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Abstract: This project is presented as a real case-study based on machine learning and deep learning algorithms which
are compared for a clearer understanding of which procedureis more suitable to industrial drilling.The predic-
tions are obtained by using algorithms with a pre-processeddataset which was made available by the industry.
The losses of each algorithm together with the SHAP values are reported, in order to understand which features
most influenced the final prediction.

1 INTRODUCTION

Dealing with production orders means adequately
managing a factory in order to satisfy the demand
generated by the customers. A factory manager could
gain huge benefits by a forecasting system because it
can show alternative decisions that can be undertaken
in order to maintain an efficient throughput via the
optimization of the available resources (Pfeiffer et al.,
2016). In order to face this challenge, many kinds
of diverse problems have arisen in the past decades:
some of them that are worth mentioning are predic-
tive maintenance, demand planning, scheduling and
lead time (LT) prediction (Cadavid et al., 2020). The
LT prediction is one of the most important elements
to keep in mind when one wants to properly face pro-
duction and planning control, since it can give hints
on how to distribute jobs among the available ma-
chines. For example, in Figure 1, the drilling machine
has three process steps: thetooling time, representing
the time required for preparing a resource; theplac-
ing time, namely the time that has to be employed to
place an object in a machine correctly; theexecution
time, describing how many minutes are necessary to
drill the object. The more accurate are the estimations
of the lead time of a process on the machines, the bet-
ter the production manager can schedule the processes
and meet the customers needs. However, most of
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Figure 1: Illustration of Lead Time analysis.

the research has focused mostly on data mining pro-
cedures and has exploited datasets created thanks to
discrete event simulation (Lingitz et al., 2018) (Pfeif-
fer et al., 2016): this is a great limit to the predictive
power of an algorithm, since the usage of well-known
events could bring to the exclusion of several other
factors that could impact the final time value that has
to be employed in order to complete a process. In-
stead, the adoption of Machine Learning procedures
can trigger the discovery of patterns hidden inside the
data, allowing to link features that were previously ex-
cluded from the analysis of the problem (Lingitz et al.,
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2018). For an in-depth study, it was decided to exam-
ine the feature importance of the Machine Learning
techniques, but these values are not completely reli-
able when several different models have to be eval-
uated: indeed importance is biased over the charac-
teristic of the model taken into consideration (Lund-
berg and Lee, 2017). Thus, it was decided to exploit
SHAP (i.e.: SHapley Additive exPlanations) which
implements an additive strategy for measuring the real
impact of each single feature to the predicted value:
this is possible thanks to an approach derived from
the game theory, through the average of the marginal
contribution of all the possible feature permutations
(Lundberg and Lee, 2017).

1.1 Related Works

Lingitz et. al. (Lingitz et al., 2018) studied the case
of a semiconductor manufacturing process by apply-
ing a series of Machine Learning algorithms, consist-
ing of several linear regressors, an ensemble of deci-
sion trees, support vector machines and artificial neu-
ral networks. The authors did not evaluate gradient-
boosted decision trees which are adopted nowadays in
several regression tasks (Chen and Guestrin, 2016).
Pfeiffer et. al. (Pfeiffer et al., 2016) developing a
discrete event simulator which allows a reliable de-
scription of the factory, then they trained some Ma-
chine Learning models, showing that random forests
are able to overcome linear regression and regression
trees in terms of performances. In this work, the il-
lustrated algorithms are bound to the discrete event
generation. Gyulai et. al. (Gyulai et al., 2018) made a
comparison between analytical and Machine Learn-
ing techniques by exploiting a job-shop which un-
derwent several changes. This work focuses only on
three supervised learning approaches, which are lin-
ear regression, support vector and tree-based mod-
els. Onaran et. al. (Onaran and Yanik, 2019) took
data from a textile manufacturing system and trained a
neural network in order to estimate the necessary time
for planning the jobs. This work focuses on a certain
industry, that is, the textile one: this suggests that for
each domain it is necessary to gain the appropriate
knowledge for investigating how the features impact
on a learning model and which algorithm better fits
the task. Indeed, the model and feature selection is
strongly dependent on the production environment of
interest, therefore there is no rule to choose an algo-
rithm but it is necessary to perform a deep study of
the industry of interest (Gyulai et al., 2018).

