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Abstract: Similarity is an excellent example of a domain-general source of information. Even when we do not have
specific knowledge of a domain, we can use similarity as a default method to reason about it. Similarity also
plays a significant role in psychological accounts of problem solving, memory, prediction, and categorisation.
However, despite the strong presence of similarity judgments in our reasoning, a general conceptual model
of similarity has yet to be agreed upon. In this paper, we propose an alternative, unifying solution in this
challenge in concept research based on the recent Eliasmith’s theory of biological cognition. Specifically we
introduce the Semantic Pointer Model of Similarity (SPMS) which describes concepts in terms of processes
involving a recently postulated class of mental representations called semantic pointers. We discuss how such
model is in accordance with the main guidelines of most traditional models known in literature, on the one
hand, and gives a solution to most of the criticisms against these models, on the other. We also present some
preliminary experimental evaluation in order to support our theory and verify whether similarities derived by
human judgments can be compatible with the SPMS.

1 TRADITIONAL MODELS OF
SIMILARITY

A model of similarity M should describe how the
elements of a universal set of entities E are repre-
sented and organized in our cognitive system. Based
on this representation, given two elements A,B ∈ E ,
the model provides a way to compute similarity be-
tween A and B.1 Formally the model defines a simi-
larity function, δ : E ×E → [0..M], which associates
to each ordered pair, (A,B) ∈ E , a similarity value
δ(A,B), where [0..M] ⊂ R is the range in which the
degree of similarity varies. The value δ(A,B) = 0 im-
plies no similarity, while δ(A,B) = M is for the max-
imum similarity.

In some cases a dissimilarity function δ̄(A,B) is
defined, which is always inversely proportional to the
corresponding similarity value. When it is defined on
the same range of variability we have δ̄(A,B) = M−
δ(A,B).

Despite the strong presence of similarity judg-
ments in our reasoning, an accurate model of simi-

1In general, the fact that A is introduced before B can
be a relevant factor, since the similarity between A and B
may be different from the similarity between B and A if M
admits non-symmetric judgments

larity has yet to be agreed upon. However a number
of theoretical accounts of similarity have been pro-
posed in the last decades. See (Holyoak et al., 2012)
and (Hahn, 2003) for a detailed survey on similarity
models.

One of the most influential models for similarity is
the geometric model (GMS) (Carroll and Wish, 1974;
Torgerson, 1958; Torgerson, 1965), also known as the
mental distance model, where entities are represented
as points in a n-dimensional space and their similarity
is inversely proportional to the distance between the
corresponding points.

Thus in a GMS which assumes a mental space of
dimension n, each entity A ∈ E is represented by a
point with n coordinates, A = 〈a1,a2, ..,an〉, and the
mental distance function δ̄ is a metric in the math-
ematical sense of the term. This implies that the
dissimilarity δ̄(A,B), between two entities A,B ∈ E ,
is associated with the distance of the corresponding
points:

δ̄(A,B) =

[
n

∑
k=1
|ak−bk|r

] 1
r

(1)

where r is a parameter that allows different spatial
metrics to be used. The most common spatial metric
is the Euclidean metric (with r = 2) where the dis-
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tance between two points is the length of the straight
line connecting them.

Another common spatial metric is the city-block
metric (with r = 1) where the distance between two
points is the sum of their distances on each dimen-
sion. It is appropriate for psychologically separated
dimensions such as color and shape, brightness and
size or any given set of separated measurable percep-
tions.

The most influential alternative to a GMS is the
feature based model (FMS), also known as feature
contrast model or simply contrast model, which has
been introduced by Tversky in (Tversky, 1977). The
underlying idea is that subjective assessments of sim-
ilarity not always satisfy mathematical rules required
by a GMS (Carroll and Wish, 1974).

In a FMS any entity is represented as a collec-
tion of features and the similarity between two enti-
ties A,B ∈ E is expressed as a linear combination of
the measure of the common and distinctive features.
Specifically if we denote by [A∩B] the number of fea-
tures in common and by [A− B] the number of fea-
tures that are in A and not in B, then the similarity
δ(A,B) is computed by:

δ(A,B) = α[A∩ B]−β[A− B]− γ[A− B] (2)

where α, β, and γ are weights for the common and
distinctive components.

One advantage of the feature based model is that
it can account for violations in any of the metric dis-
tance axioms. For instance it is able to implement
asymmetric similarity between entities since β may
be different from γ.

