
Automatic General Metadata Extraction and Mapping in an HDF5
Use-case

Benedikt Heinrichs1 a, Nils Preuß2 b, Marius Politze1 c, Matthias S. Müller1 d and Peter F. Pelz2 e

1IT Center, RWTH Aachen University, Seffenter Weg 23, Aachen, Germany
2Chair of Fluid Systems, Technical University of Darmstadt, Darmstadt, Germany

Keywords: Research Data Management, Metadata Extraction, Metadata Generation, Metadata Mapping, Linked Data.

Abstract: Extracting interoperable metadata from data entities is not an easy task. A method for this would need to
extract non-interoperable metadata values first and then map the extracted metadata to some sensible repre-
sentation. In the case of HDF5 files, metadata annotation is already an option, making it an easy target for
extracting these non-interoperable metadata values. This paper describes a use-case, that utilizes this property
to automatically annotate their data. However, the issue arises, that these metadata values are not reusable,
due to their missing interoperability, and validatable since they do not follow any defined metadata schema.
Therefore, this paper provides a solution for mapping the defined metadata values to interoperable metadata
by extracting them first using a general metadata extraction pipeline and then proposing a method for mapping
them. This method can receive a number of application profiles and creates interoperable metadata based on
the best fit. The method is validated against the introduced use-case and shows promising results for other
research domains as well.

1 INTRODUCTION

Research data is a fundamental building block for sci-
entific discovery. Hence, it should be supported by
adequate management processes. The field of Re-
search Data Management (RDM) therefore receives
more and more attention by researchers and funding
agencies. Accordingly, this improvement is driven
by adhering to the so-called FAIR principles (Wilkin-
son et al., 2016) which describe that data and its
metadata should be findable, accessible, interopera-
ble and reusable. Metadata is understood as a data
record describing the data that serves to make it in-
terpretable. A standardized representation of meta-
data, furthermore, makes this information machine-
readable and interoperable. Especially the creation of
metadata produces a major challenge for researchers
when they want to adhere to the FAIR principles.
Commonly, metadata is only sometimes stored and
not easily reusable since no real fitting interopera-

a https://orcid.org/0000-0003-3309-5985
b https://orcid.org/0000-0002-6793-8533
c https://orcid.org/0000-0003-3175-0659
d https://orcid.org/0000-0003-2545-5258
e https://orcid.org/0000-0002-0195-627X

ble schema is defined and the creation of interoper-
able metadata creates a large overhead. This creates
problems when trying to find and reuse research data
by looking at the available metadata. A further chal-
lenge is that even if metadata is created, there is often
no validation which confirms if it adheres to a cer-
tain schema. Over the past years several technologies
evolved to record metadata. Eventually, the W3C de-
fined RDF as a standardized framework for the ex-
act purpose of describing data. Solutions exist to cre-
ate schemas and interoperable metadata which can be
validated with RDF, but they require a lot of knowl-
edge about ontologies and the semantic web which
creates an accessibility problem. Furthermore, cre-
ation of these schemas and metadata is often a tedious
manual process which is not realistic in a scaling envi-
ronment. Since there is work being performed to ease
the creation of these schemas as so-called application
profiles as described by (Grönewald et al., 2021), this
paper aims to remove the overhead knowledge neces-
sary for creating the interoperable metadata and uti-
lize these application profiles. Furthermore, the man-
ual nature of metadata creation is put into question
and an automatic model is utilized which creates the
needed metadata. The approach is assumed to be
usable across different research domains and is val-

172
Heinrichs, B., Preuß, N., Politze, M., Müller, M. and Pelz, P.
Automatic General Metadata Extraction and Mapping in an HDF5 Use-case.
DOI: 10.5220/0010654100003064
In Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2021) - Volume 1: KDIR, pages 172-179
ISBN: 978-989-758-533-3; ISSN: 2184-3228
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



idated on a real-life use-case which deals with the
mentioned issues and is described in section 2.

