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Abstract: Inspired by the COVID-19 pandemic, a new online facility model, known as the Online Facility Service Leas-
ing problem (OFSL), has been recently introduced. In OFSL, services at different (health) facility locations
are leased for different durations and costs. Each service at each facility is associated with a dormant fee
that needs to be paid for each day on which the service is not leased at the facility. Clients arrive over time,
each requesting a number of services, and need to be served by connecting them to multiple facilities jointly
offering the requested services. The aim is to decide which services to lease, when, and for how long, in order
to serve all clients as soon as they appear with minimum costs of leasing, connecting, and dormant fees. In
this paper, we study a generalization of OFSL in which we are additionally given a parameter d, such that,
should the service be not leased for more than d consecutive days, a dormant fee is to be paid (d = 0 in the
case of OFSL). We call this variant the Online Facility Service Leasing with Duration-Specific Dormant Fees
(d-OFSL). We particularly focus on the metric version of the problem in which facilities and clients reside in
the metric space. We refer to it as metric d-OFSL and design the first online algorithm for the problem. The
latter is a deterministic algorithm based on a primal-dual approach. We measure its performance by compar-
ing it to the optimal offline solution for all instances of the problem. This performance analysis is known as
competitive analysis and is the standard to evaluate online algorithms.

1 INTRODUCTION

The COVID-19 pandemic has been a wake-up call
to most communities around the world. Many have
been striving to provide adequate timely health-care
services to their patients as they ran out of resources.
As a result, new temporary strategies were adopted,
including leasing facility services at different loca-
tions to satisfy the needs of patients as fast as pos-
sible. Challenging decisions had to be made in re-
gards to leasing contracts, budgeting, and distribut-
ing patients to health centers. Consequently, a signifi-
cant number of works addressing such decisions from
various perspectives appeared in the literature (Choi,
2021; Queiroz et al., 2020; Ivanov, 2020; Howard,
2021; Nikolopoulos et al., 2021). Recently, a new
online facility model, known as the Online Facil-
ity Service Leasing problem (OFSL), has been intro-
duced (Markarian and Khallouf, 2021). The latter
was motivated by the following optimization prob-
lem. Imagine a company that has made contracts to

lease resources at a number of facility locations, each
offering some services. These services are reserved
for the company for as long as the corresponding con-
tract states. The company is given a number of lease
types for leasing the services. Each type is character-
ized by a duration and cost. Lease prices respect the
economy of scale such that a longer lease type costs
more but cheaper per unit time. Each day a service is
not leased at a facility, a dormant fee needs to be paid.
This fee is the cost the company pays for reserving
the service. Clients arrive over time. The company
does not know in advance how many will come and
when will they come. Each would request a number
of services, such as testing, treatment, and vaccina-
tion. The goal is to decide when to lease which ser-
vices at which facility locations such that each client
is served by connecting it to multiple facilities jointly
offering the requested services, at minimum possible
costs of leasing, connecting, and dormant fees.

In this paper, we study a generalization of OFSL
in which we are additionally given a parameter d,
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such that, should the service be not leased for more
than d consecutive days, a dormant fee is to be paid
(d = 0 in the case of OFSL). We call this variant
the Online Facility Service Leasing with Duration-
Specific Dormant Fees problem (d-OFSL). We partic-
ularly focus on the metric version of the problem in
which facilities and clients reside in the metric space
and respect the triangle inequality. We refer to it as
metric d-OFSL and design the first online algorithm
for the problem. The latter is a deterministic algo-
rithm based on a primal-dual approach. We mea-
sure its performance by comparing its output to the
optimal offline solution for all instances of the prob-
lem. This performance analysis is a worst-case analy-
sis known as competitive analysis and is the standard
to evaluate online algorithms (Borodin and El-Yaniv,
2005). An online algorithm is said to have a compet-
itive ratio r where r is the worst-case ratio of the cost
of the online algorithm to that of the optimal offline
solution, for all instances of the problem. The latter
is refered to as r-competitive online algorithm. The
challenge is to design online algorithms that can be
proven to have a small r.

