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Abstract: In the domain of social network analysis, the frequent pattern mining task gives large opportunities for 
knowledge discovery. One of the most recent variations of the pattern definition applied to social networks is 
the frequent conceptual links (FCL). A conceptual link represents a set of links connecting groups of nodes 
such as nodes of each group share common attributes. When the number of these links exceeds a predefined 
threshold, it is referred to as a frequent conceptual link and it aims to describe the network in term of the most 
connected type of nodes while exploiting structural and semantic information of the network. Since the 
inception of this technique, a number of improvements were achieved in the search process in order to 
optimise its performances. In this paper, we propose a new algorithm for extracting frequent conceptual links 
from large networks. By adopting a new compressed structure for the network, the proposed approach reaches 
up to 90% of gain in the execution time. 

1 INTRODUCTION 
Complex networks are a set of many connected nodes 
that interact in different ways. In the context of 
network theory, a complex network is a graph 
(network) with non-trivial topological features that do 
not occur in simple networks such as lattices or 
random graphs but often occur in networks 
representing real systems (Mata, 2020). 

In the last decades, the study of complex networks 
has become a very active research field with a strong 
interdisciplinary character. Many different 
phenomena in the physical, biological and social 
world can be understood as network based, i.e. a 
collection of objects connected by a number of links. 
(Barabási, 2002). Indeed, these different kinds of 
networks share fundamental properties that allow 
researchers to study various problems such as 
influence, propagation, terrorism and the spread of 
infectious diseases in the same way (Barabasi, 2002). 
They are based on a complex and evolving pattern of  
bilateral connections between entities, whereby the 
overall performance of the system is largely 
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determined by the intricate architecture of these 
connections. 

Among the most studied complex networks in 
recent years, we find social networks. A social 
network is defined as a network of interactions or 
relationships, where the nodes consist of actors or 
entities, and the edges consist of the relationships or 
interactions between these actors (Aggarwal, 2011). 
Social Network Analysis (SNA) studies the 
underlying conditions of such social networks to 
identify patterns of interaction between the network’s 
actors to analyse and explain social phenomena using 
graph theory metrics (Tabassum et al., 2018). This 
analysis has been referred to as structural as it focuses 
on the structure (links) of the network in order to 
highlight some patterns and features, nodes with high 
concentration of links, densely or weakly connected 
regions, etc. 

Nowadays, social networks, especially online 
one, get larger and richer both with relational and 
content data. This situation makes the SNA handling 
new real world applications and facing new 
challenges like scalability, dynamism and streaming. 
Thus, data mining techniques appear as a very 
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efficient tools in the social data analysis and provide 
researchers with large opportunities for the 
knowledge data discovery (Adedoyin, 2014). 

Data mining functions include, inter alia, 
clustering, classification, link prediction, and 
frequent pattern mining, witch explicitly consider 
links when building predictive or descriptive models 
of the linked data (Getoor, 2005). Moreover, they 
have the ability to exploit information about nodes 
(attributes) or relationships between nodes (links) to 
extract the maximum knowledge from the network. 

One of the most recent approaches combining 
both information on the structure and attributes of 
nodes is the frequent conceptual links (FCL) 
(Stattner, 2012; Stattner, 2012c). The FCL is a 
descriptive data mining technique which aims to 
extract, from a social network, knowledge about the 
most connected type of nodes. It gathers, for 
accomplishing this task, concepts from the 
community detection, the frequent pattern mining and 
the formal concept analysis techniques (Stattner, 
2012b). In fact, this new pattern exploits the 
community structure property of networks and starts 
by grouping nodes into clusters or modules with 
homogenous attributes (Fortunato, 2009). Then, as 
for the frequent pattern mining problem (Agrawal, 
1994; Luna, 2019; Agrawal, 2014; Cafaro, 2019), it 
defines a support threshold and eliminate all the 
groups (clusters) but those with a number of links 
between their nodes more than a predefined 
threshold. The result is a set of links called Frequent 
Conceptual Links, connecting groups of nodes such 
as nodes of each group share common attributes. 
Hence, each part of the conceptual link is composed 
by a set of attributes and the nodes verifying these 
attributes, this is what is called a concept by the 
concept theory (Kumar, 2011; Sumangali, 2017) in 
the formal concept analysis (FCA). The advantage of 
this kind of analysis is that the set of the conceptual 
links of a network forms a concept lattice as defined 
by the formal concept analysis and preserves all its 
properties (Stattner, 2012b). 

