
Transformer-based Language Models for Semantic Search and Mobile
Applications Retrieval

João Coelho1,4, António Neto1,2, Miguel Tavares1,5 a, Carlos Coutinho1,2,6 b, João Oliveira2,6,7 c,
Ricardo Ribeiro2,3 d and Fernando Batista2,3 e

1Caixa Mágica Software, Lisboa, Portugal
2ISCTE - Instituto Universitário de Lisboa, Av. das Forças Armadas, Portugal

3INESC-ID Lisboa, Portugal
4Instituto Superior Técnico, Lisboa, Portugal

5ULHT - Universidade Lusófona de Humanidades e Tecnologias, Portugal
6Information Sciences, Technologies and Architecture Research Center (ISTAR-IUL), Lisboa, Portugal

7Instituto de Telecomunicações (IT), Lisboa, Portugal

Keywords: Semantic Search, Word Embeddings, ElasticSearch, Mobile Applications, Transformer-based Models.

Abstract: Search engines are being extensively used by Mobile App Stores, where millions of users world-wide use
them every day. However, some stores still resort to simple lexical-based search engines, despite the recent
advances in Machine Learning, Information Retrieval, and Natural Language Processing, which allow for
richer semantic strategies. This work proposes an approach for semantic search of mobile applications that
relies on transformer-based language models, fine-tuned with the existing textual information about known
mobile applications. Our approach relies solely on the application name and on the unstructured textual
information contained in its description. A dataset of about 500 thousand mobile apps was extended in the
scope of this work with a test set, and all the available textual data was used to fine-tune our neural language
models. We have evaluated our models using a public dataset that includes information about 43 thousand
applications, and 56 manually annotated non-exact queries. The results show that our model surpasses the
performance of all the other retrieval strategies reported in the literature. Tests with users have confirmed the
performance of our semantic search approach, when compared with an existing deployed solution.

1 INTRODUCTION

The penetration of mobile devices in society has led
most companies to see them as indispensable means
for being in close contact with their customers. Ac-
cording to (Iqbal, 2020), Google Play Store has 2.6
million mobile apps available, Apple’s iOS App Store
has 1.85 million, and Aptoide has about 1 million1,
which creates an extremely tough competition be-
tween apps. In terms of app downloads, in 2019 there
were 204 billion app downloads, a number that has

a https://orcid.org/0000-0001-6346-0248
b https://orcid.org/0000-0001-8065-1898
c https://orcid.org/0000-0003-4654-0881
d https://orcid.org/0000-0002-2058-693X
e https://orcid.org/0000-0002-1075-0177
1https://pt.aptoide.com/company/about-us

been increasing over the years. However, many of
these downloads consist of multiple attempts to find
the right app. In fact, many downloaded apps are
never used, and in 77% of cases, apps are not used
again within 72 hours of installation. This shows
a big misalignment between the supply of apps by
the app stores (distribution services) and the demand
for them by the consumers (discovery). Further-
more, around 2019, 52% of apps were discovered
by word-of-mouth between acquaintances, friends or
family, and only 40% were discovered by searching
app stores. These inefficiencies make app discovery
and distribution a considerable and extremely relevant
challenge, since they take place in a market of massive
penetration in societies and seriously affect the rela-
tionship between companies and consumers.

The Aptoide’s current search engine solution is

Coelho, J., Neto, A., Tavares, M., Coutinho, C., Oliveira, J., Ribeiro, R. and Batista, F.
Transformer-based Language Models for Semantic Search and Mobile Applications Retrieval.
DOI: 10.5220/0010657300003064
In Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2021) - Volume 1: KDIR, pages 225-232
ISBN: 978-989-758-533-3; ISSN: 2184-3228
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