2 USE-CASE

In this use-case, a test rig is utilized for the experi-
mental validation of an efficiency model of positive
displacement pumps. The test rig meets the require-
ments of ISO 4409 that specifies the measurement
procedure, the testing methods and the experimental
setup of pump efficiency measurements. The setup
comprises the following instrumentation: At the in-
let and outlet of the pump under investigation, the
pressure and temperature are measured by means of
a pressure transmitter based on a piezo resistive sil-
icon sensor and a Pt100 resistance thermometer, re-
spectively. Between the electric motor and the pump,
a torque meter measures the torque momentum and
the rotating speed based on strain gauge technol-
ogy. Furthermore, a volume flow meter on the high-
pressure side of the pump measures the volume flow
by means of the screw pump principle. Figure 1
shows a schematic of the pump test rig.

Figure 1: Positive displacement pump test rig utilized for
validation of efficiency models.

In the scope of measurements conducted on the in-
troduced test rig, the unit under test, as well as the hy-
draulic oil, are replaced many times. With these com-
ponents, the resulting correlation of measured quanti-
ties and system state quantities changes as well. For
example, the material properties of the hydraulic oil,
viscosity and density, depend on the temperature in

the hydraulic system and therefore the operating point
of the investigated pump. Similarly, characteristics
of the investigated pump are computed dependent on
geometric dimensions or other parameters in conjunc-
tion with measured quantities. Additionally, measure-
ment equipment needs to be replaced depending on
their measuring range in contrast to the range of oper-
ating points to be investigated.

It is therefore imperative to organize test rig data
of the use-case as self-documenting data products:
Complete data packages that contain raw data inter-
linked with derived result data as well as correspond-
ing metadata, providing all the information needed for
the interpretation of the data contents. Section 4.4 de-
scribes the data model and file structure utilized to
achieve this. Due to the need for frequent adjustments
of the test rig setup, this use-case illustrates the need
for machine-readable metadata, that is interoperable
and applicable across multiple heterogeneous experi-
ment setups. The heterogeneity of data and metadata
proliferates further with evolving setup, or when con-
sidering a larger scope of multiple test rigs. There-
fore, methods and technologies are needed to support
the creation of semantically correct metadata which
can be validated.

3 CURRENT STATE AND
RESEARCH GOAL

The challenge of creating, extracting and mapping
metadata is not a new one and has been looked into
from different angles. This section therefore de-
scribes the current state of the created methods and
other use-cases to paint a clearer picture of the identi-
fied research gap.

3.1 Metadata Representation

Metadata, in this context, is information that states
some fact about a specific (digital) resource. These
facts can be used by machines or people to under-
stand the actual dataset. The Resource Description
Framework (RDF), described by (Wood et al., 2014),
is one of the data models conceived by the W3C for
the representation of such information on the web.
It originates from the context of the Semantic Web
and provides a well-structured way to express meta-
data in the form of triples (subject-predicate-object)
which form a graph. For this reason, RDF offers a
reasonable way to map metadata: A resource (sub-
ject) is assigned a term or a value (object) within a
specific category (predicate). It makes with that, fur-
thermore, a great candidate for describing vocabular-

Automatic General Metadata Extraction and Mapping in an HDF5 Use-case

173



ies and ontologies with the help of the Web Ontology
Language (OWL) described by (W3C, 2012). Addi-
tionally, since a need for validated metadata was de-
scribed, the Shapes Constraint Language (SHACL) is
an ideal candidate and was described by (Kontokostas
and Knublauch, 2017). By describing the require-
ments for a given metadataset it can be used as an
implementation of metadata schemas as so-called ap-
plication profiles.

3.2 Metadata Annotation

Manual metadata annotation based on some kind of
schematic is a common reality. Platforms like MetaS-
tore described by (Prabhune et al., 2018) and Coscine
described by (Politze et al., 2020) allow users to man-
ually annotate their datasets with metadata using user
or machine operable interfaces. Both platforms make
use of some kind of schema which defines the struc-
ture and requirements for a metadataset. The different
schemas used for individual metadata records allow
building a semi-structured metadata database. This
database, or knowledge graph, then contains metadata
from a variety of scientific disciplines as validated sub
sets. The difference between them is, that MetaStore
makes use of JSON and XML schemas while Coscine
makes use of the RDF language and SHACL applica-
tion profiles. While this is a technical hurdle, in the
context of metadata, JSON and XML schemas and
SHACL are widely equivalent in terms of expressive-
ness as discussed by (Labra Gayo et al., 2017).

