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Campus de Sénart, 36-37 Rue Georges Charpak, F-77567 Lieusaint, France

Keywords: Space Partitioning, Sub-spaces, Cluster’s Density, Industry 4.0, Cognitive Systems.

Abstract: The new challenges Science is facing nowadays are legion; they mostly focus on high level technology, and
more specifically Robotics, Internet of Things, Smart Automation (cities, houses, plants, buildings, etc.), and
more recently Cyber-Physical Systems and Industry 4.0. For a long time, cognitive systems have been seen
as a mere dream only worth of Science Fiction. Even though there is much to be done, the researches and
progress made in Artificial Intelligence have let cognition-based systems make a great leap forward, which
is now an actual great area of interest for many scientists and industrialists. Nonetheless, there are two main
obstacles to system’s smartness: computational limitations and the infinite number of states to define; Machine
Learning-based algorithms are perfectly suitable to Cognition and Automation, for they allow an automatic –
and accurate – identification of the systems, usable as knowledge for later regulation. In this paper, we discuss
the benefits of Machine Learning, and we present some new avenues of reflection for automatic behavior
correctness identification through space partitioning, and density conceptualization and computation.

1 INTRODUCTION

While the XIXth century is that of industrial pro-
cesses and the beginning of production line, and the
XXth century is characterized by mass production
and assembly line, the actual XXIst century is that
of Robotics, Automation and Hyper-Connectivity. A
great many of projects related to these topics are
current active areas of research: self-driving vehi-
cles1 (Shan and Englot, 2018), domotics, exoskele-
tons, smart robots able to interact with human beings
(Russo, 2020), self-adaptable systems, telecommuni-
cations (IoT, 5G), etc.

Robotics and Automation are getting more and
more accurate and reliable; there are two ways to
achieve great performances: 1- By defining explic-
itly how a system should behave in a certain context
(Expert System paradigm); 2- By letting the system
learn by itself and self-adapt through examples and
observations (Machine Learning paradigm).

The former has been considered so far as the most
reliable, since every possible state the system can en-
ter in is explicitly defined by some experts or users;

a https://orcid.org/0000-0002-6499-3959
1Automated Vehicle AV and Advanced Driver Assis-

tance Systems ADAS as well.

nonetheless, it suffers from a severe limitation: defin-
ing any possible behavior is an unfeasible task, and
thus severely hinders the self-adaptation capability.

A piece of solution comes along a possible usage
of the examples encountered by the system in order to
let it study from them and learn how to react in the al-
ready known contexts. Once more, encountering any
possible situation is merely unfeasible; it is though
greatly easier to cover many more cases through ob-
servations and experience than to list them manually.
Letting the system learn ever more through time al-
lows to hypothetically cover any possible scenario.

It is the Machine Learning ML paradigm; it can
be used to identify, characterize and eventually model
a system, what can serve several purposes, among
which its monitoring and its semi-manual regulation.

In general, the first step of any ML-based identifi-
cation technique is an exploration of the data to point
out what can be. This procedure is often blind – un-
supervised – and is processed to automatically extract
information from the data. The most common Data
Mining task is space-partitioning, also called cluster-
ing, which consists in gathering the data into compact
groups within those they share similarities. This step
can be used to identify the system’s local behaviors,
optimize the processes by gathering similar tasks, etc.
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A great area of interest for clustering could be the
modeling of a system. Indeed, each cluster should
contain similar data and thus can be assumed to rep-
resent a local behavior: a local model can therefore
be built upon it. This is the Multi-Models paradigm.
This decomposition of the feature space, and thus of
the system as a whole, is very suitable to an Automa-
tion and Industry 4.0 application; indeed, the corner-
stone of any network – such as an Industry 4.0 Cyber-
Physical System – is to treat every unit as a part of a
wider process. Clustering could help to identify the
elementary units of an industrial system, either phys-
ically (subprocesses) or theoretically (behaviors).

There exists plenty of clustering methods, but they
do not all perform alike. Their accuracy greatly de-
pends on the studied data; as such, two clustering al-
gorithms can be similar while achieving very differ-
ent results. The remaining question would be to know
how to automatically distinguish a good decomposi-
tion from a poor one. This knowledge can be very im-
portant and relevant for the further steps of the mod-
eling process; indeed, how to expect a good model
when the first step, i.e. clustering, has achieved poor
results, and has gathered (very) dissimilar data?

In this paper, we will present a new way to quan-
tify the compactness of a cluster of data, which is very
useful as an indicator of data homogeneity. In the next
section, we will present both some Machine Learning
models and some Machine Learning-based clustering
methods; in section 3, we will detail both that used
and our homogeneity quantifier. Section 4 will dis-
play some examples of results and how one can in-
terpret them for further understanding of the systems.
Finally, section 5 is the conclusion of this paper.

2 STATE OF THE ART

Whether it is artificial or biological (brain), a Neural
Network NN is somehow a graph where the nodes are
a sort of activator and the branches linking the nodes
to one another are a channel, whose span lets a signal
go through with a high or low amplitude, like a nozzle
would do. By analogy with the brain, the nodes are
called the neurons and the channels are the synapses.

Training an Artificial Neural Network means to
adapt ”the span” of its channels; a weighting coeffi-
cient (called weight) is responsible for this adaptation,
which is modified in such a way it fits the known data.

More generally, the Machine Learning paradigm
exploits data and experience to train a system, and
to teach it how to behave within certain situations.
It relies on several approaches: Multi-Layer Percep-
tron MLP (Rumelhart et al., 1986a), Radial Basis

Function RBF (Broomhead and Lowe, 1988), Multi-
Expert System MES (Thiaw, 2008), Multi-Agent Sys-
tem MAS (Rumelhart et al., 1986b), Support Vector
Machine SVM (Boser et al., 1996), etc. The most
common model in use is the MLP, which is somehow
a representation of the biological brain; they are often
long to train however. Thus, some other models can
be preferred, depending on the context of application.

