
When owl:sameAs is the Same: Experimenting Online Resolution of
Identity with SPARQL Queries to Linked Open Data Sources

Raphaël Gazzotti a and Fabien Gandon b

Université Côte d’Azur, Inria, CNRS, I3S, Sophia-Antipolis, France

Keywords: Equivalence Links, Coreference Resolution, SPARQL, Linked Data, Data Curation, sameAs.

Abstract: Equivalence links are the cornerstone of Linked Data and their integration. However, it is not easy to es-
tablish and manipulate them, since the Web is always evolving with datasets emerging and disappearing.
Inconsistencies may also be present on the Web, leading to erroneous assertions and inferences. We propose
a method to identify owl:sameAs relationships of a resource relying on online SPARQL querying of dis-
tributed datasets and to correct results using declarative curation rules. We also exploit and inspect the quality
of owl:InverseFunctionalProperty and owl:FunctionalProperty relationships, using the definitions
given by their schemata, endpoints and a voting approach. We evaluate our method on an existing bench-
mark and compare to state of the art baselines. We show that a heuristic approach can retrieve high quality
equivalence links without requiring the extraction of all the alleged existing equivalence relations.

1 INTRODUCTION

The ability to establish links is key to weaving the
Web in general and the semantic Web in particu-
lar (Gandon, 2018). But the Web is in constant evo-
lution with resources added and deleted all the time.
Linked data, in particular, rely on our ability to estab-
lish links between the different datasets on the Web
and as such, the detection of equivalence links is a
central task. And as the Web evolves, this linking has
to evolve with it. Establishing equivalences between
resources is also key to data integration use cases
to join knowledge graphs with different provenances.
More recently this ability to combine such graphs also
proved important in machine learning approaches re-
lying on embeddings based on a set of linked graphs
to capture the semantics surrounding a concept more
accurately and more richly.

Approaches discovering equivalence links that
rely on a snapshot of the Web run the risk of capturing
relationships that already belong to the past. Equiva-
lence links can also be retrieved by exploiting OWL
semantics, e.g., properties of type (inverse) functional
can indicate the uniqueness of a resource, leading to
the inference of owl:sameAs relationships when dif-
ferent URIs are used as their subject or object (Alle-

a https://orcid.org/0000-0002-5618-9776
b https://orcid.org/0000-0003-0543-1232

mang et al., 2020). Moreover, data on the Web is
of variable quality, which requires caution in using
it. Therefore, there is a need for on-demand online
search and reasoning for equivalence relations. To
tackle this problem, we explored the research ques-
tion: Can valid owl:sameAs relationships for a given
URI be detected automatically and online?. In this
article, we answer the following sub-questions:

• Where to find and how to retrieve SPARQL end-
point information to be explored for equivalence
detection?

• How to identify and correct misinformation about
owl:sameAs statements?

• How to detect wrong type for assserted
owl:InverseFunctionalProperty and
owl:FunctionalProperty properties?

The paper is structured as follows. We survey
the related work in Section 2 and position our con-
tribution. In Section 3 we introduce the definition of
the equivalence detection task and the vocabulary we
used to solve it. Then, in Section 4 we describe how
we proceed to obtain information on datasets and their
SPARQL endpoints. Section 5 details how we pro-
ceed to collect and curate equivalence links. We eval-
uate the quality of the retrieved equivalent links on a
public benchmark, comparing to state of the art base-
lines, and discuss our results in Section 6. We con-
clude with some perspectives in Section 7.

Gazzotti, R. and Gandon, F.
When owl:sameAs is the Same: Experimenting Online Resolution of Identity with SPARQL Queries to Linked Open Data Sources.
DOI: 10.5220/0010654400003058
In Proceedings of the 17th International Conference on Web Information Systems and Technologies (WEBIST 2021), pages 41-52
ISBN: 978-989-758-536-4; ISSN: 2184-3252
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

41



2 RELATED WORK

Surprisingly, there are not so many available services
to establish owl:sameAs relationships for a given
URI.

The sameAs.org (Jaffri et al., 2008) is one of the
pioneers to propose a service of URIs coresolution.
The equivalences are collected through different RDF
files and SPARQL endpoints chosen by the authors.

Equivalent URIs are stored with different iden-
tifiers depending on the context. Different corefer-
ence contexts are captured by different coreference
resolution services, because depending on the us-
age and context, an equivalence either holds or not.
A context is represented as a bundle attached to a
URI. However the approach mixes different predi-
cates which can be far from a owl:sameAs, e.g.,
ov:similarTo1 is a property for things that are not
linked by owl:sameAs, but that are similar to a cer-
tain extent. The system also does not ensure that re-
sources are actually equivalent and proposes only one
concept of equivalence. Therefore, it does not allow
to distinguish different notions of equivalence as indi-
cated by (Halpin et al., 2010) and defined in the Simi-
larity Ontology.2 In addition, with the online portal, it
is unfortunately not possible to distinguish the differ-
ent contexts considered for a given resource. Unlike
the other works, sameAs.org does not use a curation
algorithm for owl:sameAs relationships.

The LODsyndesis3 (Mountantonakis and Tz-
itzikas, 2018) platform, in addition to providing vari-
ous services and metrics related to many datasets, also
performs coreference resolution. The algorithm in-
troduced by the authors incrementally uses the same
identifier for pairs of URIs (linked by the owl:sameAs
property) defining the same resource. The authors
show that by leveraging content or graph metrics, er-
roneous equivalence links can be detected. Their ap-
proach relies on the data provided by (Schmachten-
berg et al., 2014) that are crawled from the LOD
Cloud with LDSpider,4 on various datasets: Yago,
datahub.io, DBpedia v3.9, Wikidata, Freebase and
LinkLion. Unfortunately, the number of coreferences
that this service can offer is sometimes limited.