225

purely lexical, considering only applications names
and descriptions as bags-of-words when searching.
As such, the objective of this work is to assess
whether or not a semantic search engine improves
the results achieved by such a model, in this spe-
cific scenario. Hence, we describe a dataset contain-
ing information about mobile applications, which was
previously built by this research team from scratch,
and was extended with a test set in the scope of the
work here presented. The textual data contained in
this dataset was used to fine-tune a neural language
model, which is then used in a bi-encoder architec-
ture to independently generate representations for ap-
plications and user queries. We compare our model
to an adaptation of Aptoide’s current solution, by us-
ing the public dataset crawled by (Park et al., 2015),
which includes information about 43,041 mobile ap-
plications and 56 non-exact queries previously anno-
tated. Then, we have built a test platform on top of
ElasticSearch, where users could rate which model
returned the most relevant applications. From these
tests, we were also able to extract relevancy judge-
ments for approximately 150 unique queries, which
were used to extend our dataset with a test set, to be
used in future evaluations. Both the automatic and
the user evaluations show that our semantic approach
largely surpasses the existing lexical model.

The outputs of this work, i.e. the dataset and the
model, will be made available2. This was developed
in the scope of the AppRecommender project, which
has as its strategic objective to investigate and develop
technologies capable of offering the right app, to the
right customer, at the right time. Both the dataset and
the model will be publicly available for reproducible
purposes.

This paper is organized as follows. Section 2
presents an overview of the related literature, focus-
ing on existing work on semantic retrieval. Section 3
presents the data used in our experiments, which con-
sists of the data that we have collected to train or
fine-tune our models, and also the dataset that we
have used for evaluation. Section 4 describes our
set of approaches. Section 5 describes the conducted
experiments and the achieved results. Finally, Sec-
tion 6 summarizes the most relevant contributions,
and presents the future work.

2 RELATED WORK

Commercial app stores, like Aptoide, are, in general,
based on lexical similarity and use search engines

2https://apprecommender.caixamagica.pt/resources/

built on top of Lucene3, such as Solr4, or Elastic-
Search5.

Classic approaches to improve search results
has focused on well-know natural language pre-
processing steps (stemming and/or lemmatization)
followed by a semantic layer that ranged from the use
of synonyms or hyponyms (Datta et al., 2012; Datta
et al., 2013) to topic models (Blei, 2012) based on
the information available (e.g., titles and descriptions
of the applications, reviews, etc.) (Zhuo et al., 2015;
Park et al., 2015; Park et al., 2016; Ribeiro et al.,
2020).

Neural-based word representations have achieved
a considerable success in spoken and written language
processing (Ghannay et al., 2016), as well as in in-
formation retrieval (Yao et al., 2020; Samarawick-
rama et al., 2017). (Yates et al., 2021) survey meth-
ods for text ranking (i.e., score a collection of tex-
tual documents with respect to a query) leveraging
neural language models. They distinguish between
dual-encoders and cross-encoders. The former en-
code queries and documents independently, perform-
ing better temporally, while the latter encode concate-
nations of queries and documents, generally obtain-
ing better results, but not suitable to search over large
collections, given its computational cost. Multiple
models can be used as the encoders, for instance In-
ferSent (Conneau et al., 2017) leverages LSTM-based
models, whilst, more recently, transformer-based
models have been adopted (Reimers and Gurevych,
2019).

3 MOBILE APPLICATIONS DATA

In this section we characterize the data we used in
this work, which consists in two datasets with infor-
mation about mobile applications. The first one was
previously built by us, which we use to fine-tune our
language models. The other is a public dataset which
we use for evaluation.

3.1 Dataset for Fine-tuning Neural
Language Models

The dataset used in the scope of this work was built
from scratch, by scrapping the Aptoide’s API. A first
endpoint was used to extract general data about appli-
cations, including the title, Aptoide identifier, added
date, update date, and a set of statistics. The Aptoide

3https://lucene.apache.org/
4https://lucene.apache.org/solr/
5https://www.elastic.co/

KDIR 2021 - 13th International Conference on Knowledge Discovery and Information Retrieval

226

identifier was then used to query two other endpoints
for application-specific information. The second end-
point contains information regarding the developer,
required permissions and the description. The third
endpoint contains information about the categories
associated with the application.