The premise that entities can be described in terms
of constituent features has been a powerful idea in
cognitive psychology and has influenced much work.2

In the alignment based model (AMS), also known
as structural models, comparison of two entities is
computed not just by matching their features, but by
determining how such features correspond to, or align
with, one another. One of the most interesting aspects
of AMS is that they make purely relational similarity
possible (Falkenhainer et al., 1989). Infact matching
features have a greater influence on similarity when
they belong to parts that are placed in correspondence.
However parts tend to be placed in correspondence if
they have many features in common (Markman and
Gentner, 1993b).

2Neural network representations, for instance, are often
based on features, where entities are broken down into bi-
nary vectors of features where ones identify the presence of
features and zeros their absence. In such context the simi-
larity distance value is typically computed using the fairly
simple function, i.e. the Hamming distance, formally given
by δ(A,B) = [A− B]+ [B−A].

Another interesting aspect of AMS is that it con-
cerns alignable and non-alignable differences (Mark-
man and Gentner, 1993a). Non-alignable differ-
ences between two entities are attributes of one en-
tity that have no corresponding attribute in the other
entity. Consistent with the role of structural align-
ment in similarity comparisons, alignable differences
influence similarity more than non-alignable differ-
ences (Markman and Gentner, 1996) and are more
likely to be encoded in memory (Gentner and Mark-
man, 1997).

Extending the alignment based account of similar-
ity, a transformational model (TMS) (Wiener-Ehrlich
et al., 1980) assumes that a cognitive system uses
an elementary set of transformations when comput-
ing the similarity between two entities. In this con-
text, if we assume that each entity is described by
a sequence of features, the similarity is assumed to
decrease monotonically as the number of transforma-
tions required to make one sequence of features iden-
tical to the other increases.

Thus while the correspondences among features
of two entities are explicitly stated in an alignment
based model, such correspondences are implicit in a
transformational based model. For this reason a po-
tentially fertile research direction is to combine the
alignment based account for representing the internal
structure of the features of entities with the constraints
that transformational accounts provide for establish-
ing a psychologically plausible measure of similar-
ity (Mitchell, 1993).

2 AN ACCOUNT OF SIMILARITY
BASED ON THE SPA

Eliasmith’s theory of biological cognition (Eliasmith,
2013) introduces semantic pointers as neural repre-
sentations that carry partial semantic content and are
composable into structures necessary to support com-
plex cognition. Such representations result from the
compression and recursive binding of perceptual, lex-
ical, and motor representations, effectively integrating
traditional connectionist and symbolic approaches. In
this section we briefly introduce the reader to the se-
mantic pointer theory and describe how they are used
to represent concepts in Eliasmith’s theory of biologi-
cal cognition. Then we give our account of similarity
based on semantic pointers.
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2.1 Representing Concepts as Semantic
Pointers

In its most basic form a semantic pointer can be
thought of as a compressed representation of a spe-
cific concept, acting as a summary of it. On a cog-
nitive level it can be represented by the activity of a
large population of neurons induced by a perceptual
stimulus, while mathematically it can be represented
as a vector in an n-dimensional space, where the value
n is closely related to the size of the population of neu-
rons that give rise to this compressed representation.

Typically, such representations are generated from
perceptual inputs. A classic example is what hap-
pens with the vision of an object, within one’s visual
field, although similar representations can be gener-
ated through hearing, touch or other perceptual stim-
ulus. In brief, visual perception initially gives rise
to the activity of a very large population of neurons
on the first level of the visual cortex and will then
be encoded by a high-dimensional semantic pointer.
Through some transformations the neural populations
in the underlying layers of the visual cortex make it
possible to obtain increasingly compact representa-
tions of the input, providing, to all effects, semantic
summaries of the original input. It is therefore possi-
ble that at the end of the perception process, through
such compression links, a very compact representa-
tion of the perceptual input is produced.

This transformation of the input representation is
biologically consistent both with the decrease in the
number of neurons observed in the deeper hierarchi-
cal layers of the visual cortex, and with the develop-
ment of hierarchical statistical models of neural inspi-
ration for the reduction of dimensionality (Hinton and
Salakhutdinov, 2006).