Though less widespread, another paradigm in use
is the Multi-Expert System MES: it is anew a Neural
Network, with the main difference that the neurons
are local experts. The output of the whole model is a
combination of the outputs of the local models. It is
an extension of the very widespread Expert System
paradigm (Buchanan and Feigenbaum, 1978). The
local experts can take many shapes, from expert sys-
tems to Machine Learning-based models (MLP, RBF,
SVM, etc.). Though still depending on the data and
on the context, MESs are capable of achieving great
accuracy, for the sub-models are trained to correctly
model and represent each of the system’s sub-parts.

As a consequence, to use the MES paradigm,
the feature space must be split upstream. As such,
we need a clustering method to make the framework
ready for this step. There exists several clustering
algorithms, mostly based on Machine Learning; this
avoids to have to rely on human experts charged to
manually describe the system, what can be hard and
time-greedy. Machine Learning lets a (smart) algo-
rithm do the job instead; the inquiry is mainly to know
whether or not one can trust the so-obtained clusters.

Once more, clustering can be driven by some
knowledge – supervised learning – or be totally blind
– unsupervised learning. However, supervised learn-
ing requires some often manual expertise of the data
(or given by an unsupervised algorithm upstream) and
is therefore not suitable to a blind data mining pro-
cedure. Among the existing clustering algorithms,
it is worth mentioning: K-Means (Jain, 2010), Self-
Organizing Maps (Kohonen, 1982), Neural Gas (Mar-
tinetz and Schulten, 1991), Fuzzy Clustering (Dunn,
1973) and Support Vector Machine (Boser et al.,
1996). The first three are unsupervised, and are per-
fectly suitable to a data mining application.

The K-Means iteratively aggregate the data points
around some ”seeds” (random points drawn from the
database), and update them again and again until
satisfying some criterion. They are easy to imple-
ment, but are unable to cluster nonlinearly separable
datasets. The Kernel K-Means use a kernel (a pro-
jection of the data from an Euclidean space into a
non-Euclidean one, called kernel space) to compen-
sate that, but they are very resource-consuming and
are prone to achieve only local optima.
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The Self-Organizing Maps are an ingenious exten-
sion of the K-Means, by linking the seeds with each
other, forming somehow a grid; it is now the whole
grid which is updated to fit any data. They converge
quicker, and by using a nonlinear learning function
(cf. section 3.1), they are able to separate even non-
linear databases, while still operating in an Euclidean
space. A Neural Gas is an evolution of the SOMs, by
allowing a possible pruning of the grid (in case a node
represents no data), or by adding new nodes; the grid
can evolve to better represent the feature space, and its
evolution through time. Neural Gases are thus great
to represent very changing and dynamic systems.

Sometimes, the datasets are not easily distinguish-
able, for they boundaries are blurry: some data can
belong to several clusters at the same time. To take
that into account, one can assign a probability to any
data, to represent how it belongs to each cluster. This
is the Fuzzy paradigm, which is very useful to repre-
sent compact databases, with overlapping groups; it
is nonetheless a more complicated paradigm, which
changes how one deals with a database – any further
work should be fuzzy based. The Fuzzy C-Means are
a fuzzy version of the regular K-Means.

Support Vector Machine is an accurate approach,
which aims at interpolating the best boundaries (lin-
ear for the regular SVM, but can also be a kernel), by
finding the points which are at the same time the out-
ermost of a cluster and the nearest of another cluster.
SVMs are accurate, but are limited to the separation
of two clusters only, and are slightly hard to compute.

When only focusing on unsupervised learning, we
are totally blind and have no clue on the actually ex-
isting classes to be identified; it would therefore be
relevant to use an indicator to quantify the accuracy
and the relevancy of the detected clusters. Indeed,
since there is no available clue on the real class of a
data, it is impossible to say whether the data has been
correctly clustered or not. With a weak quantifier, a
cluster could be considered as good whereas it could
contain several types of data and would be worth be-
ing split. On the other hand, if the data are scattered
due to a lack of instances, a real unique class of data
could be split into several smaller clusters.

To validate a clustering while having no specific
knowledge on the actual classes, one can rely on In-
trinsic Methods, which are unsupervised metrics to
quantify the clustering’s quality. Unfortunately, most
of the metrics of the literature are quite old (70s-
90s), and it is why we want to propose an innovative
new effective and efficient qualifying metric. From
the literature, it is worth mentioning the Dunn In-
dex DI (Dunn, 1974), the Davies-Bouldin Index DB
(Davies and Bouldin, 1979) and the Silhouette Coef-

ficient SC (Rousseeuw, 1987). All three compare the
inter-cluster distances and the intra-cluster distances
to estimate the cluster’s density; they differ from one
another by how they operate this comparison (ratio,
average, min/max, etc.). They all have their draw-
back: the first and the third suffer from a high compu-
tational cost, while the second is not always reliable
(a good value can be retrieved with a poor clustering).

Nowadays, there is no universal indicator of clus-
tering’s correctness, and there will probably never be.
Nonetheless, in this paper, we take our chance and we
propose an indicator based on the compactness of the
clusters to decide if it is relevant for consideration.

3 CLUSTERING AND PROPOSAL

In the following, let D = {xi}i∈[[1,N]] be the database,
with N the total number of points, and let d be a n-
dimension distance, such as the Euclidean distance.
Let also t ∈ N refer to an iteration number, and k ∈
[[1,K]] be a cluster’s issue, with K the total number of
clusters obtained after processing (or expected).

3.1 Clustering Algorithm

Since the purpose of this paper is to propose a com-
pactness measurement, we will limit ourselves to the
Kohonen’s Self-Organizing Maps. Indeed, it is an un-
supervised algorithm, thus suitable for Data Mining
and blind knowledge extraction. It is also efficient
and effective, and achieves good results, while also
being simple and resource-saving.

