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Abstract: In order to properly train a machine learning model, data must be properly collected. To guarantee a proper
data collection, verifying that the collected data set holds certain properties is a possible solution. For example,
guaranteeing that that data set contains samples across the whole input space, or that the data set is balanced
w.r.t. different classes. We present a formal approach for verifying a set of arbitrarily stated properties over
a data set. The proposed approach relies on the transformation of the data set into a first order logic formula,
which can be later verified w.r.t. the different properties also stated in the same logic. A prototype tool, which
uses the z3 solver, has been developed; the prototype can take as an input a set of properties stated in a formal
language and formally verify a given data set w.r.t. to the given set of properties. Preliminary experimental
results show the feasibility and performance of the proposed approach, and furthermore the flexibility for
expressing properties of interest.

1 INTRODUCTION

In the past few decades, Machine Learning (ML) has
gained a lot of attention, partially due to the creation
of software libraries (e.g., (Pedregosa et al., 2011))
that ease the usage of complex algorithms. In this
context, the volume of stored data has dramatically
increased over the last few years. However, an often
overlooked task is the data extraction and collection
to create proper data sets to train efficient machine
learning models.

When retrieving information for the data set col-
lection, there are key points to take into consideration.
The reason is that ML models generalize their output
based on the training (seen) data. However, a prob-
lem that is commonly encountered is that a model is
expected to generalize well unseen regions of the in-
put space while such regions do not behave in accor-
dance to the provided training data. Another problem
that often occurs is that there is a class in the data
set which is underrepresented (e.g., for an anomaly
detection data set, 99% of the examples are normal
events). In general, many data biases can occur in a
collected data set. A simple strategy while collecting
data sets is to collect a large number of entries, con-
jecturing that important data are likely to be found if
more data are available. However, this strategy yields
incorrect results, and moreover, large data sets can

cause ML models to be trained for longer than neces-
sary; this in turn can make certain algorithms which
may yield accurate results unusable for such cases.
Additionally, with the proliferation of machine gener-
ated data sets, for example via Generative Adversarial
Networks, assuring that the generated data set holds
some properties of interest is of utmost importance.

In order to guide the collection of a proper data
set to effectively train a ML model, verifying that a
partially collected data set holds certain properties of
interest is a possible solution. This verification can be
done with the use for formal methods, such as for ex-
ample Satisfiability Modulo Theories (SMT) (Barrett
and Tinelli, 2018). With a formal proof that the data
set holds certain properties, it is feasible to create a
formal specification of a data set. Whenever this spec-
ification is violated (certain properties do not hold),
identifying the properties that do not hold may help
to diagnose the missing information. This paper is
devoted to the formal verification of machine learn-
ing data sets through the use of SMT (for preliminary
concepts on ML and SMT, see Section 2). The ap-
proach is based on the encoding of the data set into
a Many-Sorted First Order Logic (MSFOL) formula
which is later verified together with the desired set of
properties (see Section 3).

A tool for the verification of data sets has been
developed. The tool relies on the use of the widely-
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known z3 (De Moura and Bjørner, 2008) solver. Pre-
liminary experimental results show that in spite of the
high computational complexity of SMT procedures,
for the verification of data sets, these properties can
be verified in a reasonable amount of time (see Sec-
tion 4).

It is important to note that verifying certain prop-
erties over a data set is a task which is consistently
considered as necessary, and a norm for many prac-
titioners. However, in the literature very few re-
searchers focus on automatic validation of data sets
(see for example (Carvallo. et al., 2017)). Further-
more, to the best of our knowledge, there is no work
which aims at providing means for the verification of
arbitrarily stated properties, and moreover, in a formal
manner. In this light, this paper aims at exploring this
direction.

2 PRELIMINARIES

2.1 Machine Learning and Structured
Data Sets

We consider that a structured machine learning data
set contains examples alongside with their expected
outputs. Given the inputs and expected outputs, the
final goal of a supervised ML algorithm is to learn
how to map a training example to its expected output.
For an unsupervised ML algorithm the goal is to learn
patterns from the data; thus, the expected output does
not exist. In our work, we consider that the expected
outputs are always present, and thus, a data set for un-
supervised machine learning (where there are no ex-
pected outputs) has the same expected output for all
training examples. Further, we consider only struc-
tured data sets.