We develop the first online algorithm for metric
d-OFSL, with an O((L+ d

lmin
) · log lmax)-competitive

ratio, where:
– L is the number of lease types available
– d is the maximum number of days after which a

dormant fee needs to be paid
– lmin is the shortest lease duration
– lmax is the longest lease duration

In addition to generalizing OFSL, metric d-OFSL
generalizes two well-known online optimization
problems, the Parking Permit problem (PP) (Meyer-
son, 2005) and the Metric Online Facility Location
problem (metric OFL) (Meyerson, 2001). There is a
lower bound of Ω(L) on the competitive ratio of any
deterministic algorithm for PP, where L is the num-
ber of lease types available. Moreover, there is a
lower bound of Ω( logn

log logn ) on the competitive ratio of
any randomized algorithm for metric OFL (Fotakis,
2003), where n is the number of clients. These imply
a lower bound of Ω(L+ logn

log logn ) on the competitive ra-
tio of any deterministic algorithm for metric d-OFSL,
where n is the number of clients.

We note here that the algorithm for OFSL
in (Markarian and Khallouf, 2021) can’t be extended
to our problem, since the latter is for the non-metric
variant. In general, results for the metric variants,
including the one in this paper, exploit the metric
properties of the problem to achieve better bounds
on the competitive ratio in comparison to the non-
metric variants. Moreover, similar techniques as those

in (Markarian and Khallouf, 2021) could have been
used to achieve a non-trivial competitive ratio for the
non-metric variant of d-OFSL, and hence our moti-
vation in this paper to target the metric version rather
than the non-metric version of the problem.

Outline. The rest of the paper is structured as fol-
lows. In Section 2, we present a summary of works
related to metric d-OFSL. In Section 3, we give a for-
mal description of metric d-OFSL. In Section 4, we
give a graph formulation of metric d-OFSL. Follow-
ing this graph formulation, we give, in Section 5, a
primal-dual program for metric d-OFSL. In Section
6, we present our online algorithm and prove its com-
petitive ratio in Section 7. We conclude in Section 8
with some remarks and future work.

2 RELATED WORK

Meyerson (Meyerson, 2005) introduced the first on-
line leasing framework, with a simple problem known
as the Parking Permit problem (PP), for which he
gave upper and lower competitive bounds. He pre-
sented an O(L)-competitive deterministic algorithm
and an O(logL)-competitive randomized algorithm
along with matching lower bounds.

Many network optimization problems were
formed based on this framework (Anthony and
Gupta, 2007; Markarian and Kassar, 2020; Nagarajan
and Williamson, 2013; Abshoff et al., 2016). Later,
a number of extensions to the original framework
were introduced, including lease prices changing
over time, clients with deadlines, and lease types with
dimensions (Feldkord et al., 2017; Li et al., 2018;
Markarian, 2018; De Lima et al., 2017b; De Lima
et al., 2020).

Online Facility Location problems have been
intensively studied in the metric setting. Mey-
erson (Meyerson, 2001) proposed a randomized
O(logn)-competitive algorithm for the Online Facil-
ity Location problem (OFL), where n is the num-
ber of clients. Later Fotakis (Fotakis, 2003) gave an
O(logn/ log logn)-competitive algorithm and showed
that this bound is optimal. Many other results that
include other online variations were also known (Fo-
takis, 2007; Fotakis, 2011; San Felice et al., 2015).

A number of leasing variants of OFL were
also studied (Abshoff et al., 2016; Nagarajan and
Williamson, 2013; Markarian and Meyer auf der
Heide, 2019; Li et al., 2018; De Lima et al., 2017a).
Unlike in these variants, in d-OFSL and OFSL, ser-
vices rather than facilities are leased. Moreover, un-
like the case in d-OFSL and OFSL, all clients in these
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variants can be served by all facilities. d-OFSL and
OFSL generalize these variants by having one service
offered by all facilities and setting all dormant fees
to 0. Despite the differences, many of the techniques
used in these variants do seem helpful in solving d-
OFSL and OFSL, as we will see in the coming sec-
tions.

3 PROBLEM DESCRIPTION

In this section, we give a formal description of met-
ric Online Facility Service Leasing with Duration-
Specific Dormant Fees (metric d-OFSL).
Definition 1. (metric d-OFSL) Given m facility loca-
tions and k services. Each facility location offers a
subset of the k services. These services can be leased
with L different types, each differing by a duration and
price. Given a positive integer d≥ 2. For each service
at each facility location, there is a dormant fee that
needs to be paid whenever the service is not leased for
d consecutive days. There are at most n clients which
arrive over time. Each day, a subset of the clients ar-
rives, each requesting a subset of the k services. The
algorithm serves a client by connecting it to a number
of facility locations jointly offering the requested ser-
vices, such that these services are leased at the time
of the client’s arrival. Connecting a client to a facility
location incurs a connecting cost which is equal to the
distance between the client and the facility location.
To each day, the algorithm reacts by deciding which
services to lease at which facility locations with which
lease type in order to serve all arriving clients. The
goal is to minimize the total leasing costs, connecting
costs, and dormant fees.