The sameAs.cc dataset accessible through the
SPARQL endpoint5(Raad et al., 2020) exploits the
LOD-a-Lot dataset (Fernández et al., 2017) and the
Louvain algorithm (Blondel et al., 2008) for detect-

1PREFIX ov: http://open.vocab.org/terms/
2https://web.archive.org/web/20170510073633/http:

//kakapo.dcs.qmul.ac.uk/ontology/musim/0.2/musim.html
3https://demos.isl.ics.forth.gr/lodsyndesis/
4https://github.com/ldspider/ldspider
5http://sage.univ-nantes.fr/see/sameAs

ing communities, an approach that leads them to iden-
tify errors between owl:sameAs relations. This ap-
proach succeeds in extracting more equivalence links
than in the previous work, LODsyndesis (Mountan-
tonakis and Tzitzikas, 2018). Different human an-
notators evaluated a subset of 200 owl:sameAs rela-
tions based on their descriptions to assess the rele-
vance of these relations based on different thresholds
of degrees of error. They apply their findings on these
thresholds to cluster equivalence links that relate to
the former U.S. president Barack Obama.6 provid-
ing a valuable benchmark. One of the disadvantages
of using the Louvain algorithm is that it must be run
several times on the complete set of alleged equiva-
lences to get the “best clusters” with no ensurance of
reaching the global maximum of modularity, as it is a
greedy and non-deterministic method.

Our approach differs from previous work in that
it is not performed on a locally stored dataset but dy-
namically and online, on the SPARQL endpoints of
many datasets. The list of considered endpoints is
open and can be extended at will with new public
and private endpoints as well as their description rel-
evant to the application. Moreover, it uses other rela-
tions than owl:sameAs to define equivalence relations
between different resources since we also rely on
the properties owl:InverseFunctionalProperty
and owl:FunctionalProperty. We also pro-
pose several techniques to curate the equiva-
lences found on the fly and the properties de-
clared as owl:InverseFunctionalProperty and
owl:FunctionalProperty. We did this after notic-
ing their definitions on datasets may differ from what
was intended by the creators of the ontologies (see
Section 5). Our algorithm also relies almost exclu-
sively on SPARQL queries, ensuring a high compat-
ibility with different engines and a declarativity that
brings flexibility and extensibility in the sources and
rules considered. The idea is to provide and evaluate
a mechanism that could be implemented on top of any
SPARQL engine and customized to any application.

3 SAMELIVE APPROACH:
ALGORITHM AND TASK
DEFINITION

Let S = s1, ...,sk be the set of k seed URIs si for
which we want to obtain equivalent URIs. Some of
these seed URIs may be equivalent, i.e., they share a
owl:sameAs relationship, which will result in faster

6https://github.com/raadjoe/obama-lod-identity-
analysis

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

42



convergence of the algorithm. We show this in the
case study described in sub-section 6.3. First we need
to identify a set of endpoints N = E1, ...,Em that we
will query to discover equivalent URIs. The process
to calculate the closure of the equivalent relations is a
greedy incremental algorithm that iterates on a grow-
ing collection of URIs linked by equivalence state-
ments until no more new statement can be obtained
from the set of endpoints N. At each iteration we also
test an extensible set of declarative heuristics to detect
if an equivalence is an error and avoid its transitive
propagation.

Moreover, to ensure portability, distributability,
and federability, the algorithm we have written is pri-
marily in SPARQL 1.1, with calls in SPARQL 1.07

when we contact online SPARQL endpoints. Many
endpoints on the Linked Open Data still do not sup-
port SPARQL 1.1, but the functionalities of this lan-
guage allow us on a local endpoint to process proper-
ties of type (inverse) functional as well as to perform
curation of owl:sameAs relationships and to provide
statistics on the extracted data. We also trace all the
steps of the algorithm by the generation of several
named graphs and with the help of a small dedicated
vocabulary introduced in this section and summarized
in Table 1. We use a set of classes and properties to
represent the input and output of each iteration. To-
gether with the named graphs they capture the state of
each iteration and the provenance of our results.

In the rest of this section, anchors in footnotes re-
fer to labelled functions in the source code. The ini-
tialization of the algorithm consists of:

1. identifying datasets and their corresponding
SPARQL endpoints and populating the named
graph same:N with their description and check-
ing their availability (see Section 4, done with 8
SPARQL queries, 3 of them being used for data
cleaning);8

2. populating the named graph Q0 with the set
S of seed URIs for which we want to obtain
equivalent URIs. These seeds URI are typed as
same:Target (done with 1 SPARQL query);9

3. identifying and storing the definitions of
owl:InverseFunctionalProperty and
owl:FunctionalProperty in the named graph
kg:default: in a preselection step the (inverse)
functional properties identified from N are placed
in the named graph same:Properties alongside

7https://www.w3.org/TR/rdf-sparql-query/
8Functions N1 to N3 load information about datasets,

CN1 is responsible for data cleaning, A1 is responsible for
checking endpoint availability.

9Function P1 populates Q0 with seed URIs.

with their namespaces to deference them. If they
cannot be dereferenced they are stored in the
named graph same:NotDeferencedProperties
to be put to a vote (see the sub-section 5.1,
done with 12 SPARQL queries, 2 of them being
run in a loop).10 This step refers to the block
corresponding to the first “if” in algorithm 1.

The core of the algorithm (mainly inside the
“while” loop of algorithm 1) consists of iterating on
a growing collection of named graphs Qi for which at
each iteration i:

1. we query Qi−1 from the previous iteration for in-
stances of same:Target that are not instances of
same:Rotten (see the Figure 1), and if the result
is empty, we stop (done with 1 SPARQL query);11

2. for each target URI we query the available end-
points in same:N for owl:sameAs relationships
(done with 1 SPARQL query);12

3. for each target URI we query the
available endpoints in same:N for
owl:InverseFunctionalProperty and
owl:FunctionalProperty concerning them
and infer owl:sameAs relations (done with 2
SPARQL queries);13

4. the obtained owl:sameAs are added in a specific
named graph with a name based on the endpoint
and the iteration in which the owl:sameAs rela-
tionship was identified;

5. we check that the owl:sameAs relationships con-
form to some rules (described in the sub-section
5.2.1) and if it is not the case, identified instances
of same:Target become of type same:Rotten
and are placed in the named graph Q−1 be-
fore their relationships are removed: incom-
ing and outgoing owl:sameAs relationships from
a same:Rotten are deleted. This also ap-
plies to its owl:InverseFunctionalProperty
and owl:FunctionalProperty, and the out-
going same:Target from a same:Rotten are
deleted if it has no other same:Target incoming
relationship (done with 5 SPARQL queries, 3 of

10Function G− (I)FP1 retrieves the properties known as
(inverse) functional, LDD− (I)FP1 attempts to deference
and load the RDF document of properties from their names-
paces, LDS− (I)FP1 stores as information that an endpoint
has the schema of a property, V − (I)FP1 performs the vot-
ing on the type of the property.