1.2 Contribution and Novelty

The main contributions of this paper are:

• the analysis of the features of three important pro-
cessing times of drilling operations;

• the application and comparison of several ML al-
gorithms to predict the processing times;

• the evaluation of the features with SHAP.

The paper is structured as follows: Section 2 pro-
vides the formal statement of the problem. Section
3 illustrates the state-of-the-art ML implemented al-
gorithms. Section 4 summarizes the adopted settings
for each single ML algorithm, together with the final
results derived by the experiments. Finally, conclu-
sions are discussed and future works are described in
Section 5.

2 PROBLEM STATEMENT

Each job j comes from a setJ, that is: j ∈ J with
J = {1,2, . . . ,m}. A job is characterized by a series
of processesp ∈ P with P = {1,2, . . . ,n} that has to
be completed (in this case,n= 3). The machineu∈U
with U = {1,2, . . . ,q} is the processing unit which
performs a process. The completion of a process em-
ploys a specific amount of timet, depending on the
couple process-machine〈p,u〉. The vectorx ∈ R

k

of features describes the processp, thus the LT pre-
diction problem can be formulated as follows: given
the featuresx that distinguish the processp coming
from P, there is interest in finding a function̂f , able
to retrievet∗ ∈ R, which is the predicted time value
that has to be the nearest as possible to the true value
t ∈ R described by its corresponding target function
f . It is desirable to retrieve a function̂f which re-
ports the smallest possible error with respect to the
outputs given by the originalf :

E =
1
2 ∑( f (x)− f̂ (x))2 (1)

In this way, the correct weights that will be assigned
to the approximated function̂f can be determined
(Mitchell, 1997). In order to perform this task effi-
ciently, a proper evaluation metric must be selected to
achieve an accurate error measurement between the
original and predicted values. Therefore,RMSE(i.e.:
Root Mean Squared Error) was exploited:

RMSE=

√

(

1
n

) n

∑
i=1

(ti − t∗i )
2 (2)

The RMSE gives a higher penalty the more a sam-
ple differs from the mean and it is more suitable when
the errors follow a Gaussian distribution.
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On the other hand, theMAE (i.e.: Mean Absolute
Error)

MAE=

(

1
n

) n

∑
i=1

|ti − t∗i | (3)

is easier to interpret, despite assigning to the samples
the same weight: hence, it is a good measurement of
the bias inherent in the model (Tianfeng and Draxler,
2014). Finally, it is supposed that the timet only de-
pends on the couple〈p,u〉, thus some assumptions
were made about the dataset: first, it is supposed that
all the machines reported are the only ones that are
able to perform that specific drilling operation. Sec-
ondly, all the machines are located in the same in-
dustry, without further logistical distinctions. Lastly,
no machine suffered a blackout or any other adverse
event: this brings to the supposition that all the ma-
chines remained in the same state during the comple-
tion of the processes.

3 PREDICTING LEAD TIME
WITH ML ALGORITHMS

Several Machine learning methods have been evalu-
ated for the LT prediction. Among them, it is possi-
ble to distinguish five families of algorithms:Linear
models, Ensemble Tree methods, Gradient-Boosted
Decision Trees(i.e.: GBDT) andNeural Networks
(i.e.: NN). Before proceeding, the pipeline that the
data has undergone will be illustrated.

Figure 2: Data pipeline.

The main reason is to understand the most promis-
ing procedures that can discover those relations which
can bring to a more accurate prediction of how long

a drilling process will take, given the data. This task
is crucial in order for and industry to perform the best
production planning, and it is a rising research field in
the manufacturing domain (Lingitz et al., 2018).

