing 
inheritance, redundancy in ontologies can largely be 
reduced.  

Interoperability is important for linking 
ontologies. In our examples, we use standards like 
RDF/RDFS and SPARQL that support 
interoperability on a syntactic level. However, in our 
opinion, interoperability on the modelling style is as 
important. In the introduction we refer to four 
different animal ontologies, two of them modelling 
all species as classes (VTO and NCBI Taxonomy), 
the other two modelling them as instances (WO and 
GBIF). Utilizing multi-facet behaviour requires no 
either-or decision on class or instance. Instead, it 
allows combining the strengths of both modelling 
styles while alleviating their disadvantages. 
However, as stated in (W3C, 2012), multi-facet 
behaviour could impede OWL DL reasoning. 

In contrast to (Neumayr et al., 2009) and (Frank, 
2014), we use standard modelling and query 
languages (RDF/ RDFS, SPARQL). In (Neumayr et 
al., 2009), SQL must be extended for querying M-
Objects; In (Frank, 2014), queries are not discussed at 
all.  

In (Neumayr et al., 2009), inheritance behaviour 
is not discussed. In (Frank, 2014), inheritance is 
restricted to the definition of properties, i.e., using a 
property specified in a higher-level object in a lower 
level. Inferring property values between facets and 
along hierarchies within facets, e.g., 
rdfs:subClassOf or skos:broader, is not 
discussed. 

Our approach allows a large level of flexibility, no 
“one size fits all”. Depending on the application 
context entities can be assigned different modelling 
levels, properties can be annotated with different 
inheritance behaviour and different inheritance rules 
can be implemented. This extends the flexibility of 
existing multi-level modelling approaches.  

9 CONCLUSIONS AND FUTURE 
WORK 

In this paper we discuss a major challenge in ontology 
engineering, namely deciding whether an entity 
should be modelled as a class or as an instance. 
Different modelling traditions and guidelines lead to 
different modelling decisions, enforcing an either-or 
decision.  

In contrast, we propose to rigorously utilize multi-
facet behaviour allowing entities to be modelled as 
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classes and instances simultaneously, where needed. 
We argue that it supports simplicity, expressiveness, 
modularity, flexibility and extensibility of ontologies. 
Furthermore, we present means for implementing 
inheritance behaviour between facets and along 
hierarchies within facets by using inferencing. We 
argue that this reduces redundancy and increases 
conciseness.  

We have applied the modelling approach 
presented in this paper to concrete domain-specific 
ontologies in practice and we continue to do so. 
Currently, we are working on an ontology for 
machine learning (ML) (Humm and Zender, 2021; 
(Humm et al., 2021), modelling ML approaches, ML 
libraries, their characteristics and interrelationships, 
and more. This ontology shall be used in various use 
case contexts, including teaching ML, supporting ML 
engineers when designing ML applications, 
supporting automated orchestration of ML 
applications (AutoML) or chat bots for answering 
questions about ML. The flexibility of our approach 
can be particularly useful in using the ontology in 
those different use case contexts.  
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