Such representations are referred to as “pointers”
since, as the equivalent in computer science, they can
be used to target representations at lower levels in
the compression network (Hinton and Salakhutdinov,
2006), while are associated with the term “seman-
tic” because they hold semantic information about the
states they represent by virtue of being non-arbitrarily
related to these states through the compression pro-
cess.

One of the main characteristics of semantic point-
ers lies in the possibility of being linked together
in more structured representations containing lexical,
perceptual, motor or other kind of information. And it
is important to keep in mind that any given semantic
pointer can be manipulated independently of the net-
work used to generate it, and that the structured rep-
resentations resulting from such a binding are them-
selves semantic pointers.

In Eliasmith’s theory of biological cognition the
binding of two semantic pointers is performed using a
process called circular convolution (Eliasmith, 2004;
Eliasmith, 2013) and is indicated by the symbol ~.
It is not our interest to go into technical details of this
operation in this work and for this reason we can limit
ourselves to saying that the circular convolution can
be thought of as a function that merges, by binding
them together, two input vectors into a single output
vector of the same dimension. The result of this bind-
ing operation is a single representation that captures
the relationships between the input pointers involved
in the binding.

For instance, assuming taste, size, color, salty,
tiny and white are all semantic pointers representing
the corresponding concepts, a representation of the
concept “salt” may be given by salt = taste~ salty+
size~ tiny+ color~white.

The fact that the dimension of the resulting pointer
is the same as the dimension of those involved in the
binding implies that part of the information contained
in the starting pointers has been lost. The pointer
obtained from the binding can therefore be seen as
a compressed representation of the relationship that
binds two or more concepts together.

The binding process can be repeated an indefinite
number of times and, more interestingly, it can be re-
versed (by the unbinding operation) to obtain one of
the semantic pointers that have given rise, through the
binding, to the compressed representation of a more
complex concept. Of course, since part of the infor-
mation has been lost during the binding process, such
reconstruction can only be done in an approximate
way: more technically the result of applying trans-
formations to structured semantic pointers is usually
noisy.

Returning to the previous example, the concept
“salt” is linked to the concept “white” being one of its
constituent, binded to the concept of “color”. More
formally salt~ color−1 ≈ white. For the reasons just
mentioned, the result is noisy and approximate, how-
ever it can be “cleaned up” (Eliasmith, 2013) to the
nearest allowable representation by means of a clean-
up memory. Mapping a noisy or partial vector repre-
sentation to an allowable representation plays a cen-
tral role in several other neurally inspired cognitive
models and there have been several suggestions as to
how such mappings can be done (Eliasmith, 2013),
including Hopfield networks, multilayer perceptrons,
or any other prototype-based classifier.
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2.2 An Account of Similarity based on
the SPA Framework

In this section we introduce the Semantic Pointer
Model of Similarity (SPMS), a similarity model that
associates the degree of similarity of concepts to the
distance between the corresponding semantic pointers
in a system of mental spaces. This definition brings
the new model of similarity very close to the tradi-
tional GMS, however it has also some points in com-
mon with other classic similarity models.

As before, let E be a universal set of entities. The
SMPS is a similarity model constituted by a system,
S , of contextual mental spaces of different size, pop-
ulated by a set, Σ, of allowable concept representa-
tions. In this context we can think of “allowable rep-
resentations” as those semantic pointers that are as-
sociated with concepts in E , but more generally also
with sentences, sub-phrases, or other structured rep-
resentations that are pertinent to the current context.
Ultimately, what makes a representation allowable is
its inclusion in a clean-up memory.

Using an extended notation we can define a clean-
up memory over Σ as a mapping, Σ(v) = x, which
associates any n-dimensional semantic pointer v with
its closest allowable representation x ∈ Σ. Therefore
Σ(x) = x, for each x ∈ Σ.

The set Σ of semantic pointers can be partitioned
in two subsets: the set of primitive representations,
denoted by Σ0, and the set of structured representa-
tions, denoted by Σ~. The set Σ0 includes all semantic
pointer which represent elementary concepts, such as
size, color, big, black, etc. The set Σ~ includes all se-
mantic pointers which represent structured concepts
obtained by binding other pointers, such as sugar =
size~tiny + taste~sweet + color~white. Formally:

Σ~ =
{

v ∈ Σ | v = x~ y+w,
for some x,y,w ∈ Σ∪{ε}

} (3)

For each geometric space S∈ S , we indicate by |S|
its dimension. Similarly, for each v ∈ Σ, we indicate
by |v| the size of the semantic pointer v. Each pointer
v ∈ Σ lies in a geometric space S ∈ S . In such a case
we say, using an extended notation, that v ∈ S or that
σ(v) = S. We have |S|= |v| for any v ∈ S.