3.1 Linear Models

Linear models are based on finding the relationships
occurring among independent variables with respect
to a target, independent variable (Gyulai et al., 2018).
To reach this goal, linear models have to minimize an
empirical loss which contributes to the retrieval of the
coefficients of a function (Russell and Norvig, 2009).
The basic linear regression approach is based on re-
ducing the residual sum of squares, while more com-
plex methods such as Ridge and Lasso apply a regu-
larization step, by exploiting L1 (i.e.: the Mean Ab-
solute Error) and L2 (i.e.: the Mean Squared Error)
penalty respectively.

3.2 Ensemble Tree Methods

An ensembling method, as the name suggests, con-
sists in combining a series of learning techniques,
such as Decision Trees, to improve the overall per-
formances. The idea is that putting together ”weaker”
structures allows to obtain a stronger and more pre-
cise predictor. A Bagging regressor is an ensembling
method which consists in training each single classi-
fier on portion of random samples from the training
set, while Boosting uses a series of structures in order
to improve the performance of a learner on the basis
of what happened previously along the chain (Opitz
and Maclin, 1999). Random Forest can be seen as
a Bagging method with a further step: in addition to
train different decision trees by sampling the training
set, this methodology employs a random selection of
features (Ho, 1995).

3.3 Gradient-boosted Decision Trees

GBDT (i.e.: Gradient-Boosted Decision Tree) is a
family of algorithm that employs a gradient descent
procedure for improving predictions. The gradient
learning phase allows to identify structures that will
be added subsequently to the set of weak learners: in-
tuitively, the regressor underwent a phase calledad-
ditive step. That is: GBDT exploits decision trees
which are improved by updating the parameters re-
sponsible for the splits in each node, through the im-
plementation of an additive strategy (Si et al., 2017).
A simple example of how GBDT works is shown in
Figure 3. Over the last few years, two GBDT al-
gorithms stood out for their efficiency on real-world
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datasets:XGBoost(i.e.: eXtreme Gradient Boosting)
(Chen and Guestrin, 2016) andCatboost(i.e.: Cate-
gorical Boosting) (Prokhorenkova et al., 2018). XG-
Boost is a a highly efficient GBDT algorithm which
is often implemented in Kaggle challenges and it rep-
resents the state-of-the-art in many standard classifi-
cation benchmarks (Chen and Guestrin, 2016). It fol-
lows the same idea behind Gradient-Boosting algo-
rithms, with minor improvements. The strong point
of the XGBoost is that it lies on the speed of execu-
tion and computational efficiency: as a matter of fact,
it properly faces the problem of sparsity in datasets
and implements a column block strategy for parallel
computing (Chen and Guestrin, 2016). Catboost tack-
les an important problem: the authors underline the
presence of a statistical issue when categorical fea-
tures are dealt with. This issue is calledconditional
shift and is caused by the difference among the dis-
tributions characterizing each single feature with re-
spect to the target value (Prokhorenkova et al., 2018).
The solution proposed is based on the ordering princi-
ple, hence the nameordered TS: the training samples
are taken sequentially, thanks to the introduction of
an artificial ”time”. Even the boosting phase relies on
the aforementioned strategy, and it is calledordered
boosting: this procedure is based on the usage of ran-
dom permutations of the training set, in order to eval-
uate the splits generated by the tree structure. Ad-
ditionally, Catboost implements the combinations of
categorical features as new categorical features in or-
der to intercept hidden dependencies among the data
(Prokhorenkova et al., 2018).

Figure 3: Brief illustration of how GBDT works.