11Function T 1 gets the same:Target resources in Qi−1.
12Function S1 retrieves owl:sameAs relationships.
13Function (I)FP1 retrieves the actual instances of (in-

verse) functional properties and (I)FP2 infers owl:sameAs
relationships from them.

When owl:sameAs is the Same: Experimenting Online Resolution of Identity with SPARQL Queries to Linked Open Data Sources

43



them being used to remove relationships);14

6. the new resources are added to named graph Qi.
The stop condition is that the resources to be ex-

plored are exhausted, i.e., there are no more resources
to explore for the current iteration i and Qi is empty.
A last check with (c.f., the rule #2, sub-section 5.2.1)
is necessary to ensure that there is no relationship be-
tween two resources sharing the same authority (re-
sources obtained at i). The pseudo-code of SameLive
is represented by the algorithm 1.

Algorithm 1: Online resolution of identity with the Same-
Live algorithm.

Initialize Vocabulary // Also initialize Q−1
Initialize N // Availability is checked
Initialize Q0
// Variable to consider or not

(inverse) functional properties
properties condition = {True, False}
if properties condition then

Search properties typed as (inverse) functional
over N

Deferenciation of these properties
Search schema of properties not deferenced

over N
Voting for the properties not deferenced

i = 1
L = length(Q0)
while L != 0 do

Initialize Qi
Qi += Retrieve owl:sameAs relations of Qi−1

over N
if properties condition then

Retrieve triples comporting Qi−1 who
have a property typed typed as (inverse)
functional over N

Qi += Infer owl:sameAs relations with the
triples previously extracted over N

// Curation rules have an impact on
all Qi

Q−1 += Apply curation rules
i += 1
L = length(Qi−1)

Q−1 += Apply curation rule #2

4 EXTRACTION AND
INTEGRATION OF
ENDPOINTS’ INFORMATION

The first step is to identify the datasets that can con-
tribute to solving this problem. Various strategies ex-
ist for this purpose such as relying on search engines,

14Function R1 refers to the rule #1 used to detect
same:Rotten, respectively R2 refers to the rule #2, RC1
is used to remove relationships ; details in Section 5.2.

using previously crawled RDF data (i.e., using the
RFC 8615,15 etc.) or even catalogs referencing these
datasets. To achieve our means, we rely on famous
catalogs listing datasets, using their metadata as well
as the URLs for their SPARQL endpoints. These cat-
alogs are regularly updated so we can keep up with
the latest updates of the Web of Data. Moreover this
approach supports the addition of new catalogs at any
time, including private endpoints.

However, just because a dataset is referenced in
a catalog does not mean it is available. To define
if a SPARQL endpoint is available or not, we rely
on the EndS ontology (Endpoint Status Ontology)16

which is an extension of VoiD.17 We use in partic-
ular the property ends:statusIsAvailable. This
ontology is involved in the description of the differ-
ent datasets retrieved from the catalogs detailed in the
following sub-sections. For each source we create a
distinct named graph and then combine all undupli-
cated results (i.e., different SPARQL endpoint URL)
into one initial named graph same:N containing all
our sources. From the different catalogs we present,
we only rely on the asserted availability of endpoints
from YummyData. The other catalogs listed here do
not have regular updates on this property and we per-
form the availability ourselves.

4.1 voiD Store

We rely on the voiD store18 and query it for instances
of void:Dataset with their void:sparqlEndpoint
to access them. To avoid duplicating entries for
a same dataset -as datasets can be referred with
several types in the voiD store- or incomplete
results we limit ourselves to the extraction of re-
sources of type void:Dataset and we ensure to
not retrieve blank nodes. We also check that these
resources have a title (property dcterms:title)19

and, of course, a SPARQL endpoint (property
void:sparqlEndpoint). Any doubloon is elim-
inated (i.e., datasets using the same SPARQL
endpoint), datasets can be represented several times
in the voiD store. The retrieval of the information
about endpoints and the removal of the doubloons is
carried out in two steps to overcome the limitations of

15https://tools.ietf.org/html/rfc8615
16PREFIX ends: https://labs.mondeca.com/vocab/

endpointStatus/, archive link: https://web.archive.org/
web/20210302021149/https://labs.mondeca.com/vocab/
endpointStatus/

17https://www.w3.org/TR/void/
18http://void.rkbexplorer.com
19PREFIX dcterms: http://purl.org/dc/terms/

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

44



Figure 1: Workflow diagram of the steps followed to retrieve equivalent links from the starting resources in Q0 with the
available endpoints in same:N.

Table 1: Main vocabulary introduced for the equivalence discovering algorithm.

Element Main type Role
same:Rotten owl:Class Resource that is source of potentially erroneous relationships.
same:Target owl:Class Targeted resource for discovering equivalence relationships.
same:hasAuthority owl:DatatypeProperty Authority of the resource.

same:hasIteration owl:DatatypeProperty Iteration of the equivalence relationships algorithm during
which the named graph was generated.

same:hasNamespace owl:DatatypeProperty Namespace of the resource.
same:statementInDataset rdf:ObjectProperty Points to the void:Dataset that a statement is a part of.
same:votingType owl:ObjectProperty rdf:type of the resource determined after voting.

same:N rdfg:Graph Named graph that contains information about the
void:Dataset resources.

same:Properties rdfg:Graph Named graph that contains asserted owl:InverseFunctionalProperty
and owl:FunctionalProperty.

same:PropertiesNotDeferenced rdfg:Graph Named graph that contains not deferenced properties after
the LOAD clause.

same:Q-1 rdfg:Graph Named graph that contains the same:Rotten resources.
same:Q0 rdfg:Graph Named graph that contains the starting same:Target.

same:Qi rdfg:Graph Named graph that contains the same:Target retrieved
at the i iteration of the equivalence relationships algorithm.

the voiD store SPARQL endpoint.20. The endpoint
of the voiD store has recently been closed due to the
decision of the service maintainers, however our ap-
proach still works with the other catalogs and we pro-
vide code to integrate its data if someone decides to
continue maintaining this service. Our results were
obtained while this service was still in operation. A
large majority of the core datasets of the Linked Open
Data are also referenced by the LODCloud.