Formally, the inputs are called features or param-
eters. A feature vector, denoted as X, is an n-tuple of
the different inputs, x1,x2, . . . ,xn. The expected out-
put for a given feature vector is called a label, denoted
simply as y, and the possible set of outputs is respec-
tively denoted as Y . The set of examples, called a
training data set, consists of pairs of a feature vec-
tor and a label; each pair is called a training example,
denoted as (X,y). For convenience, we represent the
data set as a matrix Dm×n and a vector Om where D
contains the feature vectors and O contains the ex-
pected outputs for a data set of cardinality m. The
vector representing the i-th row (training vector) is de-
noted as Di, and its associated expected output as Oi.
Likewise, the j-th feature (column vector) is denoted
as DT

j (DT denotes the transpose of the matrix D). Fi-

nally, the j-th parameter of the i-th training example
is denoted by the matrix element di, j.

2.2 Satisfiability Modulo
Theories (SMT)

SMT is a decision problem, such that for a given first
order logic formula φ, searches if φ is satisfiable w.r.t.
a set of background theories. For example, w.r.t. inte-
ger linear arithmetic, the following formula is satisfi-
able: Φ = (x ∈ Z)∧ (y ∈ Z)∧ (x < y)∧ (x < 0)∧ (y >
0)∧ (x+ y > 0); the formula can be satisfied for in-
stance by the interpretation x =−1,y = 2. The impor-
tance of restricting an interpretation of certain func-
tion and predicate symbols in a first-order logic for-
mula (according to a background theory T ), is that
specialized decision procedures have been proposed;
thus, making the problem of checking the satisfiabil-
ity of such formulas decidable.

It is important to note that many of the applica-
tions that use SMT involve different data types (Bar-
rett and Tinelli, 2018). Therefore, SMT usually works
with a sorted (typed) version of first order logic (Man-
zano, 1993). Essentially, in SMT there exists a finite
set of sort symbols (types) S and an infinite set of vari-
ables X for the (sorted) formulas, where each variable
has a unique associated sort in S. This is an over-
simplification of a many-sorted first order logic (MS-
FOL). As MSFOL is useful to express our formulas
of interest, in the next subsection we provide a formal
definition of its syntax (Finkbeiner and Zarba, 2006;
Barrett and Tinelli, 2018; Barrett et al., 2009).

2.2.1 Many-sorted First-order Logic Syntax

A signature is a tuple Σ = (S,C,F,P), where S is a
non-empty and finite set of sorts, C is a countable set
of constant symbols whose sorts belong to S, F and P
are countable sets of function and predicate symbols
correspondingly whose arities are constructed using
sorts that belong to S. Predicates and functions have
an associated arity in the form σ1×σ2× . . .×σn→ σ,
where n≥ 1 and σ1,σ2, . . . ,σn,σ ∈ S.

A Σ-term of sort σ is either: (i) each variable x
of sort (type) σ, where σ ∈ S; (ii) each constant c of
sort (type) σ, where σ ∈ S; and (iii) f ∈ F with arity
σ1×σ2× . . .×σn → σ, is a term of sort σ, thus, for
f (t1, . . . , tn), ti (for i ∈ {1, . . . ,n}) is a Σ-term of sort
σi.

A Σ-atom (Σ-atomic formula) is an expression
in the form s = t or p(t1, t2, . . . , tn), where = de-
notes the equality symbol, s and t are Σ-terms of
the same sort, t1, t2, . . . , tn are Σ-terms of sort σ1,σ2,
. . . ,σn ∈ S, respectively, and p is a predicate of arity
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σ1×σ2× . . .×σn.
A Σ-formula is either: (i) a Σ-atom; (ii) if φ is a

Σ-formula, ¬φ is a Σ-formula, where ¬ denotes nega-
tion; (iii) if both φ,ψ are Σ-formulas, then, φ∧ψ and
φ ∨ψ are Σ-formulas (likewise, the short notations
φ→ ψ and φ↔ ψ for ¬φ∨ψ and (φ∧ψ)∨ (¬φ∧
¬ψ)); finally, (iv) if φ is a Σ-formula and x is a vari-
able of sort σ, then, ∃x ∈ σ φ (x ∈ σ is used to indi-
cate that x has the sort σ) is a Σ-formula (likewise,
the short notation ∀x ∈ σ φ for ¬∃x ∈ σ ¬φ), where
∃ denotes the existential quantifier and ∀ denotes the
universal quantifier, as usual.