The first endpoint returned information about 499
thousand applications. For those, the second and
third endpoints were queried, returning information
for 436,969 of them. The observed discrepancy in
values occurred, not only due to missing information
on the API, but also due to privatization and/or dis-
continuation of applications.

The relevancy statistics in our dataset include the
number of downloads, the average rating, and the total
number of ratings of each of application.

This dataset contains information about applica-
tions, of which the textual data will be used to fine-
tune neural language models. However, we don’t
have access to any user queries and/or associated rel-
evant applications. As such, we used the dataset char-
acterized in the next subsection for our evaluations.
Besides, during user tests described in Section 5.2,
we were able to further extend our dataset with 147
queries, each associated with 5.2 relevant applica-
tions, in average.

While all applications in our dataset provide use-
ful textual information to fine-tune our language mod-
els, after preliminary analysis we came to the con-
clusion that the majority of the applications in the
dataset were not of much value in terms of relevancy.
This is supported by the high number of applications
with very few downloads, high number of applica-
tions without recent updates, and high number of ap-
plications with few and low ratings.

As such, when considering which applications to
index for search, we consider a subset built based on
four heuristics:

1. The top-5000 downloaded applications which
were updated in the last 2 years;

2. The top-5000 downloaded applications which
were updated in the last 6 months;

3. The top-1000 rated applications, with at least 200
rates and 1000 downloads;

4. The top-750 with more rates, added in the last 3
months, with at least 1000 downloads.

The objective was to consider applications that are
widely used, not leaving out recent ones that are be-
ing updated constantly. The applications were also
filtered to consider only those with descriptions in
English. Since the information about the language
is not included in our dataset, we used PyCLD3

(Python bindings for Google’s CLD3 language detec-
tion model) to automatically detect it.

Overall, 5,819 relevant applications were consid-
ered for indexation, which are the applications upon
which user test searches will be conducted on.

3.2 Dataset for Evaluation

While the dataset described in the previous section
contains substantial information on a considerable
number of mobile applications, there are no labeled
user queries which would allow us for an evaluation.
As such, we resort to a public dataset scrapped in the
scope of other work in the same subject (Park et al.,
2015).

This dataset includes information about 43,041
mobile applications, including relevant textual in-
formation such as name, description and category.
The dataset also features 56 non-exact queries (i.e.,
queries with a meaningful semantic context, instead
of an application’s name). For each one of the queries,
81 applications are labelled with a relevancy score of
0 (not relevant), 1 (somewhat relevant), or 2 (very rel-
evant). These scores were manually annotated.

The authors of the dataset evaluated their ap-
proaches by re-ranking the 81 labeled applications for
each query.

4 MODELS FOR MOBILE APPS
SEARCH ENGINES

As previously stated, one of the objectives of this
work is to compare lexical to semantic search in the
scope of mobile applications. Hence, in this section
we start by describing the lexical and semantic models
used for retrieval, also presenting the retrieval setup,
which was built on top of ElasticSearch for both mod-
els.

4.1 Lexical Model

The lexical model is an adaptation of Aptoide’s cur-
rent solution, considering the name and description
of an application as bags-of-words, and using Elastic-
Search for indexing such information. Upon a query
q, all indexed applications are scored, and the top-N
are retrieved. The Lucene Scoring Function is used
to compute the scores over the chosen fields (name
and/or description) for an application a, combining
them if more than one:

score(q,a) = ∑
f∈a

LSF(q, f) , (1)

Transformer-based Language Models for Semantic Search and Mobile Applications Retrieval

227

Figure 1: General architecture of a Bi-Encoder (left) and a
Cross-Encoder (right), using BERT (Devlin et al., 2019) as
the language model.