Self-Organizing Maps SOMs. Somehow an exten-
sion of the K-Means where the clusters are artificially
linked to each other under the shape of a grid. When
a cluster’s mean is updated, so are its connected clus-
ters. A notion of neighborhood is therefore added;
this allows a quicker convergence and the preserva-
tion of the feature space topology. When a new data
x is drawn, the whole grid is updated, neighbor after
neighbor. This update is the strongest for the nearest
cluster’s pattern (node) of x, called the Best Match-
ing Unit and denoted as k∗, and decreases when mov-
ing away from it; this procedure is embodied by the
neighborhood function h defined by (1). The learning
stops after Tmax iterations.

h(t)k (k∗) = exp

(
− d2(k,k∗)

2σ(t)2

)
(1)

where σ(t) is the neighborhood rate at iteration t,
which aims at decreasing the neighborhood impact
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through time, and defined by (2), where σ0 is its initial
value (t = 0).

σ
(t) = σ0 exp

(
− t

Tmax

)
(2)

We also define the learning rate ε(t) at iteration t,
which aims at decreasing the learning of the grid
through time (to avoid oscillations), and is defined by
(3), where ε0 is anew its initial value (t = 0).

ε
(t) = ε0 exp

(
− t

Tmax

)
(3)

Finally, the pattern of cluster k, here represented
by an attraction coefficient called weight w(t)

k at itera-
tion t, is updated by (4).

w(t+1)
k = w(t)

k + ε
(t)×h(t)k (k∗)×

(
w(t)

k − x
)

(4)

Note that we are no longer talking about ”mean”,
but about ”pattern”; the pattern of a cluster (or a node)
is its aggregation center, and often differs from the
mean of its data. It is generally more representative,
since it is updated through the learning procedure (4)
and not by the data themselves.

3.2 Compactness Measurement

An indicator of the correctness of the generated clus-
ters is a very relevant knowledge for more advanced
purposes, such as a MES model. Unfortunately, an ac-
curate and, especially, a relevant measure is not easy
to define, since it strongly depends on the data and on
the context. Indeed, a cluster can be seen as ”correct”
through a weak quantifier, while it is not in reality.

Let C (t)
k and m(t)

k be respectively the kth cluster it-
self and its aggregation center (mean or any pattern)
at iteration t. The clusters are formed following (5),
and their mean is given by (6) (or (4) for the SOMs).

C (t)
k =

{
x ∈D : d(x,m(t)

k ) = min
i∈[[1,K]]

d
(

x,m(t)
i

)}
(5)

m(t)
k =

1∣∣C (t)
k

∣∣ ∑
x∈C (t)

k

x (6)

From now on, we will set aside the notion of it-
eration for readability concerns: the expressions are
more general and do not precise a given timestamp.
When we will refer to an above equation, we will as-
sume this will be true for any t ∈ N.

Average Standard Deviation AvStd. Proposed by
(Rybnik, 2004), the relevancy of a cluster is quanti-
fied by the standard deviation of the data contained
within: the highest, the worst. This technique has
the advantage to diminish the impact of the outliers,
with the condition there are enough data2. The draw-
back is that it is essentially an indicator of data scat-
tering. The standard deviation is computed feature by
feature, and the AvStd measurement is their average.
Let mk be the mean of the kth cluster, defined by (6),
whose data are defined by (5). The standard deviation
σk is defined by (7).

σ
(i)
k =

1∣∣Ck
∣∣ ∑

x∈Ck

(
m(i)

k − x(i)
)2

(7)

where i ∈ [[1,n]] is the current feature, with n the fea-
ture space’s dimension. The AvStd measure of clus-
ter k is finally given by (8).

AvStdk = σk =
1
n

n

∑
i=1

σ
(i)
k (8)

3.3 Proposal: Density Estimation

The idea is to estimate the density of a cluster, and
to use this value as an indicator of compactness, and
therefore of homogeneity: the higher, the better. We
first evaluate its volume, and we multiply its recipro-
cal by the number of points within the cluster.

This is the regular definition of density. The main
difficulty is to define and compute the volume of a
cluster; indeed, what do we call a volume in dimen-
sion n? There are several ways to answer this ques-
tion; one can be the hyper-volume theory.

For instance, in dimension 3, to evaluate the vol-
ume occupied by a set of 3D points, one can search
for the minimal sphere containing all these points,
and use the sphere’s volume as the cluster’s volume.
Theoretically, it should not be a hard task, at least in
dimension 3; but when the dimension increases, the
regular 3D volumes are not sufficient, and from there
appear the benefits of using a hyper-volume, and es-
pecially a hyper-sphere.

The density ρ
(n)
k of cluster k is therefore computed

by dividing the number Nk of data instances contained
within by its volume v(n)s ; the density is given by (9).

ρ
(n)
k =

Nk

v(n)s

(9)

The cluster’s volume can be estimated by search-
ing its outermost points, then interpolating the sur-
face3 containing all these points, and finally estimat-
ing the so-called n-dimensional volume.

2It is the Cesàro mean.
3It would therefore be a hyper-plane of dimension n−1.
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This approach fits the best the data instances rep-
resenting the corresponding cluster, but has two major
drawbacks: 1- It is computationally very demanding;
2- The hyper-volume obtained will be defined only
with the encountered data instances: a data could be-
long to it, but if its features are outer those of the
outermost points of the cluster, this data will not be
considered as belonging to this cluster. This way of
evaluating the volume is too strict for it exactly fits to
the database’s instances only.

To avoid that, one can decrease the strictness of
the hyper-volume’s shape by using a more conven-
tional and flexible hyper-volume, such as a hyper-
cube or a hyper-sphere. The former has the advantage
to cut the n-dimension space into a set of hyper-cubes,
whose union is the space itself; the latter has the ad-
vantage to be more compact and to avoid any possible
clusters’ overlap. For this reason, hyper-spheres seem
more relevant to represent random clusters.