The coexistence of several geometric spaces of
different dimensions allows representations at differ-
ent levels of detail: larger spaces would host se-
mantic pointers capable of representing complex con-
cepts and at a greater level of detail; mental spaces
of smaller dimensions would instead host smaller se-
mantic pointers which refer to a summary of the cor-
responding concepts. spaces are represented with
larger radii. Thus, as in an FMS, any semantic pointer

may be a well structured representation obtained by
the binding of its constitutive elements, which actu-
ally represent their constitutive features. Therefore,
the larger the number of such constitutive features,
the larger the size of the resulting semantic pointer
should be in order to allow the discrimination of in-
formation related to the constituent elements. In fact,
too much compressed semantic pointers would not be
able to hold enough information.

Fig.1 shows an example of a partial cross-section
of SPMS with 6 spaces and 13 semantic pointers. It
also presents 7 Examples which highlight some of the
main features of the SPMS model.

In the SPMS different comparison spaces operate
on different contexts of judgment, grouping the se-
mantic pointers on the basis of their semantic category
or on the basis of the level of detail through which the
concepts are represented, and therefore on the basis
of the size of the semantic pointers.

What is particularly important for the definition
of the SPMS and which significantly differentiates it
from the models presented up to now is the possibility
that several representations of the same concept may
be present in the model. Specifically in the SPMS
the same concept may appear in two or more mental
spaces: it can be present in several mental spaces de-
pending on the context in which this concept is eval-
uated; it can be present in mental spaces of different
size depending on the level of detail with which this
concept is evaluated. This implies that, unlike what
happens in the GMS where the judgement is limited to
a single space of comparison, the similarity between
two concepts also depends on the context in which
this judgment is made and on the degree of detail with
which the concepts are evaluated. It may in fact hap-
pen that two objects have different measures of simi-
larity between them if they appear (and are compared)
in different spaces. For each context, such as appear-
ance, color, taste, etc. the space of comparison may
change. For example, salt and sugar could be judged
very similar in terms of shape but different in terms of
taste (see Example 3).

It may also happen that two objects have different
measures of similarity between them if they appear
(and are compared) in mental spaces with different
size, representing concepts at different levels of de-
tail. For example, jaguars and leopards can be con-
sidered similar animals to a superficial analysis, but
very different in terms of relating behavior, lifestyle
and habitat (see Example 4).

Formally we define a mapping ρ : Σ→ E , which
associates to any v ∈ Σ the concept that it represents,
while we indicate by~V (A) the set of all allowable rep-
resentations in Σ of a concept A ∈ E . Formally, for
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each A ∈ E , we have:

~V (A) = {v ∈ Σ | ρ(v) = A} (4)

However, for a concept A, only one representation
can be involved in a neural process. Which of the rep-
resentations in ~V (A) is used may depend on several
factors, including the context or the degree of promi-
nence of the concept. Formally, given a concept rep-
resented by an input stimulus A ∈ E , we indicate by
σ(A) the semantic vector in~V (A) which is induced by
the concept A.

Semantic pointers may be connected by hierar-
chical and structural edges. In a SPMS hierarchi-
cal edges are those links that make up the compres-
sion network, connecting semantic pointers of differ-
ent size representing the same concept with different
levels of detail (see Example 1). Such edges can be
traversed in both directions allowing to move along
the compression network. Formally the set of hier-
archical edges Lh is a set of ordered couples of el-
ements in Σ. An edge in Lh is of the form (vi,v j),
where |vi| > |v j| and ρ(vi) = ρ(v j). For each v ∈ Σ,
we have

|{(v,u) ∈ Lh}| ≤ 1 and |{(u,v) ∈ Lh}| ≤ 1.