LSF(q, f) =
1√

∑t∈q idf(t)2
× |q∩ f |
|q|

×∑
t∈q

(
tf(t, f) · idf(t)2 ·w f√

| f |

)
, (2)

where f are application a’s textual fields (in our case,
name and/or description), w f is a boost factor for field
f , t are the query’s tokens, tf is the term-frequency,
and idf is the inverse document frequency.

4.2 Semantic Model

Our semantic model is built on top of RoBERTa (Liu
et al., 2019). The fine-tuning procedure is similar
to the one we used previously for this task (Coelho
et al., 2021), but the access to better hardware (namely
GPUs) made it possible to train with larger batch
sizes. In this subsection we address the general ar-
chitecture of the model, the training procedure, and
how it was used to generate representations.

4.2.1 The Bi-encoder Architecture

Current state-of-the-art neural models for retrieval
leverage transformer-based encoders as either cross-
encoders or the bi-encoders (Yates et al., 2021).
Cross-encoders (Figure 16, right) receive as input a
concatenation of sentences, generating a representa-
tion for both through the [CLS] token, for example.
This representation can be used to compute a score,
for instance by feeding it to a linear layer with sig-
moid activation. Conversely, bi-encoders (Figure 1,
left) encode sentences separately, which allows the in-
dexation of individual representations, through meth-
ods that support fast execution of maximum inner
product searches.

6Image from: https://www.sbert.net/examples/applica-
tions/cross-encoder/README.html

Cross-encoders usually achieve higher perfor-
mances, due to better capturing two-sentence interac-
tions. However, the superior computational efficiency
of bi-encoders make them more suitable for a mobile
app search engine, as response time is a critical factor
in this specific context.

As such, we explore the usage of a fine-tuned neu-
ral language model as a bi-encoder in the context of a
mobile application search engine, since good results
have been reported in other retrieval contexts (Khat-
tab and Zaharia, 2020; Qu et al., 2020; Reimers and
Gurevych, 2019), and bi-encoders make it possible to
pre-compute and index representations for the appli-
cation’s textual data.

4.2.2 Fine-tuning Models

To fine-tune the model, we leverage the textual data
in our scrapped dataset, which includes the name and
description for approximately 499 thousand applica-
tions. We start by fine-tuning RoBERTabase (Liu et al.,
2019) on a masked language modelling task, using the
Huggingface Transformers library (Wolf et al., 2020).
We split our textual data into train and test sets (90%
and 10%, respectively). The text in the train set is pro-
cessed into sets of 512 tokens by RoBERTa’s original
tokenizer, with a masking probability of 15%. The
model was trained during 1 epoch with a batch size
of 4, using a cross-entropy loss function. The test
set was used to evaluate the fine-tuned model, which
achieved a perplexity of 4.54 on a mask prediction
task.

Other authors have noted that using out-of-the-
box BERT-like models (or even fine-tuned versions
on masked language model tasks) is not optimal for
downstream similarity tasks, often achieving subpar
results (Reimers and Gurevych, 2019). As such, we
consider further fine-tuning the model on a semantic
similarity task. However, our dataset does not con-
tain any labeled queries, which would be useful for
this sort of training. Hence, we consider synthesizing
queries by concatenating an application’s name with
its category. This also extends the applications with
semantic context (e.g., from ”facebook” to ”facebook
social”), which is useful for the task in hand.

For training, each query is associated with the de-
scription of the application. This way, we build a col-
lection of (query, relevant description) pairs.

Each training batch contained 10 pairs. Batch-
wise negative pairing is applied, by using the relevant
description of a given query as negatives for the oth-
ers, increasing the effective training data.

The model is used to generate representations for
the query and the descriptions, and scores are ob-
tained from the cosine similarity between the repre-

KDIR 2021 - 13th International Conference on Knowledge Discovery and Information Retrieval

228

Index

A1 M[A1, n] M[A1, d]

...