Let r ∈ R+ be the radius of a n-hyper-sphere (i.e.
the distance from its mean to any point on its surface);
its volume v(n)s is given by (10) (Lawrence, 2001).

v(n)s
(
r
)
= rnv(n)s

(
r = 1

)
=

rn.πn/2

Γ
( n

2 +1
) (10)

where Γ is the Gamma function, defined by (11).

∀z ∈
{
C : Re(z)> 0

}
,Γ(z) =

∫ +∞

0
xz−1e−zdx (11)

The last concern is to evaluate the radius r: which
hyper-sphere should be chosen to best fit, contain and
represent a cluster of data?

To answer this question, several constraints might
be considered, particularly the accuracy and the com-
putational complexity. The former is about choos-
ing a cluster’s shape, such as a hyper-volume, which
best includes the data, while having a high general-
ization capability. The latter is about computational
efficiency; indeed, some techniques and algorithms
have a high computational requirement – whether it is
about clustering or about cluster’s compactness esti-
mation – and as such might not be suitable for embed-
ded systems, and especially in an Industry 4.0 context.

The last point severely hinders a perfect interpola-
tion of the cluster’s boundaries, since it generally re-
quires very complex approaches. Therefore, a simpler
and more resource-saving approach should be pre-
ferred in an embedded system context, even though
it might also mean a slight decrease in accuracy.

In a 1-dimension space, the span of a group of data
is defined by the largest distance4 between two of its
points. It is more easily visualization with a line (1D),

4According to a distance: Manhattan, Euclidean, etc.

but the idea remains the same for a higher dimension.
As such, a possible span estimate of a cluster in di-
mension n could be the maximal distance between any
couple of its points, in any dimension.

This idea is quite natural, but suffers from a high
computational cost: it requires the distances between
any couple of data. Let Nk be the number of points
contained within cluster Ck; there is thus Nk(Nk−1)/2
couples and as many distances to be computed. The
complexity is therefore in O(N2

k ), which can be too
high for some embedded system contexts.

For this reason, alternative approaches might be
investigated, with a linear complexity at best. The so-
lution we propose is to take benefit from the cluster’s
statistics. Indeed, instead of comparing any point to
any other, the idea would be to compare them to an
only one reference. The complexity would therefore
be in O(Nk), since there would only be the distances
from any point to this reference to be computed.

This reference must be chosen wisely: we propose
the cluster’s mean (or its pattern for the SOMs), since
it is the best indicator of its attraction capability5. As
a consequence, the cluster’s span is therefore the dou-
ble of the maximal distance between any point and its
mean, as (12), which requires only Nk distances. Only
the mean remains to be computed, but either that has
already been done through the clustering, or it is only
the summation of the data, divided by the cluster’s
cardinal, what has once more a complexity in O(Nk).

sk = 2×max
x∈Ck

{
d(x,mk)

}
(12)

where Ck refers to the cluster’s data, defined by (5),
and mk is the cluster’s mean, defined by (6).

In order to decrease the impact an unique outlier
could have, one can also identify several most distant
points from the mean, and then compute their average.

The two major benefits of this estimation of the
cluster’s span is its computational efficiency, and that
it ensures any of its points is contained within the
so-built hyper-volume (hyper-sphere or hyper-cube).
The drawback is that it is an estimate in excess of the
span, since it takes the (or some) most distant point(s)
from the mean and uses this distance as the half of the
maximal distance separating any couple of points. For
instance, let’s imagine the perfect case where the two
farthest points are aligned with the cluster’s mean in
between. The distance separating the farthest of these
two points from the mean is therefore sk, as defined by
(12), but the distance separating the second point from
the mean is necessarily smaller; otherwise, it would
be this point which would be the farthest one. As a

5A cluster is generally represented either by a learned
pattern (SOMs) or its mean (K-Means).
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consequence, the summation of these two distances is
smaller than the double of sk, meaning that it is an
estimate in excess.

It is not a big deal howsoever, since the boundaries
of a cluster are data driven and are delimited by the
only known data. A cluster could actually be larger in
reality than its data let presume, and for this reason,
a higher estimate of the cluster’s span is not really a
problem, since it leaves more freedom by decreasing
the constraints set by the data.

As the little too large estimate is not a real issue
there, and that the complexity is only linear, we will
use this way to estimate the maximal span of a cluster,
and use this value as the radius of the hyper-sphere
incorporating all the cluster’s data. We will eventually
evaluate the cluster’s density with (9), which indicates
the compactness of the cluster, through a relevant and
computationally efficient indicator.

4 RESULTS

In this section, we introduce two academical datasets,
and apply our density measure ρ (9) on them in or-
der to evaluate its relevancy, and the AvStd σ (8) for
comparison as well. We will also apply both on some
data provided to us by one of our partners involved
in the project HyperCOG (cf. section ”Acknowledge-
ments”) in order to illustrate the applicability of our
density measure to a real Industry 4.0 use-case.

The first example is a set of three 2D strips. While
the strips are clearly different for a human being, they
overlap each other; that has been done in order to
study what happens in such conditions, more repre-
sentative of a real use-case, where data are very likely
to be not so easily distinct and separable.

The second example is a set of n-dimension Gaus-
sian distributions, with randomly generated clusters
in a n-dimension feature space. Both gaps and over-
laps are greatly possible: some clusters are therefore
easily separable, even by a linear clustering approach,
whereas some other are painful, for their respective
boundaries are not clear.

Finally, the real data were provided by a chem-
istry plant specialized in Rare Earth extraction, and
belonging to Solvay Opérations R©, located at 26 Rue
du Chef de Baie, 17000 La Rochelle, France.

We will mainly remain in dimensions 2 and 3 for
representation concerns, but we will also study a set
of 25-dimension Gaussian distributions, to show the
generalization capability of our metric.