Next, we describe the Dormant-Fee-Interval
model and the Lease-Interval model. These will be
assumed for the dormant fees and the lease structures,
respectively.

Dormant-Fee-Interval Model. The algorithm pays
a dormant fee, if needed, only on days x where x
mod d ≡ 1, without affecting the competitive ratio.

Proof. Consider an instance I of the original problem.
Let Opt be an optimal solution for I. In the Dormant-
Fee Interval model, we are only allowed to pay a dor-
mant fee on days x : x mod d ≡ 1. Let i be an in-
terval of d days at the end of which Opt has paid a
dormant fee. Starting from day 0, we will divide the
timeline into intervals of length d. Interval i crosses at
most two of these intervals. We can create a feasible
solution for the Dormant-Fee Interval model by pay-
ing the dormant fee associated with the first interval

crossed by i. This would not affect the feasibility of
the solution constructed. Doing this for all the inter-
vals associated with dormant fees paid by Opt would
complete the proof.

Lease-Interval Model. Meyerson (Meyerson,
2005) showed that the following can be assumed by
losing only a constant factor in the competitive ratio.
– Leases of the same duration do not overlap.
– All lease durations are power of two.

This model has also been assumed in (Markarian
and Khallouf, 2021) and many leasing optimization
problems studied thus far (Nagarajan and Williamson,
2013; Abshoff et al., 2016; Li et al., 2018; Markarian,
2015).

4 GRAPH FORMULATION

In this section, we formulate d-OFSL as a graph-
theoretic problem.
– For each client which arrives, we create a node,

called actual client node at the location of the
client. This client needs to be served as soon as it
arrives. For each service it is requesting, it needs
to be connected to at least one facility location of-
fering the service.

– For each service at each facility, we create a node,
called actual service node at the location of the
facility. This actual service node can be leased
for L different durations.

– For each service at each facility, we create a node,
called virtual service node at the location of the
facility. This virtual service node can be leased
only for a duration of a single day and has cost
equal to the dormant fee associated with the ser-
vice. Moreover, it can be leased only on days x : x
mod d ≡ 0. Figure 2 shows an example of d = 5.

– For each service at each facility, we create a node,
called virtual client node at the location of the fa-
cility. This client appears on days x : x mod d≡ 1
and requests to be connected either to the virtual
service node or to the actual service node associ-
ated with it. Moreover, it can be served on any
day starting from the day y it appears until day
y+d−1. Figure 2 shows an example of d = 5.

– We add an edge from an actual client node to an
actual service node if the client corresponding to
the client node has requested the service corre-
sponding to the service node. The weight of this
edge would be equal to the connecting cost be-
tween the client and the facility location.
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Figure 1: Three facility locations and a client requesting
one service.

Figure 2: Virtual client, virtual service lease days for d = 5.

– From each virtual client node, we add two edges,
of weight 0, one to its corresponding actual ser-
vice node and another to its corresponding virtual
service node.

Figure 1 shows an example of three facility loca-
tions, each offering one, two, and three services, re-
spectively, and one client requesting one service.

Initially, the algorithm knows all about the facil-
ity locations, the services, and the lease prices. The
client locations and their requests are revealed over
time when clients show up. Each day, the online al-
gorithm reacts to the client nodes created by purchas-
ing from the available leases. Edges correpond to the
connecting costs that will be paid upon connecting a
client to a facility location. Notice that, a virtual client
in our formulation is associated with a deadline that
represents whether or not a dormant fee will be paid.
Each service at each facility is associated with such a
client that appears every d days to ensure that every
d days, the algorithm checks whether it is required to
pay a dormant fee for the service or not. Figure 1 il-
lustrates the days on which virtual client nodes appear
and virtual service nodes are leased.