Moreover, a conceptual view of the network is 
extracted. It consists of a reduced representation of 
the original network which facilitates the task of 
extracting knowledge from the network, chiefly for 
larger networks. The nodes, or meta-nodes in this 
view are groups of nodes in the original network 
sharing common attributes and a link between two 
meta-nodes represents the whole links between these 
two groups (Stattner, 2012b). 

The conceptual view is a key aspect of the 
frequent conceptual links pattern, as it synthesizes 
and summarizes the knowledge acquired from the 

network in one visualisation tool allowing the 
researcher to directly read the most connected 
features of the network. 

 

 
Figure 1: Application of FCLs to the amazon co-purshasing 
network. 

Figure 1 presents an extract of the conceptual 
view extracted by the application of the FCLs 
approach to the amazon co-purshasing network 
(Leskovec, 2007). This summarized visualisation 
depicts the type of products frequently co-purshased 
by customers relatively to a support threshold. Every 
node in the conceptual view corresponds to a group 
of nodes in the original network characterised all by 
the attributes that label the node. For instance, the 
node (book, science) designates all the books of the 
science category. Furthermore, a link between a 
couple of nodes in the conceptual view represents the 
whole links between the nodes of each group in the 
original network. For instance, the link between the 
nodes labelled (book, science) and (book, computers 
& internet) designates all the books of the science 
category that are co-purchased with the books of the 
computers & internet category. The appearance of 
this link on the conceptual view means that these 
types of products are frequently co-purshased by the 
amazon customers. 

The FCL problem has been proven NP-hard 
(Stattner, 2012a) since the search process depends on 
the number of attributes, their valence (the sum of 
possible number of attribute values), and the network 
size (Stattner, 2012b) which leads to the explosion of 
the search space over large networks. The challenge 
is, then, to get the solution in a reasonable time. Thus 
several attempts were driven in the literature to 
optimize the search process, each trying to exploit 
properties of the network in order to prune a part of 
the search space. Accordingly, several efficient and 
tailored exhaustive search methods are proposed to 
overcome this difficulty. Each of them tries to achieve 
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a good trade-off between the runtime and the number 
of extracted FCLs relatively to the predefined 
threshold. Indeed, the number of the FCLs depends 
on the threshold set in the beginning of the algorithm. 
A higher threshold allows extracting the FCLs in a 
short time, but the result is not significant enough, 
since most of the links will be rejected and significant 
latent information may be omitted in this case, while 
a lower threshold will extract more frequent links at 
the expense of performance. 

FLMin (Stattner, 2012d), uses a bottom-up search 
and the Apriori principle (Samatova, 2014) by 
browsing only the itemsets that all of their 
subitemsets are frequents. Using the same principle 
as well as the frequency property (Stattner, 2012b), 
MFCLMin (Stattner, 2012c) looks for the maximal 
frequent conceptual links i.e. those which are not 
included in other frequent conceptual links. 
Subsequently, authors in (Stattner, 2013) and 
(Tabatabaee, 2017) proposed respectively the 
algorithms H-MFCLMin and D-MFCLMin that 
implement the concepts of filtering threshold and 
itemset dependency to reduce the search space, thus 
significantly improving the performance of the search 
process with the trade-off of loss of searched patterns. 
Comparing with the results of the complete research 
process, the authors have shown that the loss is 
admissible from a certain support threshold. Finally, 
PALM (Stattner, 2017) is a parallel implementation 
that tries to improve performance of the extraction 
process by simultaneously exploring several parts of 
the search space. 

To the best of our knowledge, these are 
exhaustively the list of works addressing the FCL 
extraction problem. While the last one constitutes a 
parallel implementation, the former are sequential 
and they adopt an apriori based approach, i.e., 
scanning the database for each FCL candidate and 
computing the relative support. Furthermore, each 
one of the sequential implementations improves the 
performances of the previous, by exploiting more 
properties of the network. At this stage, we should 
notice that despite that the solution space given by the 
MFCLMin and the D-MFCLMin algorithms is 
smaller than that obtained by FLMin, this doesn’t 
cause any loss in the solution space because as for the 
itemset mining problem, from the maximum FCLs we 
can reach all the FCLs in the network. 