Ak M[Ak, n] M[Ak, d]

Q

RoBERTapp-v2

Cosine-Similarity
(Equation 3)

M[Q]

{A1: score(Q, A1), ... Ak: score(Q, Ak)}

Figure 2: General overview of the search procedure.
RoBERTapp-v2 is used to generate representations for the
query (Q), and for the applications name and description
(Ai,n, Ai,d). All applications are scored using Equation 3.

sentations of the query and the descriptions. The ob-
jective is to minimize the negative log-likelihood of
softmaxed scores. The whole textual dataset is used to
train, except for 500 random applications which were
used to evaluate. For those applications, queries were
built as previously described, and a description cor-
pus was built from their descriptions. The model was
used as a dual-encoder to rank the 500 descriptions
for each query. Given that each query only has one
relevant description, we computed the Precision@1,
the Recall@10, and the MRR@10. The results were
0.8929, 0.9809, and 0.9222, respectively.

The final model will be henceforth referred to as
RoBERTapp-v2. The major difference in between
this model and our previous version, RoBERTapp-v1
(Coelho et al., 2021) is the usage of larger batch sizes.

4.2.3 Generation of Representations and
Retrieval

Given a sentence as input, the RoBERTapp-v2 is used
to generate representations through mean pooling of
the word token embeddings of the last hidden-layer.

For all the applications in the subset to be indexed
of our dataset (see Section 3.1), we generate represen-
tations for their name and description, indexing them
with ElasticSearch.

Upon a query, all the applications are scored and
the top-N scoring applications are retrieved. The scor-
ing procedure is depicted in Figure 2. Computing the
scores leverages ElasticSearch’s built-in cosine simi-
larity function. Representations for queries are gen-

erated at run-time, using the chosen model. Given a
query q and an application a, the score is computed as
follows:

score(q,a) = αsim(M(q),M(an))

+βsim(M(q),M(ad)) , (3)

where M is the model encoding function, an is an ap-
plication’s name, ad is an application’s description,
sim is the cosine similarity function, and α, β are
combination weights. Note that M(an) and M(ad) are
already indexed, only M(q) is generated at run-time.

5 EVALUATION AND RESULTS

In this section, we present the results for the base eval-
uation, which was conducted on top of the dataset
scrapped by Park et al., described in Section 3.2.
Then, we introduce our platform for user tests, built
on top of ElasticSearch, considering the subset of ap-
plications for indexation of our dataset (Section 3.1).

5.1 Automatic Evaluation

As previously mentioned, we use the evaluation
dataset described in Section 3.2 before analysing the
results of the models on our user tests. We use the
Normalized Discounted Cumulative Gain as the eval-
uation metric, which takes the full order of the item
list and graded relevance scores into account:

DCG@k = R(1)+
k

∑
i=2

R(i)
log2(i)

, (4)

NDCG@k =
DCG@k
IDCG@k

, (5)

where R(i) is a function that returns the relevance
value of the passage at rank i. The index of the pas-
sage up to which the ranking is considered is repre-
sented by k. The DCG is normalized with the ideal
DCG (IDCG), i.e., the DCG of a perfectly sorted re-
sult. Table 1 presents the comparison between our
previous models and our new fine-tuned RoBERTapp-
v2.

Previous work by (Park et al., 2015) had evalu-
ated the results of Google Play and LBDM on this
dataset. Also, lexical models similar to ours (ex-
tended with topic information) were also tested in this
dataset (Ribeiro et al., 2020), using a solution based
on BM25F and another with ElasticSearch.

Our previous work (Coelho et al., 2021) had
shown that both our first versions of semantic mod-
els surpassed previous approaches. From those mod-
els, FT2 is a fastText (Bojanowski et al., 2017) model

Transformer-based Language Models for Semantic Search and Mobile Applications Retrieval

229

Table 1: NDCG@{3,5,10,25} for multiple models.