We leave out the formal semantics of MSFOL for-
mulas, their interpretations and satisfiability as we
feel it can unnecessarily load the paper with unused
formalism. However, we briefly discuss some aspects
of MSFOL formula satisfiability. As previously men-
tioned, for some signatures, there exist decision pro-
cedures, which help to determine if a given formula is
satisfiable. For example, consider the signature with a
single sortR, all rational number constants, functions
+,−,∗ and the predicate symbol ≤; SMT will inter-
pret the constants, symbols and predicates as in the
usual real arithmetic sense R. The satisfiability of Σ-
formulas for this theory (real arithmetic) is decidable,
even for formulas with quantifiers (Barrett and Tinelli,
2018; Manna and Zarba, 2003), i.e., for some infinite
domain theories, there exist procedures1 to decide if a
given quantified formula is satisfiable. Therefore, the
satisfiability for formulas as: ∃n∈R ∀x∈R x+n = x
can be automatically determined (via a computer pro-
gram implementing the decision procedure, i.e., an
SMT solver). If a formula is satisfiable, there exists an
interpretation (or model) for the formula, i.e., a set of
concrete values for the variables, predicates and func-
tions of the formula that makes this formula evaluate
to TRUE.

3 DATA SET ENCODING AND
FORMAL VERIFICATION

As previously mentioned (see Section 2), a ML data
set is composed of a matrix Dm×n and a vector Om,
where m is the number of training examples, n the
number of features, D contains the training examples,
and O the expected outputs. However, note that in our
definition of this matrix we never mentioned the type
of each feature in the data set. In general, there is no
theoretical limitation over the type of these features,
nonetheless, for practical reasons, we consider that

1Often such procedures seek to “eliminate” the quanti-
fiers and obtain an equivalent quantifier-free formula

all features are real valued. The main reason is that
otherwise additional information would be required
for each of the features. Moreover, in practice, well-
known libraries work with real-valued features. As
usual, for those features which are not naturally real,
an encoding must be found (for example, one hot en-
coding for categorical features, etc.). Thus, we con-
sider that di, j,oi ∈ R ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}.
Additionally, we assume that O is always present in
the data sets, independently if this data set is meant
for supervised or unsupervised machine learning. If a
data set is not labeled, then ∀i,k ∈ {1, . . . ,m} oi = ok.

Encoding a ML Dataset as a MSFOL Formula.
Having a convenient formal description for a data set
eases the encoding of this data set as a MSFOL for-
mula. To encode the data as a formula, we make use
of the theory of arrays2. We denote that an object a is
of sort array with indices of type (sort) T 1 and hold-
ing objects of type T 2 as a ∈AT 1,T 2. Indeed, a data
set can be encoded using Algorithm 1; the algorithm
creates a formula that is satisfiable by a model of ar-
rays which represent the data set.

Algorithm 1: Data set encoding.
Input : A data set DM×N (with N features and

M training examples), and its
expected output vector OM

Output: A MSFOL formula representation of
the data set, φ

Step 0: Set φ← TRUE, set labels←ARRAY(),
and set L← 0;

Step 1: Set
φ← φ∧ (m,n, l ∈Z)∧ (m = M)∧ (n = N);

Step 2: Set φ← φ∧ (D ∈AZ,AZ,R)∧ (O ∈
AZ,R)∧ (L ∈AZ,R);

Step 3: for i← 0; i < M; i← i+1 do
Set add←TRUE;
for j← 0; i < N; j← j+1 do

Set φ← φ∧ (D[i][ j] = di, j);

Set φ← φ∧ (O[i] = oi);
for k← 0;k < L;k← k+1 do

if labels[k] = oi then
Set add←FALSE;

if add then
Set labels[L]← oi;
Set φ← φ∧ (L [L] = oi);
Set L← L+1;

Step 4: Set φ← φ∧ (l = L) and return φ

2The theory of arrays considers basic read and write ax-
ioms (Stump et al., 2001)
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3.1 Formal Verification of Data Sets

Indeed, a data set can be formally defined as an MS-
FOL formula φds which holds the following proper-
ties: φds is a conjunction of five main parts, that is, i)
the assertion that an integer variable m is of the size of
the number of training examples, a variable n is of the
size of the features and a variable l is of the size of
the distinct labels, ii) the assertion that D is a two-
dimensional (integer indexed) real-valued array (of
size m× n) and O,L are integer indexed real-valued
arrays (of size m, and l, respectively) iii) D[i][ j] con-
tains the j-th feature value for the i-th training exam-
ple; iv) O[i] contains the expected output for the i-th
training example; and, v) L [i] contains the i-th (dis-
tinct) label.