Contrariwise, the H-MFCLMin sacrifices some 
solutions for a performance gain. Finally, MFCLMin 
and D-MFCLMin remain the only sequential 
implementations that list all the maximal FCLS for a 
given network. Despite all the properties exploited by 
these two algorithms (frequency property, 

downward-closure property and the dependency 
property) in order to maximize the extraction process 
performances, the main problem of them and of any 
apriori based algorithm is the multiple scan of the 
database. Indeed, MFCLMin and D-MFCLMin 
proceed in a breadth first manner, generate all 
conceptual links candidates of size k, scan the 
network for each candidate and eliminate all but those 
frequent before moving to larger candidate 
conceptual links. This may induce heavy charge on 
the process for large networks. 

In this paper, we present a new solution for the 
maximum FCLs extraction problem, namely the Bin-
MFCLMin, it constitutes a sequential implementation 
that looks for all the maximum FCLs within a social 
network, and uses a compressed binary representation 
of the social network in order to reduce the time of 
extracting frequent conceptual links. As we will see 
through this paper, the compressed representation 
transforms the input network data into an integer 
matrix whose size is reduced by a factor more than 60 
than the original network, which allows a gain in run 
time up to 91%. The paper is organized as follows: 
section 2 gives details about the problem modelling, 
section 3 explains the proposed solution and section 
4 shows and discusses the obtained results, we finally 
conclude and present our perspectives in the last 
section.  

2 PROBLEM MODELLING 

In order to model the FCL extraction problem, we 
consider a social network represented by a graph G = 
(V;E) where V is the set of nodes and E is the set of 
relations between the nodes. 

We use a set of attributes A (a1,…, am) and a set 
of attribute values (a11,… .a1j1, 
a21,…,a2j2….am1,… .., amjm) where jk the number 
of values that can take the attribute ak. 

Each node is described by a set of pairs (attribute, 
value), each attribute = value pair is said to be an item 
and the set of (attributes, values) describing a node(s) 
constitutes an itemset. 

An itemset which contains one pair (attribute, 
value) is called 1-itemset, while an itemset containing 
t pairs (attribute, value), it is called t-itemset. 

If m1 and m2 are two itemsets, then the set of ties 
linking the nodes satisfying the itemset m1 and the 
nodes satisfying the itemset m2 constitutes a 
conceptual link noted (m1, m2): 
 

(m1, m2) = {e ∈E, e = (a, b) a satisfy m1 
and b satisfy m2, a, b ∈ V} (1)
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In the conceptual link (m1, m2), m1 is called the left 
itemset while m2 represents the right itemset. 

The support of a conceptual link (m1, m2) 
represents the number of links connecting the nodes 
verifying m1, m2: 
 

Support((m1, m2)) = | {e ∈E, e = (a, b) a 
satisfy m1 and b satisfy m2, a, b ∈ V} | (2)

 

Let be a social network where the nodes are 
constituted of individuals and a link between two 
nodes describes a relation between the corresponding 
individuals. Furthermore, each individual is 
described by three attributes: age class (age/10), 
gender (male/ female) and the work status (employee, 
unemployed). According to the above definitions, 
(gender=male), (work-status = unemployed) are 
items and the set (age=3, gender=female, work-status 
= employee) is un itemset. Hence, the conceptual 
links ((age=3, gender=female, work-status = 
employee), (age=4, gender=male, work-status = 
employee)) describes all the links between female 
workers aged between 30 and 39 years and male 
workers aged between 40 and 49 years old. 

The number of these links constitutes the support 
of the conceptual link. 

A conceptual link is said to be frequent if its 
support is greater than a predefined threshold β. 
 

(m1, m2) frequent ≡ Support((m1, m2)) ≥ β (3)
 

A conceptual link (m1, m2) is included in another 
conceptual link (m1’, m2’) if: m1⊆ m1’ and m2⊆m2’, 
thus: 
• (m1, m2) is a sub-conceptual link of (m1’, m2’) 
• (m1’, m2’) is a super-conceptual link of (m1, m2). 
From this definition, we can deduce two properties 
whose proofs are detailed in (Stattner, 2012c): 
• If a conceptual link is frequent, all its sub-

conceptual links are frequent. 
• If a conceptual link is infrequent, all its super-

conceptual inks are infrequent. 
Finally, a frequent conceptual link is said to be 
maximal if it is not included in any other frequent 
conceptual link. 