Model NDCG@3 NDCG@5 NDCG@10 NDCG@25

(Park et al., 2015) LBDM 0.584 0.563 0.543 0.565
(Park et al., 2015) Google Play 0.589 0.575 0.568 0.566
(Ribeiro et al., 2020) BM25F 0.574 0.542 0.527 0.544
(Ribeiro et al., 2020) ElasticSearch 0.552 0.532 0.504 0.519
(Coelho et al., 2021) FT2 0.587 0.589 0.582 0.600
(Coelho et al., 2021) RoBERTapp-V1 0.616 0.587 0.580 0.605

RoBERTapp-V2 0.633 0.610 0.601 0.620

fine-tuned on our textual data, and RoBERTapp-v1 is
the first version of the semantic model described in
this document, trained in a similar fashion but with
smaller batches.

The semantic model here discussed, RoBERTapp-
V2, achieved the best results so far for
NDCG@{3,5,10,25} surpassing both RoBERTapp
and FT2.

5.2 User Tests

The results shown in the previous section are al-
ready encouraging for the performance of semantic
models in the scope of mobile applications retrieval.
Nonetheless, we argue that testing with users is an
important aspect for this type of system, since, ulti-
mately, user satisfaction dictates the success of mo-
bile application stores.

As such, we conduct user tests with two objectives
in mind. First, to access whether users prefer a lexical
model (alike Aptoide’s current solution), or a seman-
tic model. Then, we want to be able to extract queries
and relevancy judgements from users, so as to extend
our dataset with a test set. Hence, a platform was de-
veloped on top of ElasticSearch, serving a lexical and
a semantic model.

For the tests, we gathered 48 users from diverse
backgrounds, all comfortable with writing and read-
ing English text. The tests were performed by the
users autonomously without any help or supervision
from us, so as to minimize any bias.

The retrieval setup of the tests is as follows: given
a query, up to 10 applications are retrieved by each
model. The applications are then shuffled in a ran-
dom order. The users have a checkbox where they can
mark which applications are, in their personal opin-
ion, relevant to the query.

We divided the tests in two phases. In the first
one, the users would be shown retrieved applications
for fixed queries. The objective of this part was to
identify if the level of discrepancy between user’s an-
swers. For the second part, the same principles apply
but users could input free queries to the system. The

objective of this part was to gather as much queries as
possible, so as to build the final test set.

5.2.1 Fixed Queries

In the first part, users were asked to deliver relevancy
judgements for six fixed queries. We needed queries
that could be useful for testing the semantic capabili-
ties of a semantic search engine (hence, searching for
explicit application names was considered not rele-
vant). Also, although the platform allows the users to
retrieve more information over each application, we
wanted the results returned by those queries to be as
widely-recognized as possible. As such, the follow-
ing queries were chosen:

• social networks;

• guitar playing;

• fitness;

• read comics;

• brain challenge;

• food at home.

5.2.2 Free Queries

In the second part, the users could input queries of
their choosing, evaluating the relevancy of the re-
turned applications as previously. Here, the base
number of free queries was 4, which yields a total of
10 labeled applications per user. However, in the end
of the test, the users were prompted to answer more
free queries, if they felt like doing so.

5.2.3 Results

After all the users answered, we proceeded to analyze
the gathered data. The average time of completion
was 10 minutes and 30 seconds. All users were from
Portugal. 83% of the users fully completed the test
(i.e., answered to at least 10 queries). From those,
20% did more free queries. Overall, the users an-
swered to 471 queries in total.

KDIR 2021 - 13th International Conference on Knowledge Discovery and Information Retrieval

230

As for the models, the major conclusion is that the
users favored our semantic model. Table 2 presents
the overall votes each model was given, i.e., the to-
tal number of relevant apps each model retrieved, and
the approximate percentage this number represents,
as deemed by the users:

Table 2: Results of the User Tests, comparing the total num-
ber of relevant apps retrieved for the semantic and the lexi-
cal mode, as well as the percentage value.