We assume that we want to verify k properties
over the data set, and furthermore, that these prop-
erties are expressed also in MSFOL. Indeed, MSFOL
allows to express many properties of interest (in Sec-
tion 3.2 we showcase its expressiveness). Therefore,
we assume that we are given π1, . . . ,πk MSFOL for-
mulas to verify. These properties involve the variables
in φds. Additionally, we assume that these formulas
should all hold independently over the data set, and
their conjunction is satisfiable. Thus, impose a re-
striction that πx ∧ πy is satisfiable, for x,y ∈ {1, . . . ,
k}; we call this set of properties the data set speci-
fication σ. This means that two properties may not
contradict each other. For example, it cannot be re-
quired that the data set has more than 30 training ex-
amples and at the same time that it must have at most
20 ((π1↔ (m > 30))∧ (π2↔ (m ≤ 20))). Addition-
ally, the conjunction of properties must be satisfiable
means that there is an interpretation that makes this
formula (the conjunction) evaluate to TRUE, i.e., there
exists a data set which can satisfy this specification.
Otherwise, the verification of any data set is useless
as no data set can hold such set of properties.

The Formal Data Set Verification Problem. can
be reduced to the following: given a data set formula
φds (created using Algorithm 1 from D and O) and
a data set specification σ =

∧k
l=1 πl , is φds ∧σ satis-

fiable? If the conjunction of these formulas is satis-
fiable then, each of the properties must hold for the
data set as the conjunction of all properties is satisfi-
able by itself; if the conjunction is satisfiable we say
that the data set holds the properties π1, . . . ,πk or that
the data set conforms to the specification σ. Perhaps
this is quite an abstract view of the problem. For that
reason, in the following subsection we provide con-
crete examples that should help the reader to better
understand.

3.2 Example Data Set and Properties

First, let us consider a very small data set:

D =



0.051267 0.69956
−0.092742 0.68494
−0.21371 0.69225
−0.375 0.50219
−0.51325 0.46564
−0.52477 0.2098
−0.39804 0.034357
−0.30588 −0.19225
0.016705 −0.40424
0.13191 −0.51389


,O =



1
0
−1
−1
−1
−1
−1
−1
−1
−1


After applying Algorithm 1 to D and O as shown

before, the output (φds) is:

(m,n, l ∈Z)∧ (m = 10)∧ (n = 2)∧
(D ∈AZ,AZ,R)∧ (O ∈AZ,R)∧ (L ∈AZ,R)
∧ (D[0][0] = 0.051267)∧ (D[0][1] = 0.69956)
∧ (O[0] = 1)∧ (L [0] = 1)
∧ (D[1][0] =−0.092742)∧ (D[1][1] = 0.68494)
∧ (O[1] = 0)∧ (L [1] = 0)
∧ (D[2][0] =−0.21371)∧ (D[2][1] = 0.69225)
∧ (O[2] =−1)∧ (L [2] =−1)
∧ (D[3[0] =−0.375)∧ (D[3][1] = 0.50219)
∧ (O[3] =−1)
∧ (D[4][0] =−0.51325)∧ (D[4][1] = 0.46564)
∧ (O[4] =−1)
∧ (D[5][0] =−0.52477)∧ (D[5][1] = 0.2098)
∧ (O[5] =−1)
∧ (D[6][0] =−0.39804)∧ (D[6][1] = 0.034357)
∧ (O[6] =−1)
∧ (D[7][0] =−0.30588)∧ (D[7][1] =−0.19225)
∧ (O[7] =−1)
∧ (D[8][0] = 0.016705)∧ (D[8][1] =−0.40424)
∧ (O[8] =−1)
∧ (D[9][0] = 0.13191)∧ (D[9][1] =−0.51389)
∧ (O[9] =−1)∧ (l = 3)

Let us start by showcasing very simple proper-
ties and how their formal verification works. Suppose
the specification consists of a single property: “the
data set must contain at least 100 training examples,”
this property can be expressed in MSFOL simply as
π#↔ (m≥ 100). Notice how φds∧π# is not satisfiable
as there does not exist an interpretation that makes
it evaluate to TRUE; particularly, if m is greater than
99, then the clause (in φds) m = 10 cannot evaluate to
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TRUE and since this is a conjunction, φds ∧π# evalu-
ates to FALSE. Similarly, if m is 10, then the π# makes
the conjunction evaluate to FALSE. Thus, we say that
the data set does not hold the property π#.