3.3 Metadata Mapping Languages

Since manual metadata annotation might not be feasi-
ble and in certain use-cases metadata might already
be created, just not in RDF, methods were defined
to create a mapping between a specific and standard-
ized representation. R2RML described by (Das et al.,
2012) or the extension of it called RML and described
by (Ben De Meester et al., 2021) allow the creation of
mapping rules for mapping non-interoperable meta-
data to an interoperable representation. Approaches
like the one described by (Iglesias et al., 2020) imple-
ment these rules and can automatically interpret and
map metadata based on it.

3.4 Ontology Mapping

A familiar field for mapping between concepts is on-
tology mapping. The idea is that between two differ-
ent concepts the similarity is determined and it is eval-
uated how two given ontologies are linked between
each other. The researchers in (Harrow et al., 2019)

discuss different methods and the challenges for this
field. Since the presented problem and the field of on-
tology mapping is similar, these kinds of methods can
inspire an adoption to this area.

3.5 Direct Metadata Mapping

Moving from defined mapping languages and map-
ping concepts, software like (AtomGraph, 2019)
promises the direct conversion from JSON data to
RDF. This kind of conversion maps the given key-
value pairs to a static prefix which can be chosen.
This however fails to map the data to some ontology
for creating some meaning in the generated metadata,
but still makes it usable with RDF metadata stores
and SPARQL endpoints. Furthermore, in the domain
of object-triple mapping libraries, approaches spec-
ify their classes with annotations and by that estab-
lish a direct mapping as described by (Ledvinka and
Kremen, 2020). Additionally, works like the one de-
scribed in (Verborgh and Taelman, 2020) try to create
an abstraction layer for interacting with RDF and pro-
duce a mapping between web technologies and RDF
and SPARQL. They aim to solve part of the usabil-
ity problems of the semantic web and achieve that by
creating their language called LDflex.

3.6 Direct Domain-based Metadata
Mapping

For mapping metadata automatically, several ap-
proaches have been pursued, however most of them
are very domain-specific. The approach described in
(TopQuadrant, 2021) lets users translate their non-
interoperable metadata to RDF when the targeted
SHACL application profile is provided, however re-
quires their proprietary software to be used and as-
sumes a direct mapping using the RDF term suffix.
Furthermore, researchers described in (Souza et al.,
2017) a method to automatically map JSON data
to domain-dependent vocabularies. This method as-
sumes knowledge of an applicable ontology for the
metadata, making the inclusion of a domain-expert
necessary. It is aligned to the proposed research goal,
however does not consider the use of application pro-
files for creating interoperable metadata. Lastly, the
W3C provides in (W3C, 2021) a list of tools which
convert application data to RDF based on specific for-
mats and custom implementations.

3.7 Research Goals

Based on the current state of the art, the follow-
ing question is being proposed: How can a domain-

KDIR 2021 - 13th International Conference on Knowledge Discovery and Information Retrieval

174



independent method be used to convert metadata in
domain-dependent formats into RDF based on appli-
cation profiles without the need of a domain-expert?
This question raises the following goals for this paper:

1. Provide a method to extract discipline-specific
metadata from HDF5 files

2. Provide an algorithm to map discipline-specific
metadata to an application profile

4 APPROACH

Following the proposed research goal, a method has
to be created, which can automatically generate inter-
operable metadata based on some kind of initial appli-
cation profiles. In the work of (Heinrichs and Politze,
2020) a pipeline was proposed that can deal with the
automatic extraction of interoperable metadata, how-
ever still leaves the mapping of metadata very open
and only has some suggestions for it. Therefore, the
aim here is to fill this gap and validate it on the use-
case.