4.2 LODCloud

The main purpose of the LODCloud21 website is to
provide a diagram of the LOD cloud. The JSON data
used to build it are available22 and we translate se-
lected parts of them in RDF as different data are rep-
resented within this JSON document. We first check
if a dataset has an entry related to a SPARQL endpoint

20http://void.rkbexplorer.com/sparql
21https://lod-cloud.net/
22https://lod-cloud.net/lod-data.json

(“sparql” field) in which case we include it. If we find
information about a voiD page, we store this data as
well. However, some of the information contained in
the lod-cloud is not always up to date: an endpoint
marked as unavailable may be in fact available at the
time of our query and vice-versa. Therefore, before
executing our approach we check the availability of
the endpoints to avoid waiting unnecessarily for a re-
sponse from an unavailable endpoint.

4.3 YummyData

YummyData23 (Yamamoto et al., 2018) is a site ref-
erencing and monitoring various SPARQL endpoints
in the biomedical domain. We first get the URL lead-
ing to the SPARQL endpoint of the datasets from the
JSON data obtained from their API. Then we check
if the datasets have a VoiD annotation (‘void’ field
equal to True) and in such case we remove the suf-
fixes ”virtuoso/sparql” or ”sparql” from the URLs of

23https://yummydata.org/

When owl:sameAs is the Same: Experimenting Online Resolution of Identity with SPARQL Queries to Linked Open Data Sources

45



the SPARQL endpoints and we add as a new suffix
”.well-known/void” to refer to the VoiD page describ-
ing the datasets.24 For instance, to obtain the VoiD
page of the Protein Ontology the URL https://sparql.
proconsortium.org/virtuoso/sparql becomes https://
sparql.proconsortium.org/.well-known/void).

Now that we have described how we retrieve in-
formation about SPARQL endpoints, we will get to
the heart of the matter by describing the resources
needed by the algorithm and some of its key steps.

5 EQUIVALENCE LINKS
RETRIEVAL AND DATA
CURATION

5.1 Collecting True Instances of
(Inverse) Functional Properties

To establish identity, we collect rele-
vant owl:InverseFuntionalProperty and
owl:FunctionalProperty that we store in the
named graph same:Properties.

According to OWL specifications: if a,b,c are
three resources, (i)25 if there exist inverse functional
property relations ip(a,b) and ip(c,b) there also ex-
ists an equivalence relation owl : sameAs(a,c) and
(ii)26 similarly, if there exist functional property re-
lations f p(a,b) and f p(a,c) there exists an owl :
sameAs(b,c) equivalence relation.

However, depending on the SPARQL end-
points, the properties’ definitions may vary and
contain abusive usage of these types or at least
usage that should be limited to a local closed
world. For instance, rdfs:label is defined
as an owl:InverseFunctionalProperty in the
National Digital Data Archive of Hungary27 or
agront:isPartOfSubvocabulary28 is defined as
a owl:FunctionalProperty by the LusTRE end-
point.29 Table 2 provides some statistics we com-

24see VoiD documentation on “discovering”: https://
www.w3.org/TR/void/#well-known.

25https://www.w3.org/TR/2012/REC-owl2-syntax-
20121211/#Inverse-Functional Object Properties

26https://www.w3.org/TR/2012/REC-owl2-syntax-
20121211/#Functional Object Properties

27http://lod.sztaki.hu/sparql
28http://aims.fao.org/aos/agrontology#

isPartOfSubvocabulary
29the endpoint http://linkeddata.ge.imati.cnr.it:

8890/sparql includes the EARTh -Enviromental Ap-
plications Reference THesaurus- and ThIST -Italian
Thesaurus of Earth Sciences- datasets)

puted about this problem. The following steps (sec-
tions 5.1.1 to 5.1.3) refer to the block corresponding
to the first “if” in algorithm 1 and the item 3 in the
first list in Section 3.

5.1.1 Initialization

We first query all available endpoints (prop-
erty ends:statusIsAvailable set to true) in
the named graph same:N to return their proper-
ties of type owl:InverseFunctionalProperty and
owl:FunctionalProperty. A filter is performed on
the properties defined as blank nodes. Then, these
data are stored as RDF* triples (Hartig and Thomp-
son, 2014) in the named graph same:Properties
and we keep as information the dataset from which
they come with the same:statementInDataset
property. These triples are stored in RDF* to record
the statements typing properties together with the
provenance dataset in which they were found, i.e.:
<<foaf:firstName a owl:FunctionalProperty>>

same:statementInDataset <http://uriburner.com/>

We then perform two types of curation: curation
by schema and curation by voting. Properties for
which the definition could not be deferenced or found
in the SPARQL endpoints are excluded.

5.1.2 Curation by Schema

We ensure that the use of these properties corresponds
to what was intended by the creators of the ontologies
is to extract the schemas of these properties by def-
erencing them. To do so, we use the namespaces of
these properties which we have inserted into our lo-
cal triplestore in the named graph same:Properties
using the property same:hasNamespace and perform
the SPARQL clause:
LOAD SILENT <namespace> INTO GRAPH kg:default;

Using namespaces to retrieve RDF documents is
more efficient since it avoids downloading multi-
ple times the same document where multiple prop-
erties of type owl:InverseFunctionalProperty
and owl:FunctionalProperty are defined. These
documents are then loaded into the named graph
kg:default. This first step already corrects some as-
sertions about properties (see Table 2).

5.1.3 Curation by Voting

In a second step, we handle properties for
which no schema could be deferenced. We
have placed these properties in the graph named
same:NotDeferencedProperties to distinguish
them from the others. We perform queries on the
available endpoints in the set N.