3 THE PROPOSED SOLVING 
APPROACH, BIN-MFCLMIN 

We propose in this work, a new solution for 
extracting maximum FCLs from a social network, 
namely the Bin-MFCL algorithm. It is based on a 
bottom-up search using the Apriori principle to 

gradually prune the search space. The main novelty 
of the proposed solution is in the data structure. 
Indeed, we use in this work a compressed binary 
presentation of the network (Leon, 2008) in order to 
decrease the number of processing operations during 
the extraction of FCLs. In this representation, the 
entire network (nodes and links) is represented by a 
matrix of integers of size m X n, where n is the 
number of all possible attribute values and m is the 
number of links in the original network divided by a 
compression factor, thus, reducing the complexity of 
the input data and reducing the search time. The next 
section gives more detail about the input structure 
construction process. 

3.1 The Compressed Binary 
Representation 

The frequent conceptual link extraction technique 
proceeds on an attributed social network which is 
depicted through two 2-dimensional array: the profile 
array lists all the nodes with their attributes, and the 
relation array lists all the existed links between nodes. 

Figure 2, and table 1 give an example of an 
attributed social network. The nodes in this network 
are individuals described by the five attributes listed 
in the table 2. 
 

 
Figure 2: Example of a social network with 10 nodes related 
by 9 links. 

Table 1: Link matrix of the social network example. 

Id user 1 Id user 2 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
1 10 
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Table 2: Attribute matrix of the social network example. 

User id Profile privacy Completion rate of profile gender Registration year Age class (Age/10) 
1 Public < 30% Male <2007 2 
2 Public >=60% Female >=2007 1 
3 Private >=30% and <60% Male >=2007 2 
4 Public <30% Female >=2007 2 
5 Public >=60% Male <2007 2 
6 Private <30% Female >=2007 3 
7 Public <30% Female <2007 2 
8 Private <30% Male <2007 2 
9 Private  <30% Female <2007 1 
10 Public  >=60% Female <2007 2 

Table 3: Merge the attribute and link matrices. 
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public < 30% Male <2007 2 1 2 Public >=60% Female >=2007 1

public < 30% Male <2007 2 1 3 Private >=30% and 
<60% Male >=2007 2 

public < 30% Male <2007 2 1 4 Public <30% Female >=2007 2
public < 30% Male <2007 2 1 5 Public >=60% Male <2007 2
public < 30% Male <2007 2 1 6 Private <30% Female >=2007 3
public < 30% Male <2007 2 1 7 Public <30% Female <2007 2
public < 30% Male <2007 2 1 8 Private <30% Male <2007 2
public < 30% Male <2007 2 1 9 Private <30% Female <2007 1
public < 30% Male <2007 2 1 10 Public >=60% Female  <2007 2

Table 4: The attribute link matrix in one-hot encoding and the extraction of the compressed representation. 
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The transformation of this network into an 
integer matrix is described in the following steps: 
1. Merge the profile and the link data in the same 

matrix [Table 3]. 
2. Transform the merged matrix into a binary array 

using the one-hot encoding (Potdar, 2017). This 
is made by transforming each attribute column 
with d possible values into d binary columns, the 
value of an attribute for each node is indicated by 
the presence (1) or absence (0) of the binary 
variable [Table 4]. For our social network 
example, the attribute profile privacy is divided 
into two columns, one indicates if the attribute 
value is public and the other indicates the private 
value of the attribute. 

3. Finally, If F is the compression factor, convert for 
each column, F rows into an integer [Table 4]. For 
instance, if we take F = 9, the original link-profile 
matrix is transformed into a matrix with one row and 
24 columns which represent the number of all 
possible attribute values.  

In general, the result of the compression process 
is an MXN matrix where N is the number of items 
and M is the number of links in the original network 

divided by the compression factor. It is important to 
note that this compression is done without any loss 
of data and it is possible to revert to the original 
network entirely. Moreover, the operation of 
searching links satisfying an itemset turns into an 
operation of logical ANDs between the columns 
corresponding to each item in the itemset in question. 