Model Total Relevant Apps Percentage

Lexical 1243 26%
Semantic 1828 39%

This roughly translates that, in average, for 10 re-
trieved apps, a lexical model yields 2.6 relevant ones,
while our semantic model yields 3.9. Given that our
models, besides being able to retrieve applications
given a semantic context, can also retrieve applica-
tions by their exact names, we take the above result
difference as a significant upgrade.

Analyzing the answers to the fixed queries, we
were able to identify that user answers were very
close to each other, with an average answer similarity
of 75%. From this, we can more confidently assume
the answers of users to their fixed queries as ground
truth for future evaluations. For this, the extracted
dataset contains 147 unique queries. Each query has,
on average, 5.2 relevant labeled applications.

The majority of these queries were rated by only
one user. Hence, we could only extract binary rele-
vance (i.e., for a query, app A is relevant), instead of
graded relevancy (i.e., for a query, app A is more rele-
vant than app B). As such, we consider the Mean Re-
ciprocal Rank as the evaluation metric for this dataset,
given by:

MRR@k =
1
|Q|

|Q|

∑
i=1

1
rank(i,k)

, (6)

where Q is the set of queries, and rank(i,k) is a func-
tion that, given the top-k results for the ith query, re-
turns the position (rank) of the first relevant passage.

Table 3: MRR@10 of the lexical and semantic models in
our test set.

Model MRR@1 MRR@5 MRR@10

Lexical 0.394 0.466 0.471
Semantic 0.524 0.586 0.592

As expected from the previous analysis, the se-
mantic model achieves the best results on this dataset
in all MRR cuts, when compared to the lexical model.

However, it is worthy to note that since the appli-
cations to be labeled were retrieved from the top-10
yielded by these models, the results may be somewhat
biased towards these models. Nonetheless, the com-
parison between the two still holds.

6 CONCLUSIONS AND FUTURE
WORK

This work evaluates the performance of semantic
search when applied to mobile applications. We have
tested several models using a public dataset of about
43,000 applications and the results achieved have
shown that the proposed model surpasses all the other
tested models. We have also conducted a question-
naire about the results produced by each one of the
tested models, using real users. The results achieved
clearly show that the proposed model produces more
relevant results than the lexical-based search currently
being adopted by a number of mobile application
stores, including Aptoide. We characterized a new
dataset, previously built by (Coelho et al., 2021), and
extended it in the scope of this work through the user
tests. Moreover, we fully describe the training setup
for our semantic model, which was inspired by recent
developments in Machine Learning, Information Re-
trieval, and Natural Language Processing. Both the
model and the dataset will be made publicly available
for research purposes.

In the near future, we plan on building a multi-
criteria retrieval system, where other information
present in our dataset (such as relevancy statistics, for
example) can be also used as a relevant criteria. Also,
we plan on extending the test set with more queries
and more relevant apps per query. Finally, we will be
testing the importance of semantic similarity between
the textual information of the applications, studied
in this document, for recommendation systems being
built in the scope of our project.

ACKNOWLEDGEMENTS

This work was supported by PT2020 project num-
ber 39703 (AppRecommender) and by national funds
through FCT – Fundação para a Ciência e a Tecnolo-
gia with reference UIDB/50021/2020.

Transformer-based Language Models for Semantic Search and Mobile Applications Retrieval

231

REFERENCES

Blei, D. M. (2012). Probabilistic topic models. Commun.
ACM, 55(4):77–84.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword infor-
mation. Transactions of ACL, 5:135–146.

Coelho, J., Neto, A., Tavares, M., Coutinho, C., Oliveira, J.,
Ribeiro, R., and Batista, F. (2021). Semantic search of
mobile applications using word embeddings. In Proc.
of SLATE 2021.