In a SPMS structural edges connect two semantic
pointers, appearing in the same or in different men-
tal spaces, with the semantic pointer obtained by their
binding. When the results of the binding is a semantic
pointer lying in a different mental space, such edges
represent a connection between the spaces of the com-
ponent pointers to that of the resulting pointer (see
Example 2). The set of structural edges Ls is a set of
ordered couples of elements in Σ. An edge in Ls is
of the form (u,v), where v = u~ x for some x ∈ Σ.
Therefore we have |v|= |u|= |x|. Formally:

Ls =
{
(u,v) ∈ (Σ×Σ) | ∃ x ∈ Σ such that u~ x = v

}
. (5)

Therefore we have |v|= |u|= |x|.
When two semantic pointers lie in the same ge-

ometric space their similarity can be computed by
means of the distance between the corresponding
points, as in the case of the GMS. Thus, as happen
in a FMS, when the compared semantic pointers are
obtained by binding sets of constituent elements with
a substantial intersection we may aspect they turn out
to be very close to each other within the same geomet-
ric space and therefore perceived within the model as
very similar. On the other hand, when the semantic
pointers are obtained by the binding of very different
vectors, it is plausible to think that they are located
far within the same geometric space or even in two
different spaces.

Computing the distance, or similarity, between
representations lying in different mental spaces may
require more work than the simple computation of the
distance between two points. We argue that in such
cases the similarity is related with the shortest path
τ(x,y) which connects the first concept x to the clos-
est representation y of the second concept, in terms of
number of hierarchical or structural edges.

More formally, assuming that A and B are two
concepts in E , represented by two perceptual stim-
ulus, and σ(A) = x is the semantic pointer induced by
the concept A, with x ∈~V (A). The dissimilarity value
δ̄(A,B) is computed as follows:

δ̄(A,B)=



[
n

∑
k=1
|xk− yk|2

] 1
2

if ∃ y ∈
(

σ(x)∩~V (B)
)

min
y∈~V (B)

(
τ
(
x,y
))

otherwise

(6)

Thus, as occurs in the traditional GMS, the smaller
the distance between two semantic pointers within the
same mental space, the more similar are the two con-
cepts represented by the semantic pointers. Conse-
quently the farther the distance the less similar they
are. The key difference between the SPMS and the
traditional GMS lies in the fact that the latter assumes
the existence of a single mental space while the SPMS
provides for the presence of a system of comparison
spaces.

Equation (6) also highlights a common feature be-
tween the SPMS and TMS in which similarity is as-
sumed to decrease monotonously as the number of
transformations required to make one sequence of
features identical to another increases. Even in the
new model, in fact, one could imagine how the simi-
larity can decrease in a monotonous way as the num-
ber of transformations required to pass from the con-
text to the other increases.

More interestingly, according to equation (6), in
the SPMS it seems to matter which of the two con-
cepts is introduced first in the judgment, namely the
question “how similar is A to B?” is semantically dif-
ferent from the question “how similar is B to A?”.
Such aspect is strongly connected with the symmet-
rical property of the similarity relationship, often crit-
icized in the GMS.

We will cover this and other aspects in more detail
in the next section.
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Example 1. x, t, p ∈~V (China), with |x|> |t|> |p|. The pointer x represents the concept at a high level of detail
while p represent the concept at a low level of detail. The edges (x, t) and (t, p) are hierarchical edges of the
compression network.

Example 2. t ∈~V (color) and q∈~V (red). The concept red-color is represented by a semantic pointer, u, obtained
by the binding of t and q, i.e. u = t ~q. We have |t|= |q|= |u|. The edges (t,u) and (q,u) are structural edges.

Example 3. r, t ∈ ~V (sugar) while q,d ∈ ~V (salt). Their representations when comparing salt and sugar in terms
of shape (S3) are closer than when comparing the same concepts in terms of taste (S2).

Example 4. x, t ∈~V (leopard) while y,d ∈~V (jaguar). Their representations when comparing leopard and jaguar
in short (S3) are closer than when comparing the same concepts in details (S1).

Example 5. x, t, p ∈ ~V (China) while e ∈ ~V (North Korea). The similarity between China and North Korea cor-
responds to sp(x,e), while the similarity between North Korea and China corresponds to the distance between e
and p. Therefore δ(China,North Korea)< δ(North Korea,China).

Example 6. x ∈~V (triangle), y ∈~V (square) and z ∈~V (rectangle). All such pointers lie in the same mental space.
Therefore the triangle inequality holds, i.e. δ̄(triangle, rectangle)> δ̄(triangle,square)+ δ̄(square, rectangle).

Example 7. r, t ∈~V (donut), v ∈~V (life-ring) and d ∈~V (cookie). The concepts donut and life-ring are very close
in S2 since they share the same shape, while donut and cookie are very close in S3 since they are both pastries.
However r is very distant from d indicating that life-ring is judged not similar to cookie.