Let us start examining more complex properties
that can be formally verified over the data set. A
slightly more complex property to verify is: “the data
set must be min-max normalized,” which can be ex-
pressed in MSFOL as π±↔ @(i, j ∈Z)((i≥ 0)∧(i <
n)∧ ( j ≥ 0)∧ ( j < m)∧ ((D[i][ j]< min)∨ (D[i][ j]>
max))). Certainly min and max are defined constants
(e.g., -1 and 1) an either these variables must be de-
fined or the value must be replaced; for min =−1 and
max = 1, φds holds the property π± (as φds ∧ π± is
satisfiable).

The previous properties are useful to showcase
how easy is to translate desired properties into the
formalism. However, verifying such properties is
quite simple, and furthermore can be uninteresting
as the data set can be normalized later on, for ex-
ample. As previously stated, our motivation comes
from the proper extraction and collection of the data
set. We have discussed the case where training ex-
amples are provided for some regions of the input
space and some other regions are overlooked. To
verify that “the data set is sampled across the whole
input space,” the following property can be verified
π∗ ↔ @(p ∈ AZ,R)∀(i ∈ Z)((i ≥ 0)∧ (i < m)) =⇒
(
√

∑
m−1
j=0 (p[ j]−D[i][ j])2 > δ); the property basically

states that there does not exist a point such that it has
a greater Eucledian distance that a chosen constant
δ. As an example, for δ = 1, our example data set
does not hold the previous property π∗ as there exists
a point in the input space that has greater Eucliden
distance, for example if p[0] = 2 and p[1] = 2. Note
that the property never specifies the minimum or max-
imum values of the input space and thus, it is likely
that no data set is sampled over an infinite domain.
An easy solution is to add such constraints to π∗, i.e.,
@(l ∈ Z∧ (l ≥ 0)∧ (l < n)(∧(p[l] > max)∨ (p[l] <
min))), for given max and min constants. We draw
the reader’s attention to the fact that a formal specifi-
cation must be well-stated and this is an assumption
of our work and generally in any formal verification
strategy.

Finally, note that sometimes it is more convenient
to state negated properties. For example, to verify that
the data set is balanced, we can verify the follow-
ing property: “there is no class which has less than

m
(β∗l) samples,” where l is the number of different out-
puts (labels) and β is a chosen constant. This prop-
erty states that the data set must have equal amount
of samples, up to a given constant. For example, if

β = 1 the data set must be perfectly balanced, while
if β = 2 only half of the samples (of a perfectly bal-
anced data set) are required per class. It is impor-
tant to state that unbalanced data sets represent a real
problem for current machine learning algorithms, and
moreover, it is often encountered in the domain. Ac-
cordingly, researchers actively try to tackle the prob-
lem (see for example (Lemaı̂tre et al., 2017)). Indeed,
it can be not that intuitive how to state this property
in first order logic. There are many particularities that
must be considered; for example, the fact that there is
no notion of loops in first order logic and we require
to define a function to count the number of instances
where a given label appears. To overcome this partic-
ular problem a recursive function can be defined. In
order to keep the paper readable, we avoid this defi-
nitions and simply denote defined functions in math-
ematical bold-font. The interested reader can refer
to the prototype implementation section (Section 4)
and correspondingly to the tool’s repository to check
the full property implementation. We state the afore-
mentioned property as: π≡ ↔ @i ∈ Z((i ≥ 0)∧ (i <
l)∧ (S(O,L [i],m) < m

β∗l )), where S(A,v,s) is a func-
tion that returns the number of times the value v is
found in an array A up to index s; that is, that is how
many times the label is found in the label array.

We have exemplified different properties that can
be formally verified in data sets. We do not focus
on an extensive list of properties but, rather on pro-
viding means for formally verifying any property in
a given data set. We could state much more proper-
ties, for example, there are no contradicting training
examples in the data set, i.e., there does not exist two
equal elements in D with different indices for which
the corresponding elements in O differ. We limit this
section with these examples. However, we note that
as shown in the previous examples, the formalism is
quite flexible for expressing real properties of interest.