The results are gathered within tables, where the
first column is the list of the real distributions (”dbai”)
and of the obtained clusters (”clti”). For each one of

them, some measures have been applied: the ”Den-
sity” tag refers to the density measure (9), ”σα” is
the Standard Deviation along axis α, and ”σ” is the
AvStd measure (8), i.e. the average of the σα. These
measures have been applied to the original groups
(”dbai”) to serve as references. The lines ”Min”,
”Max”, ”Q1”, ”Med”, ”Q3” and ”Mean” are respec-
tively the minimum, maximum, first quantile, median,
third quantile and finally the statistical mean of the
clusters only lines (”clti”).

Please note that the density measure scale is some-
how arbitrary for it depends on the scale of the feature
space – similarly to the Standard Deviation as well.
For a given cluster, its density should be compared to
those of the other clusters; this is the reason why the
above mentioned statistics are represented.

4.1 Strip Distributions

The first example is a set of three strips, generated
following a Gaussian distribution along the x-axis and
an uniform distribution along the y-axis. The purpose
of such a mixture is to create an overlap along the x-
axis, and since the strips are side-by-side along the
x-axis, there is no possible overlap along the y-axis.

Each strip contains 1500 points, centered around
(1,0.5), (1,1.5) and (1,2.5) respectively, with a stan-
dard deviation of 0.175 unit along x-axis; they are
displayed on Figure 1a, and Figure 1b represents the
clustered dataset, projected onto a 3× 3 grid by the
SOMs. The results are gathered within Table 1.

The database has been split into 9 pretty compact
groups, but some overlaps can be observed, especially
in the middle strip. Indeed, the patterns of the nodes
#0, #1 and #2 are on the extreme right of the image,
while the patterns of the nodes #6, #7 and #8 are on
the extreme left. That lets the middle nodes, namely
#3, #4 and #5, attract some points from the two other
strips. These points are the farthest from their respec-
tive node and thus are caught by those in the middle
of the feature space (along the x-axis).

For instance, consider the blue cluster, at the bot-
tom right of Figure 1b and represented by node’s pat-
tern #0: its farthest points, i.e. those at its extreme
left, are too far from it and are caught by the red clus-
ter, at the bottom middle and with node’s pattern #3.

This observation can also be drawn from Table 1.
Indeed, the density of the obtained groups is around
500 units for clusters #0, #1 and #2 (right) and #6, #7
and #8 (left). As we said above, this value has no real
meaning, but if we compare it with those of the three
remaining clusters, #3, #4 and #5, which are around
370, we can notice a great gap in value: there is a
density decrease of 26%. As such, one can understand
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(a) The three distinct but slightly overlapping strips. (b) The three strips projected onto a 3x3 grid.

Figure 1: The overlapping 2D-strips.

Table 1: Density and AvStd of the three 2D-strips.

Strips Density Standard deviation
σx σy σ

dba0 407.44 0.17 0.59 0.38
dba1 388.88 0.18 0.58 0.38
dba2 403.13 0.17 0.58 0.38
clt0 534.39 0.17 0.18 0.17
clt1 463.67 0.16 0.22 0.19
clt2 503.95 0.16 0.19 0.18
clt3 382.01 0.19 0.20 0.19
clt4 378.72 0.19 0.18 0.19
clt5 347.15 0.22 0.20 0.21
clt6 507.68 0.16 0.19 0.18
clt7 539.01 0.17 0.23 0.20
clt8 531.27 0.15 0.15 0.15
Min 347.15 0.15 0.15 0.15
Max 539.01 0.22 0.23 0.21
Q1 382.01 0.16 0.18 0.18

Med 503.95 0.17 0.19 0.19
Q3 531.27 0.19 0.20 0.19

Mean 465.32 0.17 0.19 0.18

there is something weird with these three clusters.
It is what we were talking about in the above para-

graph: clusters #3, #4 and #5 overlap the others, what
makes them less dense. As all these clusters have a
similar shape, they should all have a similar density,
but the overlaps increase the density of the left and
right clusters and decrease that of the middle clusters.

This observation does not manifest itself with the
AvStd: 0.19, 0.19 and 0.21 for clusters #3, #4 and #5,
respectively. These values are slightly consistent with
those of the other clusters. This is due to the fact that
the outermost points, caught by the middle nodes, are
somehow outliers to them; the standard deviation is
little sensitive to outliers, reason of this consistency.

As a conclusion, through this example, the den-
sity measure has an advantage on the AvStd measure,
since it has allowed to point out the three overlapping
clusters, what the AvStd has not been able to do.

4.2 Gaussian Distributions

The second example is a set of Gaussian distributions,
in dimension n. We will start in dimension 3; then we
will move on to the greatly higher dimension 25 to
show the generalization capability of our metric.

4.2.1 Dimension 3

Let us start in dimension 3, with a set of twelve groups
of data, each generated with a Gaussian distribution.
The mean of any cluster is randomly drawn following
an uniform distribution within the feature space, rang-
ing from 0 to 10 units for each of the 3 dimensions.
Each 3D-Gaussian distribution contains 250 data in-
stances, with a standard deviation of 0.5 unit. Even
though this value is not prone to great overlaps, the
random drawing of the groups’ means makes possi-
ble and even probable some overlaps however.

This dataset mainly aims at showing the results
obtained within a 3-dimension feature space, and how
an overlap can be pointed out with our density mea-
sure, while not that easily with the AvStd measure.

The so-generated database is shown on Figure 2a
and the clustered database projected onto a (too small)
grid of size 3× 3 is displayed on Figure 2b. The op-
position of any possible couple of dimensions

(
(x,y),

(x,z) and (y,z)
)

is represented as Figure 3, in order
to give a greater insight on the relations and overlaps
of the clusters, in any dimension. The results of the
quantifying measures are gathered within Table 2.