Figure 1: A partial cross-section of a system of metric spaces in an SPMS. The figure depicts 6 mental spaces and 13
pointers. For graphic reasons metric spaces are represented by circles where larger metric spaces are represented with larger
radii. Different mental spaces are connected by hierarchical edges (blue dashed lines) and by structural edges (green dashed
arrows). Pointers are identified by black arrows while internal distances in a metric space are depicted by red lines.

3 THEORETICAL ADVANTAGES
OF SMPS

Over the years a number of criticisms against tra-
ditional models for similarity has been raised, espe-
cially against the GMS, and making an exhaustive list
of all the objections would be too difficult and is a
goal that goes beyond the scope of this work. In this
section we briefly analyze some of the main objec-
tions raised against the traditional models in a more
detailed way and show how the SPMS may naturally
overcome known drawbacks of such standard models.

Specifically our analysis mainly focuses on the
objections to the three axioms of the geometric model,
the reflexive relation, the symmetric relation and the

triangular inequality, on the objection relating to the
limit to the number of nearest neighbors that can be
assigned to a single concept and to the objection re-
lated to the lack of specific structure in feature-based
models.
Distance Minimality. One of the first objections
raised against the geometric model of similarity is that
relating to the minimality of distance which imposes
that δ(A,A) = 0 for any A ∈E . At the basis of this ob-
jection, the hypothesis has been advanced that some
concepts are, at a perceptual level, more similar to
other concepts rather than to themselves.

Just to cite a famous example, Podgorny and Gar-
ner hypothesized in their study (Podgorny and Garner,
1979) that the letter “S” is more similar to itself than
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the letter “W” is to itself or, even more surprising, that
the letter “C” is more similar to the letter “O” than
“W” is to itself. This hypothesis is made on the basis
of an experimental study in which the reaction time
has been used as a measure of similarity of two per-
ceptual inputs: in this context, longer reaction times
indicate a lower degree of similarity while shorter re-
action times indicate a degree of higher similarity.

In the SPMS the higher reaction time in response
to a perceptual input can be justified by the fact that
detailed and more complex perceptive inputs take
longer to be processed by the visual cortex. The letter
“W” is undoubtedly more graphically complex than
the letter “O” and it is plausible that, given the rich-
ness in the details, the decomposition of the starting
semantic pointer into its constituent elements is an
operation that takes a long time to perform. On the
other hand much simpler perceptual inputs can reach
a higher level of compression and can therefore be
processed faster.

In other words, there is a significant amount of
time it takes a semantic pointer to go through a trans-
formation in the brain. Therefore, depending on the
size and nature of the input, compressing or decom-
pressing some semantic pointers can take longer than
others.3

Symmetric Property. The symmetric property in a
GMS has also often been criticized. This property
implies that, for any A,B ∈ E , the measure of simi-
larity of A towards B should be the same if computed
for B towards A. Obviously, in a geometric model this
property always holds since the distance from x to y
is the same as that from y to x. However some stud-
ies highlight that, from a perceptual point of view,
this property is not always valid. A famous exam-
ple in this direction is that presented in (Laakso and
Cottrell, 2005), according to which it is assumed that
North Korea is perceived much more like China than
China can be perceived similar to North Korea. An
other example is that presented in (Polk et al., 2002)
who found that when the frequency of colors is ex-
perimentally manipulated, rare colors are judged to be
more similar to common colors than common colors
are to rare colors.

Of course, such criticisms are based on the idea
that the judgments of similarity are all formulated in
the same mental space of comparison. By adopting
the SPMS and the idea that the spaces of comparison
may change with the context or with the size of the
semantic pointers, these problems can be overcome.

3This also suggests that the reaction time (Podgorny and
Garner, 1979) is not the best measure of similarity for com-
puting the similarity between two concepts, at least not in
all cases.

Discussing the same example presented
in (Laakso and Cottrell, 2005), it can easily be
assumed that China is better known than North
Korea. In other words, people generally know much
more details about China (size, history, language,
currency, culture, etc.) than about North Korea.
China is therefore a more relevant concept than North
Korea and this implies that the semantic pointer
representing China can be much richer than the
semantic pointer representing the North Korea.