3.4 Neural Network

Neural Networks, also known asMulti-Layer Percep-
trons, are deep learning-based models resulting in
groundbreaking breakthroughs over the last decade,
since they enabled high performance achievement in
many different tasks (Wang et al., 2017). The name
MLP derives by the presence ofneurons, or percep-
trons, which are in charge of sending the signal to the
other neurons placed in the following layer. The sig-

nal is sent when a threshold value is overcome: the
neurons have to compute anactivation functionin or-
der to send the output to the subsequent perceptrons.
This approach resembles how neurons send their sig-
nal to the others inside the human brain (Goodfellow
et al., 2016). The training phase of these complex
structures is constituted by aforward and abackward
propagation: once the network was fed with values
in a forward direction, the backward step optimizes
the weights, in order to improve the accuracy of the
model. Moreover, backward propagation allows to
perform the gradient descent, thus being crucial for
the learning phase (Goodfellow et al., 2016). Through
the application of the appropriated activation func-
tions, a neural network can perform smoothly a re-
gression task: as a matter of fact, linear activation
functions allow to outline a deep model able to pre-
dict continuous values (Goodfellow et al., 2016).

4 EXPERIMENTAL SETTING

The comparisons among algorithms were performed
by exploiting the dataset provided by the factory and
having the structure depicted in Table 1. For each tar-
get time, such astooling, placing, andexecution, a
specific regressor has been trained. Due to the pres-
ence of several misleading time and missing values,
a deep preprocessing study was conducted in order to
remove those records being at the extremes of each
single feature distribution. Hence, the missing val-
ues were treated as follows: in the case of num-
bers, a symbolic−1 was placed in order to make a
distinction between the absence of any value and 0,
while anunknown keyword is used in order to iden-
tify the lack of category. Moreover, both the features
and the target time have been standardized according
to: z= (x− µ)/σ. Finally, the categorical features
have been encoded in binary features; this last step is
not needed for the Catboost algorithm which requires
intact categorical features, since the algorithm takes
charge of their transformation into more informative
features (Prokhorenkova et al., 2018). The validation
was performed on the entire dataset by implement-
ing a 10-fold cross-validation: that is, the data un-
derwentk times (in this case, 10 times) a validation
phase, each time using a different partition. Then,
the resulting metrics are averaged out across the folds
(Mitchell, 1997). 10-fold cross validation allows to
obtain a reliable estimate of the classifiers, especially
in the case when one has to deal with a limited num-
ber of samples (Mitchell, 1997).
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Table 1: Description of the dataset.

Feature Original name Type Values Description
machine id id macchina C (object) 3-109 identifier of the machine
# of objects n.pezzi N (int) 1-14 objects drilled in that job
# of holes n fori N (int) 1-4 number of holes in that job
diameter Ø N (float) 3-100 diameter of cylindrical object
depth profond N (float) 85-2290 cm to be drilled
shape forma C (object) [cylinder, square, shape of the object

plate]
through-hole passante B (int) [0, 1] through-hole or not
diameter-1 Ø-1 N (float) 25-440 diameter of first drill
diameter-2 Ø-2 N (float) 25-280 diameter of second drilling
length lungh N (float) 188-5065 length of the object
material materiale C (object) [c40, k100, aisi, material of the object

alrmbr, 3062, steel]

C means Categorical feature,N stands for Numerical feature andB identifies a Booelean feature

Table 2: Results fortooling time target value.

RMSE mean RMSE std MAE mean MAE std
Ridge 0.6817 0.2662 0.4804 0.1517
Lasso 0.7 0.2916 0.4983 0.1533
Random Forest 0.5934 0.3337 0.3873 0.1846
Bagging 0.6443 0.3352 0.4148 0.1951
SVR (linear kernel) 0.6914 0.34 0.4233 0.197
SVR (rbf kernel) 0.6627 0.2587 0.4214 0.1875
LGBM 0.7104 0.3415 0.5012 0.1433
XGB 0.6504 0.3415 0.3787 0.1862
Catboost 0.6093 0.1764 0.4437 0.1124
MLP (single) 0.6872 0.3081 0.4296 0.1605
MLP (multi) 0.6114 0.0723 0.4038 0.0353