The first thing is that several Gaussian distribu-
tions have been merged as a unique cluster, which is
not surprising, since the grid is too small (nine nodes
for twelve distributions): nodes #2, #3, #6 and #8 of
Figure 2b are such a merging. For some, this is not a
problem, since the groups are very close in the orig-
inal database: according to Figure 3, we can see that
cluster #3 is perfectly compact, and that its merging is
not a problem at all. But for the three remaining clus-
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(a) The original 3D-Gaussian distributions, as random com-
pact groups of data, but with some local overlaps.

(b) The clustered 3D-Gaussian distributions, projected onto
a too small 3x3 grid, causing the merging or the splitting of
some groups whereas they should not be.

Figure 2: The 3D-Gaussian distributions.

Table 2: Density and AvStd of the twelve 3D-Gaussians.

Gauss Density Standard deviation
σx σy σz σ

dba0 8.36 0.51 0.51 0.52 0.51
dba1 8.12 0.51 0.54 0.55 0.53
dba2 9.89 0.49 0.55 0.48 0.51
dba3 5.75 0.51 0.52 0.51 0.51
dba4 7.19 0.52 0.50 0.51 0.51
dba5 11.87 0.52 0.51 0.53 0.52
dba6 6.97 0.49 0.46 0.52 0.49
dba7 8.90 0.54 0.51 0.50 0.52
dba8 11.79 0.51 0.48 0.49 0.49
dba9 6.56 0.46 0.52 0.52 0.50

dba10 11.75 0.45 0.52 0.49 0.48
dba11 11.83 0.44 0.50 0.48 0.47

clt0 6.56 0.46 0.52 0.52 0.50
clt1 0.82 0.57 0.52 0.52 0.54
clt2 3.79 1.47 0.86 0.52 0.95
clt3 9.70 0.77 0.65 0.65 0.69
clt4 0.03 0.25 1.13 1.16 0.85
clt5 4.72 1.14 0.50 0.50 0.71
clt6 4.65 0.52 1.01 0.71 0.75
clt7 0.31 0.67 0.54 1.18 0.80
clt8 1.67 0.83 0.53 0.50 0.62
Min 0.03 0.25 0.50 0.50 0.50
Max 9.70 1.47 1.13 1.18 0.95
Q1 0.82 0.52 0.52 0.52 0.62

Med 3.79 0.67 0.54 0.52 0.71
Q3 4.72 0.83 0.86 0.71 0.80

Mean 3.58 0.74 0.70 0.70 0.71

ters, #2, #6 and #8, a gap between the original distri-
butions can be observed: the clusters are not compact.

This statement can also be drawn from Table 2:
”clt3” has the highest density (9.70 units, 46% greater
than the second highest value 6.56 units), meaning it

Figure 3: The 3D-Gaussian clusters projected onto any pos-
sible 2-dimension feature set.

is very compact; but this observation does not work
with the AvStd measure, since its value 0.69 is very
close to the mean 0.71. The density indicates here that
this cluster #3 is very well-built, since very compact,
whereas the AvStd says only to us that it is in the av-
erage, neither good nor bad. Nonetheless, our above
qualitative observations validate the density measure.

That is also true for clusters #2, #6 and #8: the
two first have an average density, while the third has a
very poor one. For clusters #2 and #6, that is because
the two original Gaussian distributions are close from
each other, thus their merging is not really dreadful
(Figure 4). Cluster #8 has a very low density how-
ever, justified by a bad overlap with another cluster
(Figure 5). On the contrary, the AvStd measure indi-
cates that its average standard deviation is very good
– equal to the first quantile. This is due to the fact that
cluster #8 has a little overlap, with few data belong-
ing to a very distinct – and distant – cluster. Since the
AvStd measure is lowly affected by outliers, its aver-
age standard deviation is very good, while its density
is not, since that one is severely affected by outliers.

What happens to cluster #8 is also true for cluster
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Figure 4: Zoom on cluster #2: it is not compact since it
gathers two independent, but near, distributions.

#1: it contains some distant outliers (should belong to
cluster #2), what greatly decreases its density.

The lowest density is achieved by cluster #4,
which contains very few data, dispatched within sev-
eral Gaussian distributions. This cluster is more an
outlier itself, what can be verified for its pattern is
nowhere, in between several clusters. Actually, it is
the middle node of the grid, reason why it finds itself
somehow in the middle of the feature space.

Finally, the last observation we can make is about
the two remaining clusters #5 and #7. A zoom on
them and on cluster #8 is displayed on Figure 5.

Indeed, these three clusters have some problems:
as already discussed, cluster #8 contains some out-
liers, what greatly decreases its density; cluster #5
overlaps another Gaussian distribution; and cluster #7
is alike #1: its pattern is nowhere, in the middle of the
figure, catching some points from here and there.

On Figure 5, one can notice that the Gaussian dis-
tribution right next to (the main part of) cluster #5 is
split into 3 sub-parts, one for each cluster among #5,
#7 and #8. Nonetheless, this distribution is very close
to cluster #5, as can be seen on Figure 3: a merging
of these two distributions is therefore not a big deal,
similarly to clusters #2 and #6.

Figure 5: Zoom on clusters #5, #7 and #8 as they all overlap
an independent, but unidentified, group. Note that cluster #7
overlaps 3 different clusters (middle bottom, middle right
and left), what causes it to have a very poor density, even
though its AvStd measure is perfectly acceptable.

All these observations can be understood from Ta-
ble 2 too: the density of clusters #7 and #8 are very
low, which means they are poorly compact. Unfor-
tunately, their AvStd, 0.8 and 0.62 respectively, are

anew in the average and acceptable compared to the
others: they do not really help to identify a possible
problem with these clusters, what their density, 0.31
and 1.67 respectively, did on the contrary.

As a conclusion, all our qualitative observations
have been validated by the density measure, and can
independently be made from them. This was rarely
the case with the AvStd measure, which is less af-
fected by outliers, but also less likely to point out
compactness and homogeneity troubles.