Referring to Example 5, we can assume that the
concept of China has representations starting from the
highest levels of the compression networks while the
concept of North Korea has only a more abstract rep-
resentation which resides in lower levels. Since in the
SPMS the similarity value depends on which of the
two concepts is introduced first, if the more relevant
concept is introduced first we start our computation
from an higher dimensional mental space and we need
to move to the lower levels of the network. Unlike if
the less relevant concept is introduced first, our com-
putation may start (and end) on the lower levels.
Triangle Inequality. Regarding the triangle inequal-
ity in (Tversky and Gati, 1982) they found some vi-
olations when it is combined with an assumption of
segmental additivity. Specifically it turns out that in
the standard GMS, given three concepts A, B and C,
we would aspect that δ(A,B)+δ(B,C)≥ δ(A,C) (see
Example 6).

However, it is easy to find violations of these as-
sumptions in the common perception of similarity be-
tween concepts. Consider for instance the three con-
cepts life-ring, donut and cookie. We can assume
that life-ring and donut are judged similar due to their
common shape, while donut and cookie are judged
similar since they are both pastries. However, it is
difficult to assume that the distance between life-ring
and cookie is small enough to justify the triangular
inequality (see Example 7). Once again the problem
from which this objection arises is that it is assumed
that the comparison is made within the same geomet-
ric space. If, on the other hand, one accepts that dif-
ferent comparisons can take place in different mental
spaces, there is an easy justification for this inconsis-
tency.
Number of Closest Neighbors. in (Tversky and
Hutchinson, 1986) the authors suggested that a GMS
also imposes an upper limit on the number of points
that can share the same closest neighbor. A much
more restrictive limit is implied in the hypothesis that
the data points represent a sample of a continuous dis-
tribution in a multidimensional Euclidean space. For
instance, under the constraint that there must be a
minimum angle of ten degrees between two pointers,
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a 2D space contains at most 36 pointers while a 3D
space contains at most 413 pointers.

By analyzing 100 datasets in (Tversky and
Hutchinson, 1986) the authors showed that many con-
ceptual input sets exceed such geometric-statistical
limit.

For the sake of completeness we mention that
Carol Krumhansl proposed in (Krumhansl, 1978)
a solution allowing a variable nummber of closest
neighbors to improve the geometric similarity models
in order to solve this specific problem. On the basis of
this proposal, the dissimilarity between two concepts
is modeled in terms of both the distance between el-
ements in a mental space and the spatial density in
the proximity of the compared elements. In this con-
text, spatial density is by introducing spatial density
as the number of elements positioned in proximity to
the element. By including spatial density violations
of the principles of minimality, symmetry and trian-
gular inequality can also potentially be explained, as
well as part of the influence of context on similarity.
However, the empirical validity of the spatial density
hypothesis has been heavily criticized (Tversky and
Gati, 1982; Corter, 1988)

The SPMS model naturally justifies such criti-
cism. If we hypothesize the presence of different rep-
resentations of the same concept A ∈ E , in several
mental spaces, the number of neighbors increases pro-
portionally with the cardinality of~V (A). Furthermore,
a pointer x in a mental space of dimension n has, by
definition, a greater number of closest neighbors than
those of a pointer y lying in a mental space of dimen-
sion m, with m < n.
Unstructured Representations. One of the main
criticisms leveled against the FMS is that it uses un-
structured representations of concepts, while it is sim-
ply given by a set of unrelated features. To solve this
problem, over the years some solutions have been pro-
posed based mainly on two basic ideas, namely that of
organizing the characteristics on the basis of a propo-
sitional structure and that of organizing them on the
basis of a hierarchical structure.

In the propositional approach (Palmer, 1975) the
characteristics that are part of a concept are related to
each other by statements drawn mainly from the vi-
sual domain, such as above, near, right, inside, etc. In
a very similar way in the hierarchical approach, char-
acteristics represent entities that are incorporated into
each other, that is, related to each other by statements
such as part-of or a-type-of.

The SPMS model natively uses a propositional ap-
proach. Indeed, it has been shown in various studies
how structured representations of concepts, such as
those we find formulated in natural language used ev-

ery day, are essential for the explanation of a wide
variety of cognitive behaviors. The possibility of be-
ing able to link two different vector representations at
the base of the SPMS is of fundamental importance
in the definition of our similarity model since, if we
are able to link pointers together, then we are able to
define a role for each pointer that is a component of
a complex structure, tagging pointers of content with
pointers having a structural role.