At this stage, the compressed data structure can 
be exploited by the proposed algorithm, in order to 
optimize the MFCL extraction process in large 
networks. The pseudocode of the Bin-MFCLMin 
algorithm is given below [Algorithm 1]. As it is 
depicted in the listing code, the algorithm 
implements a buttom-up search by looking for the 
frequent conceptual links involving itemsets of size 
1 at first (lines 4-15). After that, every frequent 
itemset will generate longer candidate itemsets by a 
join operation (lines 18-19).  

Again, these itemsets constitute candidate 
conceptual links to be checked according to a 
predefined threshold (lines 20-31). 

This process is repeated until no more candidate 
can be generated (while loop line 17) 
 

Algorithm 1: The Bin-MFCLMin algorithm. 
Generation of the 1-frequent conceptual links  

1. LeftFreqItemset  list of 1-itemsets m where  CountItemSupport (m) >= β * S 
2. RightFreqItemset  list of 1-itemsets m where CountItemSupport (m) >= β * S 
3. For each leftItem in LeftFreqItemset 
4.   For each rightItem in RightFreqItemset 
5.     Support = countConceptualLinkSupport((leftItem, rightItem),     data) 
6.     If(Support >= β * S) 
7.         Add the conceptual link (leftItem, rightItem) to listMFCL 
8.         Add leftItem to t-leftItemSetCand 
9.         Add rightItem to t-rightItemSetCand 
10.     End if 
11.   End for 
12. End for 

Generation of the t-frequent conceptual links 

1. t = 2 
2. While (t-leftItemSetCand ≠ Φ   OR   t-rightItemSetCand ≠ Φ) 
3.     t-leftItemSetCand  list of t-itemsets constructed from (t-1)-frequent left itemsets by 

a join operation  
4.     t-rightItemSetCand  list of t-itemsets constructed from (t-1)-frequent right itemsets 

by a join operation 
5.     for each leftItemSet in t-leftItemSetCand 
6.        for each rightItemSet in t-rightItemSetCand 
7.              support = countConceptualLinkSupport((leftItemSet, rightItemSet), data) 
8.              if(support>= β * S) 
9.                 Add the conceptual link (leftItem, rightItem) to listMFCL 
10.                 Add leftItem to t-leftItemSetCand 
11.                 Add rightItem to t-rightItemSetCand 
12.                 Remove all sub-conceptual links of the newly added frequent conceptual link 
13.              End if 
14.            End if 
15.         End for 
16.      End for 
17.      t = t+1 
18. End while 
19. Return listMFCL 
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The main benefit of the compressed input 
structure is in the support counting implemented in 
the three following algorithms [Algorithm 2, 
Algorithm3, Algorithm4]. 

Algorithm 2 is the first called by the principal 
algorithm for the sake of computing the support of 
each single item. This allows us to discard the non-
frequent items as early as possible and use solely the 
frequent items for generating longer candidate 
itemset in the subsequent iterations. Since each item 
is represented by a column in the compressed input 
data (line 2), the support counting is done by scanning 
all the rows of this column (number of rows = M = 
number of Links in the original network / 
compression factor) and adding the number of bits set 
to 1 in the binary representation of each row data (line 
3-4). The support of every couple 1-itemset is then, 
counted using the algorithm 3 in order to determine 
the list of one frequent conceptual link. 

Algorithm 2: CountItemSupport. 

 
The support counting of a one conceptual link, 

involves two columns of the input data, the one which 
corresponds to the left itemset and the one which 
corresponds to the right itemset (lines 2-5). The 
algorithm 3 performs an and operation between these 
two columns in order to retain only the links where 
the two itemsets are satisfied (line 7), before counting 
the number of bits set to 1 in the binary representation 
just obtained (line 8). 

Furthermore, in the case of a of a t-conceptual link 
(t>1), the left and right itemsets involved in the 
conceptual link correspond to more than column in 
the compressed input data. Thus, before counting the 
number of links where the left and the right itemset 
are satisfied, the algorithm 4 allows us to obtain the 
column associated to each itemset. In the lines 3-6, 
the algorithm constructs a matrix where each column 
correspond to an item of the itemset. Then, it 
performs an AND operation within this matrix to 

obtain the column representation of the whole itemset 
(line 7-11). Finally the support counting is made with 
the columns associated to the left and right itemset 
similarly to the one conceptual link support counting. 