4.1 Evaluation of the Models

The following models were built through the usage
of the sci-kit package: Ridge and Lasso Regres-
sion, Random Forest, Bagging, Support Vector Re-
gressor with linear and polynomial kernels, LGBM
(i.e.: Light Gradient Boosting Machine) regressor.
These models were implemented using the default pa-
rameters, with the exception of the linear models, hav-
ing a value of fit intercept set toFalse, due to the
previous standardization of the dataset. The other pa-
rameters are the following: Random Forest regressor
uses 100 estimators with a minimum samples split of
2; Bagging regressor employs 10 estimators; Linear
SVR uses a linear kernel with a tolerance of 1e−4

and a regularization parameter of 1, while SVR im-
plements an rbf (i.e.: Radial Basis Function) kernel,
a tolerance equals to 1e−3, a regularization parameter
of 1 and aε value of 0.1; LGBM regressor was im-
plemented with a GBDT learning algorithm, a learn-
ing rate of 0.1, a number of estimators equals to 100
and with a maximum number of 31 leaves; XGB re-

gressor comes with a learning rate of 0.3, a maxi-
mum depth of the learner equals to 6 and 100 esti-
mators. Scikit is a high-level library that allows to
exploit many Machine Learning techniques with ease
of use and it represents the state-of-the-art for Python
developers (Pedregosa et al., 2012). Catboost regres-
sors were instantiated thanks to the officialCatboost
library (Prokhorenkova et al., 2018), with the follow-
ing parameters: a number of iterations equals to 200,
a maximum of depth of each single tree set to 6, to-
gether with a maximum number of leaves of 64 and a
learning rate of 0.09. The cost function employed for
the Catboost regressors training phase was the RMSE
(see equation 2). The four neural networks were de-
signed through the usage of the PyTorch library. Py-
Torch has become one of the most popular libraries
in the deep learning field: the main reasons reside on
its flexibility, being truly Pythonic thanks to its syn-
tax and its leverage of CUDA library to support GPU
hardware acceleration (Paszke et al., 2019). The fol-
lowing hyper-parameters were assigned to the neural
networks:weight decayequals to 1e−3, learning rate
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Table 3: Results forplacingtime target value.

RMSE mean RMSE std MAE mean MAE std
Ridge 0.6378 0.1392 0.449 0.0841
Lasso 0.6487 0.1338 0.4653 0.0673
Random Forest 0.6311 0.1845 0.4042 0.1296
Bagging 0.6692 0.1727 0.4294 0.1321
SVR (linear kernel) 0.6699 0.1675 0.4596 0.1127
SVR (rbf kernel) 0.6128 0.1306 0.408 0.097
LGBM 0.6607 0.1014 0.49 0.084
XGB 0.6504 0.192 0.3737 0.15
Catboost 0.5565 0.1012 0.4111 0.0774
MLP (single) 0.6243 0.1954 0.4153 0.1262
MLP (multi) 0.6213 0.0674 0.4033 0.058

Table 4: Results forexecutiontime target value.

RMSE mean RMSE std MAE mean MAE std
Ridge 0.85 0.3658 0.5449 0.216
Lasso 0.873 0.326 0.6061 0.164
Random Forest 0.6259 0.3121 0.3632 0.1415
Bagging 0.6567 0.31 0.3746 0.1535
SVR (linear kernel) 0.8603 0.3606 0.473 0.1931
SVR (rbf kernel) 0.6777 0.2616 0.4042 0.1323
LGBM 0.6211 0.2051 0.4257 0.109
XGB 0.5924 0.3307 0.3273 0.1541
Catboost 0.5831 0.1842 0.3907 0.0839
MLP (single) 0.708 0.2268 0.4535 0.1076
MLP (multi) 0.6494 0.1165 0.3985 0.0663

set to 1e−3, batch sizeset to 64. After testing sev-
eral networks, it was decided to adopt the following
layer-wise structure:input → [64, 128, 64, 32]→
output. In the case of target-wise neural networks,
output is equal to 1, while for the multiple outputs
architectureoutput is set to 3 (i.e.: the total num-
ber of target values). Theinput value is 50 due to
the columns expansion caused by the new dummy
columns generated by the preprocessing phase. Ta-
bles 2, 3 and 4 illustrate the RMSE and MAE metrics
with respect to the target values (i.e.:tooling, placing
andexecution), together with the standard deviation.