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

46



After identifying whether the endpoints have
the schemas of a property, we count the number of
endpoints including the schemas against the property
types so that we can perform a vote on the most
accepted definition of a property. The condition for
assigning the type (property same:votingType)
owl:InverseFunctionalProperty and/or
owl:FunctionalProperty is that a property
must be defined as such, by at least half of the
SPARQL endpoints that store a schema for the
given property. The statistics to compute the type
of these properties are stored in the named graph
same:PropertiesNotDeferencedStatistics. For
this purpose we declared several properties such as
same:nbOfTimesDefinedAsFunctionalProperty
and same:inNbOfDatasetWithSchema. By
this means, we are able to identify for ex-
ample the property sparql:endpoint30 as an
owl:InverseFunctionalProperty and the
property semsci:CHEMINF 00000931 as a
owl:FunctionalProperty.

From the set of curated properties, we can infer
owl:sameAs relationships of the same:Target of the
current Qi with the available endpoints of same:N.

5.2 Extraction of owl:sameAs
Properties

Now that we have inspected and corrected the
type of the owl:InverseFunctionalProperty and
owl:FunctionalProperty properties, it is possi-
ble to infer owl:sameAs relationships. To do this,
we extract the owl:sameAs relationships for the
same:Target resources and curate them by follow-
ing an iterative mechanism. The goal being not to
question the endpoints twice about the same resource
same:Target for its owl:sameAs relationships. For
this purpose, these resources are stored in different
named graphs same:Qi at each iteration i. We query
the available endpoints in N with the same:Target
of the current iteration (in same:Qi) and we store the
resulting equivalent URIs in the next named graph
same:Qi+1. A filter clause ensures that we do not
store an already existing same:Target in the named
graph same:Qi+1. The stop condition of the algo-
rithm is to exhaust all instances of same:Target.
This step refers to the block corresponding to the
“while” loop of algorithm 1.

Working with live endpoints of the World
Wild Web, we pay attention to technical details

30http://www.w3.org/ns/sparql-service-description#
endpoint

31https://semanticscience.org/resource/CHEMINF
000009

such as the fact that we have to query some
endpoints with only URIs that include ASCII
characters since we have identified some SPARQL
endpoints that do not support non-ASCII char-
acters.32 We actually extract and store URIs
containing non-ASCII characters but we perform
a transformation using the following SPARQL
clause: FILTER(!REGEX(str(?URITarget),
"[ˆ\x00-\x7F]", "i")). This point can be im-
proved later in a future work with a more detailed
description of SPARQL access points. We also
extract the authority component of the URIs33 and
store them with the same:hasAuthority property.
This will be used to curate owl:sameAs relationships.

5.2.1 Curation of the owl:sameAs Links

We carry out the curation of owl:sameAs relation-
ships assuming that equivalent resources with URIs
defined within the same authority must explicitly be
asserted as equivalent by that authority. These links
were obtained through a direct owl:sameAs relation-
ship or from a owl:InverseFunctionalProperty
and a owl:FunctionalProperty. Thus, we will en-
sure that the resources linked by owl:sameAs rela-
tionships comply with the rules defined below.

We identified two different patterns for erroneous
relationships linked through resources that we call
same:Rotten. More patterns may be added to fur-
ther extend the constraints that equivalent resources
must meet.

For complexity reasons we split the curation be-
tween two rules: one operating on the results from the
same authority obtained at distinct iterations (rule #1)
and one operating on the results of the same authority
at the same iteration (rule #2):

• Rule #1 : Let a: be the prefix of an au-
thority and b: the prefix of another author-
ity, if there is a sameAs(a:1,b:1) relation-
ship and a sameAs(b:1,a:2) relationship and no
sameAs(a:1,a:2) relationship, this rule states
that b:1 is of type same:Rotten. This rule is
applied regardless of the length of the path of
owl:sameAs between a:1 and a:2.

• Rule #2 : Let a: be the prefix of an au-
thority and b: the prefix of another author-
ity, if there is a sameAs(a:1,b:1) relation-
ship and a sameAs(a:1,b:2) relationship and no
sameAs(b:1,b:2) relationship, this query states
that b:1 and b:2 are both of type same:Rotten.

32e.g. http://linkedlifedata.com/sparql
33URI = scheme:[//authority]path[?query]

[#fragment] in RFC 3986

When owl:sameAs is the Same: Experimenting Online Resolution of Identity with SPARQL Queries to Linked Open Data Sources

47



The Figure 2 displays two examples on which
these rules are applied. Once identified as such
we delete the owl:sameAs relations including a
same:Rotten and the same:Target resulting from
these resources. Before the application of the two
rules above, all resources (a:1, a:2, b:1, b:2) are of
type same:Target. Contrarily to other methods, this
approach does not require the extraction of all the
alleged existing equivalence relations for processing
their quality and it also trims as soon as possible the
exploration of bad quality equivalences and their tran-
sitive closure.

6 EXPERIMENTAL PROTOCOL
AND EVALUATION

6.1 Quantitative Evaluation on Linked
Open Data

Table 2 shows statistics about the properties
of type owl:InverseFunctionalProperty
and owl:FunctionalProperty found online
and on which we applied the process de-
scribed in section 5.1 to collect true instances
of these types. Only 22% of the RDF docu-
ments queried that a priori contained properties
of type owl:InverseFunctionalProperty or
owl:InverseFunctionalProperty could be
loaded. Approximately 17% of the properties claimed
of type owl:FunctionalProperty were verified as
such by voting or dereferencing, while for the prop-
erties of type owl:InverseFunctionalProperty,
they have been verified as such in 60% of the
cases. The large majority of properties of type
owl:InverseFunctionalProperty have been
deferenced, while about half of the properties of
type owl:FunctionalProperty were identified by
voting.