4.1 General Pipeline Definition

A visual representation of the proposed general
pipeline is shown in figure 2 and contains a couple
of steps. The first step is some kind of general ex-
traction to retrieve metadata that is already attached
to the given data entity like a creation date or a cre-
ator. This step is additionally responsible to extract
some possible text values and feed this and the data
entity itself to the next step. The next step is some
kind of MIME-Type-Based extraction method which
can be provided by the executing person and is con-
figurable. This kind of method should create some
domain-based metadata and deal with the text extrac-
tion for specific formats that the general extraction
method does not work with. The final step is the text
extraction which is based on the idea, that even if no
valid metadata has been created yet, at least some kind
of text representation of the data entity might exist
which can be translated to some facts and represented
in RDF as metadata. Finally, all the combined created
metadata is pushed through a mapping and validate
step which for now is still very open. The results shall
then be stored in some kind of metadata store.

4.2 HDF5 Pipeline Definition

Following the general pipeline definition, it can be de-
fined more concretely in the case of HDF5 files. The
general extraction step can be performed by the appli-

Figure 2: A proposed general metadata extraction pipeline
by (Heinrichs and Politze, 2020).

cation Apache Tika described by (Mattmann and Zit-
ting, 2011) which supports numerous file types and
can extract the attached metadata. The MIME-Type-
Based extraction method is here represented by an
HDF5 Structure Descriptor which can understand the
folder-based structure of an HDF5 file and creates in-
teroperable metadata from this. It furthermore can ex-
tract the custom provided non-interoperable metadata
from the use-case which will be described in section
4.4. The whole method is described in detail in sec-
tion 4.3. The mapping step then makes use of pro-
vided application profiles and will be discussed more
in detail in section 4.5. The resulting metadata is pro-
vided to a metadata store.

4.3 HDF5 Structure Descriptor

While the main focus is to derive metadata for a single
dataset according to application profiles, HDF5 files
provide an internal structure that can be used to break
down the single file into multiple datasets and groups.
In order to adequately describe the file, it is therefore
necessary to find an adequate and interoperable rep-
resentation of this internal structure in RDF. The vo-
cabulary dcat described by (Perego et al., 2020) can
be utilized to describe so-called data catalogs which
further can hold some datasets or other data catalogs.
This makes it an ideal fit for representing the HDF5
file type, since it can be used to make a direct descrip-
tion of the given structure. The idea is that by describ-
ing a group with the property of “dcat:Catalog“, it can
be linked to other groups with the term “dcat:catalog“.
Different datasets can be described with the property
of “dcat:Dataset“ and can be referenced by a group
with the term “dcat:dataset“.

Furthermore, additional attributes can be extracted
from different groups and datasets. Especially the
custom specified metadata values are extracted from
the attribute key-value pairs and mapped to the re-
spective groups or datasets with a placeholder prefix
to label it for a later mapping to an application pro-
file. This additionally synergizes with the later pro-
posed mapping since the custom specified metadata
values are all linked to a unique subject representing
the specific group or dataset.

Automatic General Metadata Extraction and Mapping in an HDF5 Use-case

175



4.4 HDF5 Use-case Structure

The general design of the file structure employed in
the use-case is the result of the object-oriented mod-
elling method. Relevant entities in the experiment are
identified and related to each other, e.g. arbitrary sets
of instruments, their configuration and the generated
datasets. This structure of objects and their properties
is represented as a structure of groups in an HDF5 file,
objects are designated by the “CLASS” attribute.

A core example is the class “Pipeline”, extend-
ing the concept of I/O-channels in Hardware APIs,
which typically represent the configuration of the I/O-
hardware per signal as well as the corresponding data.
Each “Pipeline” relates a dataset to the set of instru-
ments that it was produced by. Each object of class
“Instrument” is in turn described by a set of infor-
mational attributes and a model. An object of class
“Model” represents the configuration of the software
routine that implements the data conversion of the
corresponding instrument (e.g. the I/O-Hardware). In
the case of a “Pipeline” related to processed data, the
“origin” attribute holds a reference (URL or URI) to
the “Pipeline” that relates to the raw data. Figure 3
illustrates this data model.