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and
Bordes, A. (2017). Supervised learning of univer-
sal sentence representations from natural language in-
ference data. In Proc. of EMNLP 2017, pages 670–
680, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Datta, A., Dutta, K., Kajanan, S., and Pervin, N. (2012).
Mobilewalla: A mobile application search engine. In
Zhang, J. Y., Wilkiewicz, J., and Nahapetian, A., edi-
tors, Mobile Computing, Applications, and Services,
pages 172–187, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Datta, A., Kajanan, S., and Pervin, N. (2013). A Mobile
App Search Engine. Mobile Networks and Applica-
tions, 18.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proc.
of NAACL 2019.

Ghannay, S., Favre, B., Estève, Y., and Camelin, N. (2016).
Word embedding evaluation and combination. In
Proc. of LREC 2016, pages 300–305, Portorož, Slove-
nia. ELRA.

Iqbal, M. (2020). App download and usage statistics (2020).
web page.

Khattab, O. and Zaharia, M. (2020). Colbert: Efficient and
effective passage search via contextualized late inter-
action over BERT. In Proc. of SIGIR 2020, Virtual
Event, China, July 25-30, 2020, pages 39–48. ACM.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.

Park, D. H., Fang, Y., Liu, M., and Zhai, C. (2016). Mo-
bile app retrieval for social media users via inference
of implicit intent in social media text. In Proc. of the
25th ACM Int. on Conf. on Information and Knowl-
edge Management, CIKM ’16, page 959–968, New
York, NY, USA. ACM.

Park, D. H., Liu, M., Zhai, C., and Wang, H. (2015). Lever-
aging user reviews to improve accuracy for mobile
app retrieval. In Baeza-Yates, R., Lalmas, M., Mof-
fat, A., and Ribeiro-Neto, B. A., editors, Proc. of the
38th Int. ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, Santiago, Chile,
August 9-13, 2015, pages 533–542. ACM.

Qu, Y., Ding, Y., Liu, J., Liu, K., Ren, R., Zhao, X.,
Dong, D., Wu, H., and Wang, H. (2020). Rocketqa:

An optimized training approach to dense passage re-
trieval for open-domain question answering. CoRR,
abs/2010.08191.

Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Proc. of EMNLP 2019. Association for Computational
Linguistics.

Ribeiro, E., Ribeiro, R., Batista, F., and Oliveira, J.
(2020). Using topic information to improve non-exact
keyword-based search for mobile applications. In
Information Processing and Management of Uncer-
tainty in Knowledge-Based Systems, pages 373–386,
Cham. Springer International Publishing.

Samarawickrama, S., Karunasekera, S., Harwood, A., and
Kotagiri, R. (2017). Search result personalization in
twitter using neural word embeddings. In Bellatreche,
L. and Chakravarthy, S., editors, Big Data Analyt-
ics and Knowledge Discovery, pages 244–258, Cham.
Springer International Publishing.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-
icz, M., Davison, J., Shleifer, S., von Platen, P., Ma,
C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger,
S., Drame, M., Lhoest, Q., and Rush, A. M. (2020).
Transformers: State-of-the-art natural language pro-
cessing. In Proc. of EMNLP 2020: System Demon-
strations, pages 38–45. Assoc. for Computational Lin-
guistics.

Yao, J., Dou, Z., and Wen, J.-R. (2020). Employing per-
sonal word embeddings for personalized search. In
Proc. of SIGIR ’20, SIGIR ’20, page 1359–1368, New
York, NY, USA. ACM.

Yates, A., Nogueira, R., and Lin, J. (2021). Pretrained trans-
formers for text ranking: BERT and beyond. In Proc.
of WSDM’21, Virtual Event, Israel, pages 1154–1156.
ACM.

Zhuo, J., Huang, Z., Liu, Y., Kang, Z., Cao, X., Li, M., and
Jin, L. (2015). Semantic matching in app search. In
Proc. of WSDM ’15, WSDM ’15, page 209–210, New
York, NY, USA. ACM.

KDIR 2021 - 13th International Conference on Knowledge Discovery and Information Retrieval

232