6.1.1 Protocol, Dataset and Baselines

The different experiments were conducted on an HP
EliteBook 840 G2, 2.6 hHz, 16 GB RAM with a vir-
tual environment under Python 3.8.5 and the software
Corese Semantic Web Factory34 (Corby and Zucker,
2010) version 4.1.6d deployed locally. Corese is
used as a local triplestore on which we mainly use
SPARQL 1.1 Query and Update features. We eval-
uated our approach on the Barack Obama identity
links knowledge graph developed by (Raad et al.,

34https://project.inria.fr/corese/

2020).35 Regarding the initialization, we declared for
our algorithm the target URI dbr:Barack Obama36 (a
same:Target) in the named graph same:Q0. The
different closures on the Barack Obama entity with
which we compare ourselves (with sameAs.cc (Raad
et al., 2020), LODsyndesis (Mountantonakis and Tz-
itzikas, 2018) and sameas.org (Jaffri et al., 2008)) and
our approach, SameLive, are the following:

• Ground truth: The manual annotation of the
closure of the owl:sameAs extracted from the
LOD-a-lot dataset distributed into 8 identity sets
(Barack Obama, Obama’s Presidency, Obama’s
Presidential Transition, Obama’s Senate Career,
Obama’s Presidential Centre, Obama’s Biogra-
phy, Obama’s Photos, Black President). The
undetermined URIs included in the identity
cluster about Barack Obama are essentially URIs
for which we do not have enough semantics to
confidently annotate them.

• sameAs 0.99: Results after removing the relations
with an error degree greater than 0.99 with the
method used by sameAs.cc where the error degree
is based on the communities resulting from the
Louvain algorithm. This approach leads to two
identities sets B1 and B2, and enabled the separa-
tion of URIs referring to the Obama’s presidency
and his presidential transition from the other iden-
tity sets. However, these two sets are still incon-
sistent since they do not allow to perform a closure
on a single real world entity.

• sameAs 0.4: Results after removing the relations
with an error degree greater than 0.4 in the method
of sameAs.cc. This approach leads to 219 identity
sets (C1 to C219) with only one identity set C1 with
non-singleton URIs.

• sameAs.org: Results were obtained through the
API of sameAs.org,37 and we corrected URI en-
coding issues to avoid counting them as new ones.

• LODsyndesis: To detect errors, both clustering
with similarity function (content based detection)
and shortest path between a pair of instances
(graph based detection) are used. Results were
obtained through the API of LODsyndesis,38 and
we corrected their encoding issues too.

35https://github.com/raadjoe/obama-lod-identity-
analysis

36PREFIX dbr: http://dbpedia.org/resource/
37http://sameas.org/rdf?uri=http://dbpedia.org/resource/

Barack Obama
38https://demos.isl.ics.forth.gr/lodsyndesis/rest-

api/objectCoreference?uri=http://dbpedia.org/resource/
Barack Obama

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

48



Figure 2: Examples of resources identified as same:Rotten (green dots) in a path of owl:sameAs relations with the rules
mentioned in the sub-section 5.2.1. The red pause icon indicates that there is no owl:sameAs relationship between two
resources.

Table 2: Statistics linked to the properties of type owl:InverseFunctionalProperty and owl:FunctionalProperty. The
incorrect properties are stated as such after loading the RDF document defining them.

Category Number of elements
Properties asserted as owl:InverseFunctionalProperty 3784
Properties asserted as owl:FunctionalProperty 13298
Not deferenced properties among those extracted 14192
Incorrect owl:InverseFunctionalProperty properties 10
Incorrect owl:FunctionalProperty properties 35
Properties participating in the voting process 1220
Properties voted as owl:InverseFunctionalProperty 123
Properties voted as owl:FunctionalProperty 1111
Properties voted as not owl:InverseFunctionalProperty 1097
Properties voted as not owl:FunctionalProperty 109
Final number of owl:InverseFunctionalProperty 2288
Final number of owl:FunctionalProperty 2261
Number of loaded RDF documents 168
Number of missing RDF documents 781

• SameLive: Our closure performed on the data ex-
tracted from the SPARQL endpoints indexed by
the voiD Store, the LODCloud and the Yummy-
Data websites. O1 only includes resources of
type same:Target, O2 contains both resources of
types same:Target and same:Rotten

6.1.2 Closure Evaluation

Table 3, based on the work of (Raad et al., 2020),
reports the results of our approach compared to
sameAs.cc, LODsyndesis and sameAs.org on the
Barack Obama identity links knowledge graph.

6.1.3 Discussion

After three iterations of the algorithm, we reached
the closure of our solution. The closure on

dbr:Barack Obama by considering only owl:sameAs
relationships takes 40 minutes, and consider-
ing the owl:InverseFunctionalProperty and
owl:FunctionalProperty properties takes 21 hours
and a half with a regular laptop setup described in sec-
tion 6.1.1. The execution time comes mainly from the
endpoint querying. We intend to look at approaches to
improve this with timeouts and further parallel query-
ing. We are currently working on a cluster version of
SameLive for this purpose. In terms of statistics that
represent 1 starting URI same:Target (in Q0), 130
in Q1, 9 in Q2, 1 in Q3 and 53 same:Rotten in Q−1.

Assessing our results on this graph presents a clear
disadvantage for our approach because it involves a
snapshot of the 2015 Linked Open Data (LOD). As
a result, links that have disappeared are not included
in our approach. However these are the best base-
lines as far as we know and our crawling-free on-

When owl:sameAs is the Same: Experimenting Online Resolution of Identity with SPARQL Queries to Linked Open Data Sources

49



Table 3: Comparison of the owl:sameAs closures on dbr:Barack Obama.

Ground truth sameAs 0.99 sameAs 0.4 sameAs.org LODsyndesis SameLive
Real World Entity A1 B1 B2 C1 S1 L1 O1 O2
Barack Obama 260 260 0 120 240 19 105 116
Other Real World Entity 78 10 68 0 22 0 0 0
New URIs outside A1 0 0 0 0 413 14 27 67
Undetermined URIs 102 92 10 1 32 4 9 11
Identity Sets 1 2 219 1 1 1 1
Total URIs in Identity Set 440 362 78 121 707 37 141 194

line approach still obtains slightly lower results but
comparable to the best approach, the sameAs 0.4 pro-
posed by (Raad et al., 2020). Moreover, if we fo-
cus on the advantages of SameLive, the online na-
ture of it, we are able to identify a total of 141
equivalent resources of type same:Target and 53
same:Rotten (subtraction of sets O2 and O1 on the
total of URIs), and 67 new URIs about Barack Obama
compared to the LOD-a-Lot dataset. As an exam-
ple, we identified as same:Rotten URIs coming from
URIBurner that include resources of dubious quality
such as “The Irishman” on Netflix.39 11 resources of
type same:Rotten are considered as belonging to the
identity set of Barack Obama (subtraction of sets O2
and O1 on the entity set about Barack Obama).