Figure 3: Example of the use-case’s class-based structure.

Based on this generic base model, highly diverse
experimental setups can be represented. This cov-
ers different test rigs of different projects as well as
adjustments of one and the same test rig over time.
Based on the embedded information, data process-
ing actions corresponding to utilized instruments and
their calibration can be configured and re-run.

4.5 Proposed Mapping Algorithm

The proposed mapping algorithm makes use of the
previous steps, which include the creation of custom

provided metadata values. After they have been ex-
tracted, they have to be mapped to a given number
of application profiles. For this, an algorithm is pro-
posed which shall deal with such a mapping. The al-
gorithm is assumed to be used for any range of use-
cases and not just the HDF5 use-case, even though it
will be validated on it. It receives an application pro-
file as an input and the not yet mapped metadata val-
ues. The closeness of each application profile is then
determined by the algorithm and the closest output is
then chosen to be used for mapping the values.

It is to note that the algorithm can only be as good
as the input is. If the input metadata (seen as key-
value pairs) is obscured to the point that a mapping
is not really possible, or the application profiles are
not fitting, then the output will not yield great results.
However, the assumption is, if the input is not that
obscured and the application profiles contain fitting
terms, then the output will yield a good representa-
tion.

4.6 Mapping Metadata Values to an
Application Profile

The idea to map a metadata value to an application
profile is presented in Algorithm 1. The base is a
function that receives as input values an application
profile as a graph and a metadata value as an RDF
triple “t” with a subject “t.sub”, predicate “t.pred”
and object “t.obj”. This metadata value is coming
from the previous metadata extraction and is in the
structure of an identifying subject pointing with the
custom mapped attribute key to its value. An exam-
ple of this would be: ?s custom:CLASS “Pipeline”.
The provided graph can have any number of triples
and shall offer some filter functionality. The triples
of the application profile graph all have a subject rep-
resented as “sub”, a predicate represented as “pred”
and an object represented as “obj”. Based on the in-
put, the algorithm then tries to see if the given triple
contains the term “class” in the predicate. The as-
sumption is that such a term will indicate that the
given triple’s object will contain the specific class
value, making a mapping to certain classes possi-
ble. In the application profile graph, every triple with
the “sh:targetClass” property is then iterated through.
Note that this iteration has to furthermore support im-
plicit class targets, which are defined by being an in-
stance of “sh:NodeShape“ and “rdfs:Class“. If a sim-
ilar match between the iterated triple class identifier
and the triple class identifier can be made, a defini-
tion describing that the triple subject is an instance
of (“a”) the iterated triple class identifier is returned.
This similarity is further being extended by looking

KDIR 2021 - 13th International Conference on Knowledge Discovery and Information Retrieval

176



at the label definition of the iterated triple subject and
matching this to the triple class identifier. If a simi-
lar match can be made, the instance definition is also
being returned.

Algorithm 1: An algorithm for mapping metadata values to
an application profile.

1: function APMAPPING
2: applicationProfile← RDF as Graph
3: t← RDF Triple
4: if t.pred contains “class” then
5: for tar ← Triples with “sh:targetClass”

in applicationProfile do
6: if t.obj similar to tar.obj then
7: return (t.sub,a, tar.obj)
8: for label ← Triples with tar.sub

and “rdfs:label” in applicationProfile do
9: if t.obj similar to label.obj then

10: return (t.sub,a, tar.obj)
11: else
12: for tar ← Triples with “sh:path”

in applicationProfile do
13: if t.pred similar to tar.obj then
14: return (t.sub, tar.obj, t.obj)
15: for label ← Triples with tar.sub

and “sh:name” in applicationProfile do
16: if t.pred similar to label.obj then
17: return (t.sub, tar.obj, t.obj)
18: return Null

If the given triple did not contain the term class,
the matching continues by iterating through all prop-
erty definitions in an application profile and listing ev-
ery triple with a “sh:path” predicate. For every prop-
erty definition, the object of “sh:path” is compared to
the predicate of the input triple and on similarity, a
definition of the input triple subject, “sh:path” object
and input triple object is returned since a fitting prop-
erty has been found. When this is not the case, the
“sh:name” definitions of the “sh:path” subject are it-
erated through and a comparison between the resulted
objects and the input triple predicate is made. If a
similar match can be made, the previous definition is
returned. The final return value, when no similarity
could be determined, is null.