Algorithm 3: CountConceptualLinkSupport. 

Input : conceptualLink, network data 
in binary compressed representation 
Output : support of the conceptual 
link 
1. Support = 0 
2. leftItemSet  left ItemSet of the 

conceptual link 
3. rightItemSet  right ItemSet of 

the conceptual link 
4. LeftItemSetColumn = 

CountItemSetSupport(leftItemSet) 
5. rightItemSetColumn = 

CountItemSetSupport(rightItemSet) 
6. for each row i in 

LeftItemSetColumn, 
rightItemSetColumn 

7.    binaryRepresentationRow =   
LeftItemSetColumn[i] AND 
rightItemSetColumn[i] 

8.    support = support + number of 1 
in the binaryRepresentationRow 

9. End for 
10. return support 
 

Algorithm 4: CountItemSetSupport. 
Input : itemset, network data in binary 

compressed representation 
Output : support of itemset, 

itemSetColumn 
1. itemSetMatrix  [] 
2. support = 0 
3. for each item in itemset 
4.    itemColumn  the integer   array 

corresponding to the item in the 
input data 

5.    add the itemColumn to 
itemSetMatrix 

6. End for 
7. for each row in itemSetMatrix 
8.   for each column N in row 
9.       binaryRepresentationRow = 

binaryRepresentationRow AND  
itemSetMatrix [row][N] 

10.       add the current 
binaryRepresentationRow to the 
itemSetColumn 

11.   End for 
12.   support = support + number of 1 in 

the binaryRepresentationRow 
13. End for 
14. return support, itemSetColumn 

Input : item, network data in binary 
compressed representation 

Output : support of item 

1. Support = 0 
2. itemColumn  the integer array 

corresponding to the item in the 
input data 

3. for each row in itemColumn 
4.     support = support + number of 

1 in the binary representation of 
row 

5. end 
6. return support 
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4 EXPERIMENTAL RESULTS 
AND DISCUSSION 

In this section, we present the experiments performed 
to validate our proposed new solution for solving the 
FCL problem. We will first justify the choice of 
MFCLMin for the comparison, then, we will present 
the dataset used in the tests. Finally, the results will 
be compared and discussed in term of the execution 
time for both the algorithms.  

The table 5 resumes the main characteristics of the 
previous implementations and compares them with 
our proposed solution. From this table, we can notice 
that the MFCLMin and D-MFCL-Min algorithms 
have the same properties of our solution and are 
consequently the most suitable for the comparison. 
Nevertheless, the experiments accomplished with the 
D-MFCLMin algorithm on the pokec network3, stated 
that the execution time increases up to 15% and this 
lost in the search process performances was justified 
by the absence of dependency in the assessed 
network. Hence, for a fair comparison, the MFCLMin 
algorithm will be used in the experiments with the 
same data and the same min sup threshold. 

The input dataset is a Slovak online social 
network (Tabatabaee, 2017) which includes one 
million nodes and 31 million links, the nodes are 
described by a set of 51 attributes which are not all 
filled in. A task of cleaning and preparation is 
therefore necessary and consists essentially of 
discarding null values, transforming the values of 
some attributes in the suitable classes (see below the 
age, comp and the reg attributes) and preparing the 
input data structure. 

The number of attributes considered is equal to 5, 
with a total valence of 13. Table 6 below describes 
the attributes and their possible values. 

All tests are carried out on several instances by 
varying each time the number of nodes and links and  
calculating the execution time taken by the two 
algorithms. This is done with four possible support 
thresholds.  

Figures 6 and 7 show respectively the runtime of 
both the MFCLMin and Bin-MFCLMin algorithms 
and the gain achieved by the proposed solution. The 
results were obtained by a compression factor of 63 
while varying support threshold between: 0.1, 0.15, 
0.2 and 0.25. One can notice here that the smaller the 
threshold, the more tedious the task of detecting 
frequent links is, and therefore more time consuming 
since the number of frequent links become large. 