The SPARQL query we use to detect potential
errors eliminates redirect links in a dataset if they
are not declared as owl:sameAs in it (or by exten-
sion if there is no owl:InverseFunctionProperty
or owl:FunctionalProperty relationship in the
same dataset). To increase this coverage with
our approach, we would have to include spe-
cific properties to redirects such as the property
dbo:wikiPageRedirects40 with DBpedia).

6.2 Qualitative Evaluation on Specific
Examples

From the Barack Obama identity links knowledge
graph, one can notice that: some of the re-
sources evaluated as being of the same nature as
dbr:Barack Obama are no longer valid,41 URLs redi-
recting to valid resources are considered valid,42

39e.g., http://linkeddata.uriburner.com/about/id/
entity/https/www.nytimes.com/2019/12/06/business/
media/irishman-scorsese-netflix-ratings.html?smid=tw-
nytimes&smtyp=cur#entity 534366

40PREFIX dbo: http://dbpedia.org/ontology/
41e.g., this is not visible on web.archives.org and is now

an advertising website:
http://www.ontosearch.com/2008/01/identification/EID-
3b6e3fb1eb4bef8e669277e73d2e7d56

42e.g., http://dbpedia.org/resource/44th president of the
united states of america

while other more questionable resources are also con-
sidered valid.43

Depending on the application, it may be unnec-
essary to obtain such a degree of confidence for
obtaining equivalence links as proposed by sameAs
0.99, but in the case where one really wants to
obtain owl:sameAs relations, only sameAs 0.4,
LODsyndesis and our approach provide an answer.
With the graph of identity links about Barack Obama
only entities more or less related to Obama exist.
However this is not the case for all the graphs
obtained by extracting owl:sameAs relationships
(i.e., previous extractions present on the English
DBpedia endpoint linked dbr:Berlin to dbr:Tirana,
dbr:Gaspé Peninsula, dbr:Jersey City, New Jersey,
dbr:Point Reyes National Seashore,
dbr:Flint, Michigan, and this is still the case on
sameAs.org). Thus, even if we lower our similarity
expectations, the sameAs 0.99 approach does not
necessarily guarantee that on such graphs its results
do not keep wrong relationships.

Our system, unlike sameAs.cc, discriminates redi-
rects to a resource if it does not have a direct
owl:sameAs relationship with that resource. This
point may have its advantage in error detection. How-
ever the public benchmark on which we are evaluating
discriminates against this position.

Another important point is that two resources be-
longing to the same identity cluster may result in the
generation of different equivalence links depending
on the starting resources. The reason for this is that
we do not process the whole graph of equivalences,
the greedy algorithm starts from the set S of seeds and
stops as soon as possible to avoid propagating errors
or querying the endpoints more than necessary.

6.3 Application Evaluation on Specific
Use Case

The source code of the project and its instructions are
available at https://github.com/Wimmics/SameLive
and the algorithm vocabulary at https:

43e.g., http://dbpedia.org/resource/B-Rock %
22The Islamic Shock%22 Hussein Superallah Obama

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

50



//ns.inria.fr/same/same.owl. Two modes of
the algorithm are available to consider or not
the owl:InverseFunctionalProperty and
owl:FunctionalProperty. We also performed
an evaluation on a real application: the integration of
the knowledge graphs obtained from different named
entity recognition and linking methods applied to the
same corpus. In this type of usecase, to consolidate
the knowledge graph and support further processing
and visualization, it is important to detect that two
URIs extracted by two different annotators are in
fact identifying the same resource. We tested our
approach on the public dataset CovidOnTheWeb
(Michel et al., 2020), where the authors extract
named entities but do not propose equivalence links
between the URIs produced by different annotators.
As an example we report here on the result obtained
on the article “COVID-19: what has been learned and
to be learned about the novel coronavirus disease”44

(Yi et al., 2020) and more precisely on the 312 dis-
tinct entities from DBpedia and Wikidata extracted
from it with semantic annotators.

By exploring only the owl:sameAs relationships
on these 312 starting URIs (in Q0), the algorithm
ends after 6 iterations with: 1526 same:Target in
Q1, 3762 in Q2, 1797 in Q3, 78 in Q4, 71 in
Q5 and 2 in Q6. We computed a total of 6001
same:Rotten in Q−1, correcting errors such as, for
instance, the confusion between URIs coming from
the French chapter of DBpedia identifying the kid-
ney vs. a specific portion of it called the “distal con-
voluted tubule”.45 Among the 312 seeds URIs, 32
are determined as equivalent. Some of these 32 re-
sources considered as equivalent are not available in
sameAs.cc, sameAs.org and LODsyndesis. This is
the case for example for: the respiratory syndrom
caused by SARS coronavirus 2 in DBpedia and Wiki-
data,46 and the strain of the COVID-19 itself in these
two sources.47 An interesting fact is that so far these
resources speaking about the COVID-19 do not have
any owl:sameAs relationship in the English chapter
of DBpedia.

44http://ns.inria.fr/covid19/
0eadf5a901c0d89fad2c202990056556be103e12

45e.g., http://fr.dbpedia.org/resource/Tubule distal and
http://fr.dbpedia.org/resource/Rein

46e.g., http://dbpedia.org/resource/Coronavirus disease
2019 and http://www.wikidata.org/entity/Q84263196

47e.g., http://dbpedia.org/resource/Severe
acute respiratory syndrome coronavirus 2 and
http://www.wikidata.org/entity/Q82069695

7 CONCLUSION

We proposed a method to identify owl:sameAs re-
lationships relying on the online SPARQL query-
ing of distributed datasets and using heuristic rules
to correct results. We also exploit and inspect the
quality of owl:InverseFunctionalProperty and
owl:FunctionalProperty relationships, using the
definitions given by endpoints and a voting approach.
We show that a heuristic approach can retrieve high
quality equivalence links without requiring the ex-
traction of all the alleged existing equivalence re-
lations. In addition, it is possible to use other al-
gorithms (community detection, similarity function,
graph-based metric, etc.) in addition to/instead of the
curation rules we have implemented.