4.2.2 Dimension 25

Let’s now finish with a high dimension feature space.
The database is built following the same methodol-
ogy than that of section 4.2.1: twelve Gaussian distri-
butions, ranging from 0 to 10 in every dimension, a
standard deviation of 0.5 unit, with 250 points each,
but this time in dimension 25 instead of 3.

The purpose of such a database is to illustrate the
generalization capability of our metric, as blind users.
Indeed, as we are in a too highly dimensional feature
space for 2D or 3D representation, we will only give
quantitative avenues of reflection, without a real pos-
sibility to directly validate them through qualitative
observations. This represents a real blind – unsuper-
vised – evaluation for a Machine Learning application
within an Industry 4.0 context for instance.

Once more, the results obtained after clustering
are gathered within Table 3; ”None” entry represents
the absence of value, in case of the corresponding
cluster is empty (and might be pruned).

This example is interesting for is works on a per-
fect clustering of the database: any of the twelve
Gaussian distributions has been perfectly identified
and is represented by a unique node of the SOM’s
4× 4 grid. One can be convinced of this by compar-
ing the ”dba” lines to the ”clt” lines: there is a perfect
correspondence for each, e.g. ”dba0” is ”clt4”.

So, what can we learn from this table? The mean
standard deviation, i.e. the AvStd measure, is consis-
tent within the twelve clusters, and is approximately
equal to 0.5 (which is coherent when compared to the
standard deviation used to generate the Gaussian dis-
tributions), thus the clusters seem coherent and com-
pact. This observation is also slightly true based on
the density measure, which is quite consistent too,
varying from 85.24 to 102.70 – an increase of 20.5 %.

The effective difference in the densities can be ex-
plained by the span of the clusters: even though they
share a very similar standard deviation, their outer-
most points are not all as distant from their respective
cluster’s mean. The density measure is sensitive to
that, what explains the small but real variation. As
such, in order to correctly use this measure, only very
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Table 3: Density and AvStd of the twelve 25D-Gaussians.

Gauss25 Density Standard deviation
min mean max

dba0 102.70 0.46 0.50 0.53
dba1 97.07 0.45 0.49 0.52
dba2 95.98 0.47 0.50 0.54
dba3 92.12 0.47 0.50 0.54
dba4 85.24 0.46 0.50 0.56
dba5 99.00 0.46 0.50 0.54
dba6 99.28 0.47 0.50 0.55
dba7 94.34 0.46 0.50 0.55
dba8 94.68 0.47 0.50 0.54
dba9 97.75 0.43 0.50 0.54

dba10 88.45 0.45 0.49 0.53
dba11 94.64 0.47 0.50 0.56

clt0 94.34 0.46 0.50 0.55
clt1 95.98 0.47 0.50 0.54
clt2 94.64 0.47 0.50 0.56
clt3 99.28 0.47 0.50 0.55
clt4 102.70 0.46 0.50 0.53
clt5 None None None None
clt6 92.12 0.47 0.50 0.54
clt7 94.68 0.47 0.50 0.54
clt8 None None None None
clt9 None None None None

clt10 None None None None
clt11 88.45 0.45 0.49 0.53
clt12 99.00 0.46 0.50 0.54
clt13 97.75 0.43 0.50 0.54
clt14 97.07 0.45 0.49 0.52
clt15 85.24 0.46 0.50 0.56
Min 85.24 0.43 0.49 0.52
Max 102.70 0.47 0.50 0.56
Q1 93.78 0.46 0.50 0.54

Med 95.33 0.46 0.50 0.54
Q3 98.06 0.47 0.50 0.55

Mean 95.10 0.46 0.50 0.54

noticeable differences should be considered, that is to
mean higher than 20 % from min to max for instance.

Nonetheless, this variation could indicate a not so
compact cluster, which might be worth being split for
a higher homogeneity anyway. Unfortunately, this
conclusion strongly depends on the context and on the
data themselves: there is no real absolute answer, es-
pecially when using an unsupervised paradigm.

This example shows that the density measure is as
reliable as the AvStd in high dimensions, at least for
a perfect clustering. Added to the previous observa-
tions, it seems that our density measure is reliable to
both point out issuing clusters and qualify compact
clusters, in every dimension.

4.3 Industrial Data: Solvay Opérations

Our last example is a real use-case, in order to validate
the relevancy of our metric on real Industry 4.0 data.
For confidentiality concerns, we won’t explain in de-
tails how the Solvay Opérations R©’s plant works; we

will remain general, what is not a big deal, since we
want to study automatic knowledge extraction from
unsupervised Machine Learning-based clustering.

We let just the reader know that the plant fea-
tures hundreds of sensors, for many purposes; accord-
ing to the Solvay’s experts, some are more relevant
than the others. Indeed, during the production proce-
dure, some steps are essential, and a small local dis-
turbance can have a huge impact and totally disturb
the whole system. In the following, for representa-
tiveness concerns, only some of these most important
sensors are depicted. As such, the feature space is
the n-dimension Euclidean space represented by the
n most important sensors. We will limit ourselves to
only 3 sensors to be able to represent the results.

The raw 3D sensor’s data are represented on Fig-
ure 6a, and the clustered data on Figure 6b. The re-
sults are gathered within Table 4, and Figure 7 shows
any couple of dimensions to give a clearer insight on
the relation between the data and the clusters as well.

Table 4: Density and AvStd of the Solvay’s data.