Firstly, we can observe that the gain on runtime is 
at least of 43% which confirms the positive impact of 
the input structure on the search process performance. 
The second remark that can be done is that while the 
performances of Bin-MFCLMin remains relatively 
stable for bigger instances, the MFCLMin algorithm 
runtime increases considerably, thus proving the 
superiority of our data structure compared to the one 
used in MFCLMin algorithm. Indeed, the later uses a 
vertical layout representation for the network where 
it associates to each node, input and output links, then 
it calculates the itemset supports by intersecting the 
links list associated with each itemset (Stattner, 
2012b), whereas, our solution looks for all the 
maximum FCLs, by scanning a reduced input data to 
a compression factor of 63 in the assessed instance 
and uses the AND logic operation to count the support 
of each itemset. Hence, this reduces the support 
counting process complexity. 

To support this result, we also considered the 
results of a well-known algorithm in the field of 
frequent pattern mining, namely, ECLAT algorithm 
(Zaki, 2000). It should be noted that the data structure 
employed in the MFCLMin algorithm is similar to 
that used by ECLAT while looking for frequent 
itemsets in the context of association rules mining. In 
fact, the author of this work implements a vertical 
layout representation of the input data where it 
associates to each item, the list of transactions where 
it appeared then, the support of an itemset is defined 
by the size of the intersection list of all the lists 
associated with each item constituting the itemset.  

Table 5: Characteristics of FCLS extraction algorithms. 

 Solution space Type of implementation Type of search 
FLMin FCLs Sequential Exhaustive  
MFCLMin Maximum FCLs Sequential  Exhaustive 
H-MFCLMin Maximum FCLs Sequential Non Exhaustive 
D-MFCLMin Maximum FCLs Sequential Exhaustive/non Exhaustive  
PALM Maximum FCLs Parallel Exhaustive 
Bin-MFCLMin Maximum FCLs Sequential Exhaustive 

 
3 This is the same network used in our experiments 
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Table 6: Pokec social network attributes. 

Attribute  Description  Possible values Valence
Public Indicates if the user profile is public or private Public / private 2 

Comp The completion rate of the user profile 
<30% 
>=30% and <60% 
>=60%

3 

Gender Indicates the user gender Male / female 2 

Reg Indicates the registration year in the network <2007 
>=2007 2 

Age class The class age of the user 

<10 
>=11 and <20 
>=20 and <30 
>=30 

4 

 

 
Figure 3: Runtime of the MFCLMin and Bin-MFCLMin algorithms. 

 
Figure 4: Gain on the runtime obtained by Bin-MFCLMin algorithm. 
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We note that although ECLAT is more efficient 
than many leading algorithms in the area, it is 
known to be unsuitable for items with large lists of 
transactions to be intersected (Luna, 2019). This 
proves the superiority of our proposed data structure 
especially in that case, which is emphasized by the 
gain in runtime, which reaches 91% for the last 
network. 

5 CONCLUSION 

With the proliferation of social networks in recent 
years, data mining techniques have become 
essential for the knowledge extraction process. The 
pattern presented in this paper plays a dual role to 
accomplishing this task, on the one hand, it exploits 
the structural and attributed information of the 
network in order to extract a more relevant 
information which seems, hence, to be very 
promising in the analysis of real world application 
like the spread of diseases or the recommendation 
systems. On the other hand, the conceptual view 
provided by this approach summarizes the extracted 
knowledge in one simple and content-rich 
visualisation. 

We proposed in this work a new algorithm for 
extracting frequent conceptual links from large 
networks, by adopting a new binary compressed 
structure for the network, hence reducing the input 
data complexity. The proposed approach allows 
extracting the FCLs in a shorter time comparing to 
MFCLMin for all the used instances. The 
improvement  reaches  up to 90% of gain in the 
execution time for items with large lists of 
transactions to cross-reference. 

Nevertheless, some network instances are so 
large that makes approximated methods inevitable 
for dealing with the computational challenges that 
this problem reveals. Thus, the data structure 
presented in this work, may be used within a 
heuristic solution as an alternative to tackle this 
problem in the future. 

REFERENCES 

Mata, A. S. (2020). Complex Networks: a Mini-review. 
Brazilian Journal of Physics, 1-15. 

Albert-'Laszlo Barabasi. (2002). the new science of 
networks. Perseus Publishing. 

Charu C. Aggarwal (eds.). (2011). Social Network Data 
Analytics, Springer US. 

L. Getoor, C. Diehl. (2005). Link mining: a survey. 
SIGKDD Explor. 

M. Adedoyin-Olowe, M. M. Gaber, and F. T.  Stahl. 
(2014). A survey of data mining techniques for social 
media analysis. J. Data Min. Digit. Humanit.  