4.2 Results and Discussions

The results show that tree-based methods outperform
linear models and complex architectures: this is in
line with other applications of the Random Forest
within the manufacturing field (Pfeiffer et al., 2016)
(Lingitz et al., 2018) (Gyulai et al., 2018). However,
the resulting Catboost metrics are promising too: the
RMSE value overcame the one returned by Random
Forest in the case ofplacingandexecution. Figures 4,
5 and 8 represent the SHAP values for Catboost, Ran-
dom Forest and multi-output Neural Network regres-
sors, respectively. Catboost retrieves some interesting

patterns by exploiting the potential of the categorical
features combination: indeed,machine idandshape
are some of the most informative characteristics and
allow an estimate of the LT of a process on the ba-
sis of the ID number of a resource, together with the
shape of the object. On the other hand, Random For-
est underlines the importance of# of objects: the more
the number of objects to be processed, the more the
predicted time value. Continuous features are privi-
leged, even though the shapeplateand the machines
numbered 31 and 32 have an important impact on the
model. Multi-output NN returns high SHAP values
for features that had a lower influence in the tree-
based models. Figures 6 and 7 depict several decision
functions that are plot against each single target value
together with the feature that correlates the most (i.e.:
diameter-1). Due to the fact that this was the first time
that this industry collects data, there was no chance of
comparing the efficiency of the factory prior to this
study.
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(a) SHAP values fortooling (b) SHAP values forplacement (c) SHAP values forexecution

Figure 4: SHAP values when Catboost is used. The blobs help tofind those values which influence the final predicted value
the most. The color indicates whether the blobs contain lower or higher values. Each sub-figure depicts the impact of the
features for each single target variable.

(a) SHAP values fortooling (b) SHAP values forplacement (c) SHAP values forexecution

Figure 5: SHAP values when Random Forest is used. The blobs help to find those values which influence the final predicted
value the most. The color indicates whether the blobs contain lower or higher values. Each sub-figure depicts the impact of
the features for each single target variable.

5 CONCLUSIONS AND FUTURE
WORKS

This study compares several Machine Learning al-
gorithms in order to determine which one is the
most promising in terms of LT prediction in factory
drilling. The results of the experiment show that tree-
based methods outperform linear models and deep ar-
chitectures. The implementation of such automated
systems can bring huge benefits for all those mecha-
nisms that regard decision making. Furthermore, the
analysis of the SHAP values bring out which features
impact the final predicted value the most, enabling
further investigations on which parameters have to be
involved in forecasting Lead Time of a specific indus-
try. Although repeating the experiment on other in-
dustries will be necessary, the proposed method helps
to identify the best features for the prediction task.

This will reduce the effort of industries in collecting
data and install sensors on their equipment, stimulat-
ing the adoption of Machine Learning based systems.
Therefore, a further step of the research would be ex-
tending this kind of experimentation to other manu-
facturing industries, keeping an eye on GBDT, since
they resulted in being the most promising ones in
terms of Lead Time prediction.
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(a) SHAP values fortooling (b) SHAP values forplacement (c) SHAP values forexecution

Figure 6: Plot of the decision function in Random Forest. Fora 2-dimensional plot, each target variable is represented together
with the featurediameter-1, which is one of the features that correlates the most.

(a) SHAP values fortooling (b) SHAP values forplacement (c) SHAP values forexecution

Figure 7: Plot of the decision function in Catboost. For a 2-dimensional plot, each target variable is represented together with
the featurediameter-1, which is one of the features that correlates the most.

Figure 8: Average impact of SHAP values for each target
variable when using multiple-outputs Neural Network.
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