Solvay Den. Standard deviation
σx σy σz σ

dba 4701 0.17 0.19 0.24 0.2
clt0 6290 0.01 0.01 0.10 0.04
clt1 2.7 0.03 0.00 0.05 0.03
clt2 None None None None None
clt3 1118 0.14 0.08 0.11 0.11
clt4 4.9 0.02 0.01 0.00 0.01
clt5 1.6 0.02 0.01 0.12 0.05
clt6 2948 0.04 0.10 0.11 0.08
clt7 137 0.03 0.02 0.05 0.03
clt8 2840 0.06 0.05 0.13 0.08
Min 1.6 0.01 0.00 0.00 0.01
Max 6290 0.14 0.10 0.13 0.11
Q1 4.3 0.02 0.01 0.05 0.03

Med 211 0.03 0.02 0.11 0.04
Q3 1576 0.04 0.06 0.11 0.08

Mean 1348 0.04 0.03 0.08 0.05

On Figure 6a and Figure 7, we can distinguish sev-
eral compact groups of data, from at least two and up
to perhaps four or five. This incertitude we have in
counting the clusters, even as human beings, is the
exact reason why a density, or similar, measure is es-
sential to understand the structure of the data. Indeed,
there are only 3 dimensions, and that is enough to dis-
seminate a doubt; imagine a hundred of dimensions:
for a human being, and even worse for a machine,
identifying the number of clusters is an impossible
task without an accurate and reliable criterion!

Howsoever, without taking into account the actu-
ally found clusters, Figure 7 displays 2 clusters for ”x
vs y”, 2 or 3 for ”x vs z”, and 2 or 3 too for ”y vs z”.
On Figure 6a, we can see 3, maybe 4, clusters: one
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(a) The original 3D Solvay’s data. (b) The 3D Solvay’s data projected onto a 3x3 grid.

Figure 6: Example of application on a real Industry 4.0 use-case: the Solvay’s data.

Figure 7: The Solvay’s clusters projected onto any possible
2-dimension feature set.

along Y-axis, one or two along Z-axis, and another
one along Y-axis anew, but shifted along X-axis.

The clustering method used is a 3× 3 SOM, as
depicted on Figure 6b and Figure 7; five nodes seem
very large. Does this mean there are indeed 5 clusters
in the data? Let’s check this assumption out with the
results of Table 4.

Among all the nodes, cluster #2 is empty, and #1,
#4 and #5 have a poor density (they contain very few
data actually). The five remaining clusters, #0, #3, #6,
#7 and #8, have a small AvStd and a high density, ex-
cept #7, which is compact but contains some outliers.

Indeed, on Figure 6b and Figure 7, we can see
that these clusters are actually compact and accept-
able, except #3, which spans across clusters #0 and
#6. This cluster should be split, and its two parts
should be merged with these two clusters. This ob-
servation can also be drawn from Table 4: cluster #3
has the lowest density among the four valid, i.e. #0,
#3, #6 and #8, with a very noticeable gap, from 6290
units for the most dense to 1118 units for it – a de-
crease of 82%. Moreover, cluster #3 has the highest
AvStd, which means that its outermost data instances
are not outliers, but are real part of the cluster: that is
because it spans across two clusters.

Therefore, if we couple a low density with a high
AvStd, we can understand that cluster #3 has some

issues, and should be split to gain in homogeneity!
Cluster #0 is the only one to have a high density

and a very low AvStd, and can be trusted as represen-
tative of a local behavior of the system. Clusters #6
and #8 have a good density, but a quite high AvStd,
which means they are not real outliers, but they are
more likely spanning across several sub-regions of the
feature space: they might be worth being split!

As a conclusion, we have applied our density met-
ric on Industry 4.0 real data, and we have been able to
identify from 1 (sure) to 3 (very likely) and perhaps
4 (low probability) local behaviors. This short exam-
ple illustrates the potential of the density metric in a
real situation, that is to point out issuing clusters, es-
pecially when used alongside the AvStd measure (to
compensate its high sensitiveness to outliers).

Future Work. Now this metric is validated and
trustful, the next step of our work would be to apply
it on very wider databases related to Industry 4.0, in
order to extract knowledge by using data mining ap-
proaches, such as local behavior identification. Once
done, the next step is to train a MES network, whose
neurons are local experts trained upon the data within
the identified local behaviors, and validated by a com-
pactness metric.

5 CONCLUSION

In this paper, we have introduced a compactness
density-based measure to quantify and validate the
quality of a n-dimension cluster.

This measure is computationally efficient, since it
computes the cluster’s mean, searches for the farthest
point from it, and doubles this distance to obtain an
estimate of the cluster’s span. This value is then used
as the radius of a n-hyper-sphere, which is built to
contain all the data of the cluster, and to provide a n-
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dimension boundaries estimate. Its volume is then as-
similated to that of the cluster. The density measure is
eventually defined as the ratio of the number of points
contained within by that hyper-sphere’s volume.

We then compared and validated this measure to
a reference one, namely the Average Standard Devi-
ation AvStd. We applied both on several academical
datasets, before and after clustering, in order to show
the relevancy and the accuracy of both metrics. We
also studied the data provided by a real Industry 4.0
use-case – Solvay Opérations R©’s plant.

While the AvStd showed some good results, there
are several cases where it failed to identify an underly-
ing issue within the clusters, such as an almost empty
cluster or a small but real overlap of several clusters.

On the contrary, the density measure displayed
good results in both identifying clustering issues and
in indicating a cluster is compact and homogeneous.

Nonetheless, we also showed that the density mea-
sure is sensitive to outliers; that can be a problem for
some applications. This measure is therefore not per-
fect, and has its drawbacks. To better understand the
data, especially in a data mining context, one could
use both (or more) measures, namely AvStd and our
density measure, to qualify the clusters and evaluate
their compactness, how representative they are, etc.

Indeed, the AvStd measure indicates if a group of
data is centered around its mean, and is lowly sensi-
tive to outliers; the density is the reverse, since it in-
dicates if the group is compact, but is affected by out-
liers. A high density with a small AvStd means a very
compact group. A low density with a high AvStd indi-
cates scattered data. A high density with a high AvStd
means there are few outliers, but the data are scattered
nonetheless: it indicates a cluster is spanning across
several classes and thus not homogeneous.

Perhaps the best way to take benefit from our met-
ric is to use it alongside some others, and to merge
their respective outputs. This trend is often true, since
there is no perfect method, especially with an unsu-
pervised Machine Learning-based approach like ours.
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