Erick Stattner and Martine Collard. (2012). Frequent 
links: An approach that combines attributes and 
structure for extracting frequent patterns in social 
networks. 16th East-European Conference on 
Advances in Databases and Information Systems. 

E. Stattner and M. Collard. (2012a). Social-based 
conceptual links: Conceptual analysis applied to 
social networks. International Conference on 
Advances in Social Networks Analysis and Mining. 

S. Fortunato. (2009). Community detection in graphs. 
ArXiv. 

J. M. Luna, P. Fournier-Viger, S. Ventura. (2019). 
Frequent itemset mining: A 25 years review. WIREs 
Data Mining Knowl Discov. 

R. Agrawal et R. Srikant. (1994). Fast Algorithms for 
Mining Association Rules in Large Databases. In 
Proceedings of the 20th International Conference on 
Very Large Data Bases. 

Aswani Kumar Ch. (2011). Mining Association Rules 
Using Non-Negative Matrix Factorization and Formal 
Concept Analysis. International Conference on 
Information Processing. 

K. Sumangali, Ch. Aswani Kumar. (2017). A 
comprehensive overview on the foundations of formal 
concept analysis. Knowledge Management & E-
Learning. 

E. Stattner. (2012b). «Contributions à l’étude des réseaux 
sociaux: propagation, fouille, collecte de données». 
Thèse pour obtenir le titre de Docteur en Sciences de 
l’Université des Antilles et de la Guyane. 

Erick Stattner and Martine Collard. (2012c). Social-based 
conceptual links: Conceptual analysis applied to 
social networks». International Conference on 
Advances in Social Networks Analysis and Mining. 

E. Stattner and M. Collard. (2012d). «FLMin: An 
Approach for Mining Frequent Links in Social 
Networks». International Conference on Networked 
Digital Technologies. 

Nagiza F. Samatova; W. Hendrix; J. Jenkins; K. 
Padmanabhan. (2014). A.Chakraborty. «Practical 
graph mining with R». CRC Press. 

E. Stattner and M. Collard. (2013). «Towards a hybrid 
algorithm for extracting maximal frequent conceptual 
links in social networks». IEEE International 
Conference on Research Challenges in Information 
Science. 

H. Tabatabaee. (2017). DMFCLMin: A New Algorithm 
for Extracting Frequent Conceptual Links from Social 
Networks. International Journal of Advanced 
Computer Science and Applications. 

E. Stattner, R. Eugenie, and M.Collard. (2017). «PALM: 
A Parallel Mining Algorithm for Extracting Maximal 
Frequent Conceptual Links from Social Networks». 
International Conference on Database and Expert 
Systems Applications. 

Exhaustive Solution for Mining Frequent Conceptual Links in Large Networks using a Binary Compressed Representation

189



Raudel Hernandez Leon, Airel Perez Suarez, Claudia 
Feregrino Uribe, Zobeida Jezabel Guzman Zavaleta. 
(2008). An Algorithm for Mining Frequent Itemsets. 
5th International Conference on Electrical 
Engineering, Computing Science and Automatic 
Control (CCE), 2008. 

Kedar Potdar, Taher S. Pardawala, Chinmay D. Pai. 
(2017). A Comparative Study of Categorical Variable 
Encoding Techniques for Neural Network Classifiers. 
International Journal of Computer Applications. 

J. Leskovec, L. Adamic and B. Adamic. (2007). The 
Dynamics of Viral Marketing. ACM Transactions on 
the Web (ACM TWEB), 1(1). 

S.  Tabassum, F S. F. Pereira, S. Fernandes, J. Gama. 
(2018). Social network analysis: an overview. Wiley 
Interdisciplinary Reviews: Data Mining and 
Knowledge Discovery. 

Zaki, M. J. (2000). Scalable algorithms for association 
mining. IEEE Transactions on Knowledge and Data 
Engineering, 2000. 

C. C. Aggarwal, J. Han (eds.): Frequent Pattern Mining, 
Springer International Publishing Switzerland, 2014. 

M. Cafaro and M. Pulimeno: Frequent Itemset Mining. 
Springer Nature Switzerland, 2019. 

KDIR 2021 - 13th International Conference on Knowledge Discovery and Information Retrieval

190