5 PRIMAL-DUAL
FORMULATION

In this section, we present an integer linear program
and the corresponding relaxed dual program for the
graph-theoretic problem described above. Fig. 3 il-
lustrates this formulation.

min ∑
(i,k,t)∈S

cikxikt + ∑
( js,t,d)∈R

∑
i∈S js

ci jsyi, jstd

∑
i∈S js

yi, jstd ≥ 1 ( js, t,d) ∈ R

∑xikt ′ − yi, jstd ≥ 0 (i,k, t ′) ∈ S js

( js, t,d) ∈ R
yi, jstd ∈ {0,1} i ∈ S js,

( js, t,d) ∈ R
xikt ∈ {0,1} (i,k, t) ∈ S

max ∑
( js,t,d)∈R

α jstd

α jstd −βi, jstd ≤ ci js i ∈ S js
( js, t,d) ∈ R

∑
( js,t ′,d)∈R

βi, jst ′d ≤ cik (i,k, t) ∈ S js

βi, jstd ≥ 0 i ∈ S js,
( js, t,d) ∈ R

α jstd ≥ 0 ( js, t,d) ∈ R

Figure 3: Linear Programming Formulation of.

The objective function has two parts. The first part
represents the costs incurred by leasing services. We
denote each service at each facility as a triplet (i,k, t),
where i is the service type, k is the lease type, and t is
the starting day of the lease. A variable xikt is assigned
to each (i,k, t) indicating whether it is bought or not.
cik is the cost of leasing service i with type k.

A request is characterized by a client-service pair,
such that for each service requested by a client, we
generate a request ( js, t,d) refering to client j re-
questing service s, arriving at time t, and having dead-
line t +d. ci js is the cost of connecting j to i.

The second part of the objective function repre-
sents the costs incurred by connecting each request to
a service, such that variable yi, jstd indicates whether
request ( js, t,d) is connected to service i. Recall that
all requests associated with actual client nodes have
deadline 0.

The first primal constraint guarantees that each re-
quest is connected to at least one service. The second
constraint makes sure that each request is only con-
nected to a service that is leased within the arrival
time and the deadline of the request. We denote by
S the collection of all service triplets and by R the
collection of all request triplets. We denote by S js the
collection of service triplets that can serve request js.
We call these triplets nominees. Let Hn be the nth
harmonic number 1+ 1

2 + ...+ 1
n .
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6 ONLINE PRIMAL-DUAL
ALGORITHM

In this section, we present an online deterministic
primal-dual algorithm for metric d-OFSL.

The main idea of the algorithm is that whenever
a client arrives and a request is formed, as long as (i)
the dual constraints associated with it are not violated
and (ii) the request’s dual variable is not equal to the
distance to a purchased nominee, the algorithm keeps
increasing its dual variables. Algorithm 1 illustrates
the steps that react to each request formed.

Algorithm 1: Online Primal-Dual Algorithm for metric d-
OFSL.

When a request ( js, t,d) is generated, we increase
its variable α jstd and the variables βi, jstd corre-
sponding to its nominees while maintaining α jstd−
βi, jstd ≥ 0, until:

(i) either the dual constraint of some nominee
(i,k, t ′) ∈ S js becomes tight:

∑βi, jstd = cik: ( js, t,d) ∈ R

So, we buy (i,k, t ′) (i.e., we set its primal
variable xikt ′ to 1).

(ii) or α jstd = ci js for some bought nominee
(i,k, t ′) ∈ S js

We connect ( js, t,d) to the closest bought nomi-
nee.

7 COMPETITIVE ANALYSIS

In this section, we give a competitive analysis of our
algorithm, based on dual fitting arguments (Freund
and Rawitz, 2003; Jain et al., 2003; Jain and Vazirani,
2001).

The proof ideas are based on our previous result
in (Li et al., 2018). We partition the timeline into
rounds τi := {(i−1)lmax, . . . , ilmax−1} of length lmax
and conduct the analysis on the first lmax time steps
only. This has been proven to be sufficient to con-
clude the competitive ratio of the algorithm (Abshoff
et al., 2016).

Note that according to the primal-dual formula-
tion, the dormant fees are embedded in the primal-
dual program as leasing costs. Hence, they will not
appear in the analysis.