4 EXPERIMENTAL EVALUATION

In this section we present and discuss some prelimi-
nary experimental evaluation in order to support the
theory underlying the SPMS proposed in this paper.

The SimLex-999 (Hill et al., 2015) and the
SimVerb-3500 (Gerz et al., 2016) datasets have been
used as benchmarks to verify whether semantic sim-
ilarities derived by human judgments can be com-
patible with the SPMS. SimLex-999 provides human
ratings for the similarity of 999 words pairs while
SimVerb-3500 provides human ratings for the simi-
larity of 3,500 verb pairs. In both datasets the judg-
ments are given in the range form 0 to 10. For our ex-
perimental verification we hypothesized the existence
of several contexts, identified by the clusters of terms
semantically close to each other. These clusters have
been computed by selecting all terms in the dataset
whose similarity judgment is higher than a bound b.
In our experiments this bound has been set to 6. We
will refer to such clusters as contexts.

Formally, if T is the set of all terms in the dataset,
the model S consists of all those mental spaces S such
that |{u∈ S : δ(u,v)≤ b}|≥ 2 and |{u∈ S : δ(u,v)>
b}|= 0, for each v ∈ S.

Highly significant in our evaluation is the possibil-
ity of considering different meanings of a term as dif-
ferent representations, thus allowing the same term to
be included in more than one context. For example in
our simulation the term “participate” in the SimLex-
999 dataset turns out to appear in two separate con-
texts, based on its two main meanings, and specif-
ically {“cooperate”, “participate”} and {“add”, “at-
tach”, “join”, “participate”}. Similarly the verb “ob-
ject” in the SimVerb-3500 turns out to appear in two
contexts {“differ”, “object”, “argue”, “disagree”} and
{“deny”, “reject”, “object”, “decline”, “refuse”}.

We compute the average and maximum errors
(eavg and emax) as the divergence from the average dis-
tance between two different mental spaces. Formally,
assume Et is the set of edges connecting two separate
mental spaces and let E(i, j)

t = |Et ∩ (Si× S j)| be the
set of external edges connecting the spaces Si and S j.
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Table 1: Experimental results obtained by clustering the terms in the SimLex-999 and SimVerb-3500 datasets to verify whether
semantic similarities derived by human judgments can be compatible with the proposed similarity model.

Simlex-999 SimVerb-3500
Overall terms / relations 1028 / 999 827 / 3500
Selected terms / relations 521 / 324 687 / 1025
Number of contexts 207 344
Minimum/Maximum context size 2 / 9 2 / 32
Terms in one set 516 346
Terms in more than one set 5 339
Average/Maximum error eavg/emax 0.25 / 0.72 0.42 / 0.91

Then we compute the error ei j between Si and S j as

ei j =
∑
(u,v)∈E(i, j)

t

(
δ̄(u,v)−δ

i j
avg
)

|E(i, j)
t |

,

where

δ
i j
avg =

∑
(u,v)∈E(i, j)

t
δ̄(u,v)

|E(i, j)
t |

Therefore the errors eavg and emax are computed as

eavg =
∑Si,S j∈S ei j

|{ei j : ei j > 0}|
,

emax = max
{

ei j : Si,S j ∈ S
}

Table 1, presenting the results obtained in our sim-
ulation, shows how the error obtained by adapting the
similarity judgments in the datasets to our model is
quite negligible, and supports the idea that the SPMS
can justify many of the similarity judgements ob-
tained empirically.

5 CONCLUSIONS

We introduced the Semantic Pointers Model of Simi-
larity (SPMS), a unifying solution in one of the most
relevant challenges of concept research. Our model
is based on the recent Eliasmith’s theory of biological
cognition, where concepts are represented as semantic
pointers, and assumes the coexistence of several con-
textual mental spaces of different size, populated by
a set of allowable concept representations. We pro-
posed a mathematical formulation of the model and
of the way the similarity distance is computed, high-
lighting the features that the new model has in com-
mon with traditional models and how many of the crit-
icisms raised over the years towards the latter find a
natural settlement. Our preliminary experimental in-
vestigations show how the SPMS is able to adequately
model the human judgments of similarity present in

two of the most recent datasets available in the litera-
ture. In our future work we intend to create a more so-
phisticated computational model based on the SPMS.
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