Discussion – On Standard and Domain-specific
Properties. We have showcased the flexibility of
the proposed approach with somewhat standard prop-
erties to check. One can imagine more of these prop-
erties, for example, guaranteeing that there are no out-
lier training examples3 in the data set can be logi-
cally expressed as finding points in the space with
high variance. Nonetheless, it is interesting to point
out that the approach is generic and domain-specific
properties coming from expert knowledge can be also
used to formulate properties. For example, consider
a real state data set, where two categorical features,
isHouse and isApt cannot be both TRUE at the same

3Training examples which have extreme values, far from
the rest of data points.
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time. Similarly, for other specific domains as com-
puter networks, where network packets cannot have
mutually exclusive headers (e.g., transmission control
protocol and user datagram protocol). For the first
case (real state), the property can be simply stated as
@i ∈ Z((i ≥ 0)∧ (i < m)∧ (D[i][J] = D[i][K])), as-
suming J and K are the corresponding indices for the
isHouse and isApt features. In general, as the prop-
erties to check can be added or removed arbitrarily,
checking a particular set of those for a particular data
set is possible (see the tool’s description in the next
section).

Discussion – On the Usability and Computational
Complexity of the Proposed Approach. The pro-
posed approach reduces the problem to the satisfi-
ablity of many sorted first order logic. The problem
is known to be NP-hard (for formulas without quanti-
fiers), and depending on the the theories involved the
problem becomes computationally harder (PSPACE-
hard or even exponential or doubly exponential). This
fact may lead the reader to believe that the approach
is not feasible for real life data sets. This is true only
if the particular instances belong to the worst case. In
reality, millions problems which are considered un-
tractable are easily solved as instances do not fall into
the worst case. Additionally, as most of the show-
cased properties can be individually computed via ad-
hoc procedures (with small programs), it may seem
as if the approach is cumbersome. However, note that
not all properties are easily computable. Take for in-
stance the property of guaranteeing that there does not
exist a point in the space which is more distant (than a
given constant) to all data set points; brute force enu-
meration is not feasible. Furthermore, some of the
properties to be verified may be computationally hard
by themselves. As we showcase in the next section,
our preliminary experimental results show that small
data sets are verified in milliseconds. It is interesting
to observe that many of the properties can be verified
by batches in parallel. For example, the property of
verifying that the data set is min/max normalized can
be checked independently as there are no dependen-
cies between the data; in general, any property that
does not relate two training examples. However, this
is out of the scope of this initial work. Finally, we also
note that our approach is targeted to properly con-
struct a data set. However, it is still useful for existing
data sets which cannot be modified. Even if the col-
lection is finished, knowing that the data set holds a
given property or not is the first step toward fixing or
contouring the problem.

4 TOOL DEVELOPMENT AND
EXPERIMENTAL RESULTS

In order to assess the feasibility and efficiency of the
proposed approach, a prototype tool has been devel-
oped in Julia (Bezanson et al., 2017). Generally,
speaking, the tool takes as an input: a Comma Sepa-
rated Values (CSV) file as a data set, assuming that the
last column of each row must be the expected output
for the training example (remainder of the columns);
a directory, where the properties to be checked are
stored, one per file in the SMT-LIB language.

SMT-LIB. is a language that many SMT solvers
can take as an input and its syntax is quite intuitive.
For example, for expressing the property @(i, j ∈
Z)((i≥ 0)∧ (i < n)∧ ( j ≥ 0)∧ ( j < m)∧ ((D[i][ j]<
min)∨ (D[i][ j]> max))) can be simply done in SMT-
LIB as shown in Listing 1.

Listing 1: π± in SMT-LIB.

( a s s e r t
( n o t

( e x i s t s ( ( i I n t ) ( j I n t ) )
( and
(>= i 0 )
(< i n )
(>= j 0 )
(< j m)
( o r
(< ( s e l e c t ( s e l e c t D i ) j ) min )
(> ( s e l e c t ( s e l e c t D i ) j ) max )

)
)

)
)

)

The tool works as described in Algorithm 2. Note
that, SMT is an SMT procedure call to determine if
the given formula is satisfiable. In our tool, we use
the z3 (De Moura and Bjørner, 2008) solver (which
takes as an input the SMT-LIB format). The interested
reader can check the properties stated in SMT and
more information about our tool in the tool’s repos-
itory (López, 2021).

4.1 Preliminary Experimental Results

All experiments were executed with commodity hard-
ware with the intention to showcase the performance
of the proposed approach. The experiments were
performed with an Ubuntu 20.04LTS with 4 Intel(R)
Core(TM) i5-6300U CPU @ 2.40GHz, and 8GB of
RAM.
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Algorithm 2: Data Set Verification.