Notice that our algorithm outputs a feasible pri-
mal solution and an infeasible dual solution. Conse-
quently, the proof will be composed of two parts. In
the first part (Lemma 1), the cost of the primal so-

lution will be bounded by O(L+ d
lmin

) times the cost
of the dual solution. In the second part (Lemma 2),
the infeasible dual solution constructed will be scaled
down by O(Hlmax) to make it feasible. Using Weak
Duality Theorem, we will imply the competitive ratio
of the algorithm.

Lemma 1. The cost of the primal solution con-
structed by the algorithm is at most (L + 2d

lmin
) ·

∑( js,t,d)∈R α jstd .

Proof. We first show that the sum of the connection
costs is at most ∑( js,t,d)∈R α jstd and then show that
the sum of the leasing costs is at most (L + 2d

lmin
) ·

∑( js,t,d)∈R α jstd .
A request ( js, t,d) is either assigned to an already

leased service or it leads to leasing a new service. If
it is the first case, then the request has increased only
the variable α jstd until α jstd = ci js. If it is the sec-
ond case, then the request has increased both α jstd
and βi, jstd as long as α jstd−βi, jstd ≤ ci js, while main-
taining α jstd −βi, jstd ≥ 0. Thus α jstd ≥ ci js. We can
sum up over all requests and get a total connection
cost of O(∑( js,t,d)∈R α jstd).

As for the leasing costs, we say a request con-
tributes to the leasing cost of a service of type k if
it has caused such a service lease to be purchased.
The total contribution of request ( js, t,d) to service
leases of type k can be upper bounded by α jstd · d

lk
.

This is because the number of nominees of type k does
not exceed d

lk
(the maximum is for the virtual clients

case). Summing up over all L lease types yields:

L
∑
j=1

⌈
d
l j

⌉
≤ L+d

[
1
l1

(
1−(1/2)L

1−1/2

)]
=

L+d
[

2
l1

(
1− (1/2)L

)]
Since L≥ 1, we have:

L+d
[

2
l1

(
1− (1/2)L

)]
≤ L+ 2d

lmin

The sum of all clients’ contributions implies the total
leasing costs:

∑
( js,t,d)∈R

α jstd ·
(

L+
2d
lmin

)

The following Lemma has been proven in (Ab-
shoff et al., 2016; Li et al., 2018; Nagarajan and
Williamson, 2013). It shows that it is sufficient to
divide the infeasible dual solution by 2(Hlmax + 1) to
yield a feasible dual solution. Its proof is based on re-
peatedly exploiting the triangle inequality. Moreover,
the bound is not based on the number of clients but
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rather on the number of time steps. That is why the
additional number of clients resulting from the virtual
client nodes does not appear in the analysis.

Lemma 2. For any service (i,k, t) ∈ S js and µ =
1

2(Hlmax+1) , it holds that:

∑
( js,t ′,d)∈R

µ ·α jst ′d−βi, jst ′d ≤ ci js

Notice that both bounds do not depend on the
number of services and that is why the additional
number of clients resulting from the virtual service
nodes does not appear in the analysis too.

By combining the two lemmata, we obtain the fol-
lowing theorem.

Theorem 1. There is an online deterministic O((L+
d

lmin
) · log lmax)-competitive algorithm for metric d-

OFSL, where L is the number of lease types available,
d is the maximum number of days after which a dor-
mant fee needs to be paid, lmin is the shortest lease
duration, and lmax is the longest lease duration.

8 CONCLUDING REMARKS

In this paper, we have introduced a natural general-
ization of the well-known facility location problem in
the online setting. The latter appears as a sub-problem
in many real-world optimization scenarios involving
serving clients, as they appear over time, by leased
resources.

The first research direction would be to close the
gap between the upper and lower bounds for metric d-
OFSL. This can be done by either designing another
algorithm, or by improving the analysis of the cur-
rent one. Proving a better lower bound would also be
worth trying.

Furthermore, we have considered in this paper a
fixed parameter d for all our facility services. It is
important to note here that our algorithm does extend
to the case where this parameter differs between one
service and the other. Yet, it is not clear whether the
same can be said if we consider other variations of the
parameter. That is, it could be that we have to pay a
small fee the first time we leave a service unleased and
then a higher fee in the next times. It would be inter-
esting to investigate about these variations, by observ-
ing their connection to actual real-world examples.

This brings us to the next research direction,
which would be to actually implement the proposed
algorithm and evaluate it under real-world or simu-
lated instances of the optimization problem.
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