Because our algorithm works online this also ex-
poses it to return different results for the same input,
for example, if a SPARQL endpoint does not answer.
Inversely, our method has the advantage of giving the
user the possibility to include or exclude endpoints
(public or private) on the fly, and thus to include lo-
cally stored datasets as long as a SPARQL endpoint is
deployed.

It may be interesting to include other dataset cata-
logs, such as the ones using the CKAN API.48 Related
to this, integrating SPARQL Micro-Services (Michel
et al., 2018) or other mapping approaches on top of
these catalogs would allow us to query them directly
with SPARQL instead of manipulating beforehand
their data with another language. The use of such
techniques could also help us extend our method to
include non-RDF datasets.

Extracting owl:InverseFunctionalProperty,
owl:FunctionalProperty and owl:sameAs
relationships is not enough for some datasets.
For instance Wikidata formalizes equivalence
relationships with identifiers (typed as exter-
nal identifier wikibase:ExternalId using
wikibase:propertyType49) leveraging URI
patterns. Also, although they seem to be rarely used,
we intend to study the inclusion of owl:hasKey to
have a modular and extensive set in the analysis of
equivalence links. In addition we plan to consider
redirects -including different scheme component of
the URIs such as HTTP/S. All these extensions could
be addressed by adding additional rules, some of
which could be the result of mining and learning
approaches. Deferencing resources deemed as
same:Rotten and comparing them to same:Target
with a similarity metric is also a direction to obtain
more results. Exploiting the underlying semantics

48https://docs.ckan.org/
49PREFIX wikibase: http://wikiba.se/ontology#

When owl:sameAs is the Same: Experimenting Online Resolution of Identity with SPARQL Queries to Linked Open Data Sources

51



(e.g., owl:differentFrom, owl:AllDifferent...)
of the resources is also worth exploring.

Finally, we intend to follow different leads to
improve the performance of our approach in terms
of speed, from query optimization (in particu-
lar for the owl:InverseFunctionalProperty and
owl:FunctionalProperty properties) and further
parallel querying. We will also study the software
and hardware architecture needed to provide a web
service with a caching system. We plan also to fur-
ther exploit the monitoring capabilities of SPARQL,
by using for example the PROV-O ontology50 to bet-
ter track the provenance of results, this could be used
in particular for owl:sameAs relationships stored in
specific named graphs (see Section 3, item 4 in the
second list). We also want to exploit timestamps to,
among other things, timely re-run queries executed a
long time ago or to query an endpoint that was previ-
ously unavailable.

REFERENCES

Allemang, D., Hendler, J., and Gandon, F. (2020). Semantic
Web for the Working Ontologist. Number 3. ACM.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefeb-
vre, E. (2008). Fast unfolding of communities in large
networks. Journal of statistical mechanics: theory
and experiment, 2008(10):P10008.

Corby, O. and Zucker, C. F. (2010). The kgram abstract
machine for knowledge graph querying. In Web In-
telligence and Intelligent Agent Technology (WI-IAT),
volume 1, pages 338–341. IEEE.

Fernández, J. D., Beek, W., Martı́nez-Prieto, M. A., and
Arias, M. (2017). Lod-a-lot. In International semantic
web conference, pages 75–83. Springer.

Gandon, F. (2018). A Survey of the First 20 Years of Re-
search on Semantic Web and Linked Data. Revue des
Sciences et Technologies de l’Information - Série ISI :
Ingénierie des Systèmes d’Information.

Halpin, H., Hayes, P. J., McCusker, J. P., McGuinness,
D. L., and Thompson, H. S. (2010). When owl:
sameas isn’t the same: An analysis of identity in
linked data. In International semantic web conference,
pages 305–320. Springer.

Hartig, O. and Thompson, B. (2014). Foundations of an al-
ternative approach to reification in rdf. arXiv preprint
arXiv:1406.3399.

Jaffri, A., Glaser, H., and Millard, I. (2008). Managing URI
synonymity to enable consistent reference on the se-
mantic web. In Proceedings of the 1st IRSW2008 In-
ternational Workshop on Identity and Reference on the
Semantic Web.

Michel, F., Faron-Zucker, C., and Gandon, F. (2018).
SPARQL micro-services: Lightweight integration of

50https://www.w3.org/TR/prov-o/

web apis and linked data. In Workshop on Linked Data
on the Web co-located with The Web Conference 2018,
LDOW@WWW 2018.

Michel, F., Gandon, F., Ah-Kane, V., Bobasheva, A.,
Cabrio, E., Corby, O., Gazzotti, R., Giboin, A.,
Marro, S., Mayer, T., et al. (2020). Covid-on-the-web:
Knowledge graph and services to advance covid-19
research. In International Semantic Web Conference,
pages 294–310. Springer.

Mountantonakis, M. and Tzitzikas, Y. (2018). Scalable
methods for measuring the connectivity and quality of
large numbers of linked datasets. Journal of Data and
Information Quality (JDIQ), 9(3):1–49.

Raad, J., Beek, W., van Harmelen, F., Wielemaker, J., Per-
nelle, N., and Saı̈s, F. (2020). Constructing and clean-
ing identity graphs in the lod cloud. Data Intelligence,
2(3):323–352.

Schmachtenberg, M., Bizer, C., and Paulheim, H. (2014).
Adoption of the linked data best practices in different
topical domains. In International Semantic Web Con-
ference, pages 245–260. Springer.

Yamamoto, Y., Yamaguchi, A., and Splendiani, A. (2018).
YummyData: providing high-quality open life science
data. Database, 2018.

Yi, Y., Lagniton, P. N., Ye, S., Li, E., and Xu, R.-H. (2020).
Covid-19: what has been learned and to be learned
about the novel coronavirus disease. International
journal of biological sciences, 16(10):1753.

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

52