Input : A CSV data set file f (with n≥ 1
features, and m≥ 1 training
examples), and a directory d
containing property files

Output: Verdicts for each property π ∈ d
Step 0: Read f and store it into the arrays D
and O, and set m and n, correspondingly;

Step 1: Use Algorithm 1 to obtain φds from
D,O,m, and n;

Step 2: foreach file p ∈ d do
Read the contents of p into the formula π;
if SMT (φds∧π) is satisfiable then

display(π holds in the data set f )
else

display(π does not hold for the data
set f )

In order to evaluate the feasibility of our proposed
solution, the properties π#,π±,π∗ and π≡ have been
encoded in SMT-LIB, and a data set was incremen-
tally tested. We present the results of both the perfor-
mance and satisfiability of properties w.r.t. the data
sets in Figures 1, 2, respectively. As can be seen, the
performance of the proposed approach is acceptable;
as any formal verification approach, the decision pro-
cedures are often exponential in the worst case. For
formally guaranteeing that the data set holds certain
properties of interest, this procedure can be executed
once, in which case the running time is not much of a
constraint. Our preliminary experimental evaluation
shows that properties are solved fast (milliseconds
per hundreds of training examples), specially simple
properties (e.g., π#).
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Figure 1: Performance of formal data set verification.

It is interesting to observe the satisfiability of the
properties. It is normal that when adding more train-
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Figure 2: Satisifiability of properties (w.r.t the data set con-
junction).

ing examples the data set may get balanced or unbal-
anced (π≡); it is also normal that all data sets which
have less than 100 training examples fail the property
π#. One can conclude that the example data set is
also well min/max normalized as π± is always satis-
fiable. Finally, note that even if the language allows
it and solver can read the property π∗, the property
is very complicated as it is quantified over an array;
the solver cannot process such complex formulation
and so the property always returns an unknown sta-
tus. We envision different strategies to overcome this
problem. For example, instead of formulating the
problem as it is, to pre-process the dimension of the
training vector, and ask the formula quantified over
n reals (∃p1, . . . , pn ∈ Rψ). This should effectively
reduce the complexity of the formula, however, this
may require a Domain Specific Language (DSL) for
stating properties of interest. However, note that this
approach is out of the scope of this initial study.

5 CONCLUSION AND FUTURE
WORK

In this paper, we have proposed a formal data set ver-
ification approach. Such formal verification can be
used for guaranteeing that the data extraction is ade-
quate for properly training a machine learning model.
We have showcased different formal properties to be
verified over the data sets, and experimentally proven
that the approach is feasible, and furthermore flexible
w.r.t. the semantic capabilities of the proposed for-
malism.

As for future work we plan to test the performance
of the approach on large scale data sets. Considering
performance enhancement by automatically recogniz-
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ing properties that can be verified by batches in paral-
lel is another interesting direction. Also, we intend to
further investigate DSLs for property specification (as
discussed in Section 4). Additionally, as each of the
training examples gets translated into a part of a for-
mula, it is interesting to try to remove some training
examples when a property is not satisfiable in order to
obtain a satisfiable one; this would allow to automat-
ically repair data sets w.r.t. a set of properties. Nev-
ertheless, different elements must be taken into con-
sideration, for example, the fact that the model found
by the solver may include other training examples,
which are fictitious. Finally, an interesting direction
is to consider the formal verification of unstructured
data for machine learning.
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López, J. (2021). Dsverif – a formal data set verification
tool. https://github.com/jorgelopezcoronado/DSVerif.

Manna, Z. and Zarba, C. G. (2003). Combining decision
procedures. In Formal Methods at the Crossroads.
From Panacea to Foundational Support, pages 381–
422. Springer.

Manzano, M. (1993). Introduction to many-sorted logic.
In Meinke, K. and Tucker, J. V., editors, Many-sorted
Logic and Its Applications, pages 3–86. John Wiley &
Sons, Inc., New York, NY, USA.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,

P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Stump, A., Barrett, C. W., Dill, D. L., and Levitt, J. (2001).
A decision procedure for an extensional theory of ar-
rays. In Proceedings 16th Annual IEEE Symposium
on Logic in Computer Science, pages 29–37. IEEE.

KDIR 2021 - 13th International Conference on Knowledge Discovery and Information Retrieval

256