This algorithm is built to scale and therefore pre-
existing solutions for providing the application pro-
files can be used as a data-source. Therefore, services
like application profile databases could be integrated
to provide the data. Furthermore, since application
profiles have a user-defined nature which is not pos-
sible with ontologies, the mapping can be improved
by application profiles which fit into the specific use-

cases (e.g. fitting names for the to be mapped meta-
data).

5 RESULTS

Following the approach, the proposed pipeline and
mapping algorithms were programmed and applied to
the described HDF5 use-case. The source code can
be found under this URL: https://git.rwth-aachen.de/
coscine/research/semanticmapper.

5.1 Outcomes

For the mapping, it was important to further define
a fitting application profile, since the terms being
used in the use-case were quite specialized so that
given ontologies did not really fit most of the time.
Only sometimes, general terms like “version” could
be mapped to ontologies like “schema.org” (defined
with https://schema.org/version). Therefore, the cre-
ated application profile followed the in section 4.4
defined use-case class structure and contains a num-
ber of definitions which describe the class relations
and the properties. In figure 4 part of the class-
based structure is shown. The main focus here is
the “Pipeline” class. Some properties like “origin”,
“units” and “variable” are defined for it and every-
thing is mapped to a custom prefix, since no fitting
ontology could be found. Such application profile and
the proposed use-case terms could, however, be pub-
lished in an application profile database, ensuring the
interoperability.

Following the definition for the “Pipeline” class,
the mapped metadataset utilizing this application pro-
file can be seen in figure 5. The similarity method
used here was just a plain string comparison, which
returns true if the values are equal and false if
they are not. The resulting metadataset describes a
group of the HDF5 file which is represented with
“dcat:Catalog”, maps the previous defined custom
metadata attributes to the metadata properties in the
application profile and links to other groups using
“dcat:catalog”. Furthermore, the class “Pipeline” is
linked to this part of the metadataset using the pred-
icate and object “a ns3:Pipeline” where “ns3” is just
the prefix linking to the same base URL as the one de-
fined in the application profile. Lastly, the subject is
a unique identifier describing the unique part of the
HDF5 file, utilizing a so-called persistent identifier
(PID).

It is important to note that these results are also re-
trieved on a dataset level, where the entry is assigned a
“dcat:Dataset“ class. For these datasets, further appli-

Automatic General Metadata Extraction and Mapping in an HDF5 Use-case

177



custom:PipelineShape
a sh:NodeShape ;
sh:targetClass custom:Pipeline ;
sh:property [

sh:path custom:origin ;
sh:datatype xsd:string ;
sh:name "Origin" ;
sh:maxCount 1 ;
sh:minCount 1 ;

] ;
sh:property [

sh:path qudt:unit ;
sh:datatype xsd:string ;
sh:name "Units" ;
sh:maxCount 1 ;
sh:minCount 1 ;

] ;
sh:property [

sh:path custom:variable ;
sh:datatype xsd:string ;
sh:name "Variable" ;
sh:maxCount 1 ;
sh:minCount 1 ;

] .

Figure 4: A part of the application profile representing a
“Pipeline” class.

hdl:{identifier} a ns3:Pipeline,
dcat:Catalog ;

ns5:pipelineVersion "1.0" ;
ns3:origin "this" ;
qudt:unit "volts" ;
ns3:variable "voltage" ;
dct:identifier "{identifier}" ;
dcat:catalog hdl:{identifier2},

hdl:{identifier3} .

Figure 5: A part of the metadataset which represents a cat-
alog.

cation profiles are defined, which detail the respective
properties and classes.

5.2 Discussion

Utilizing the presented mapping approach, the in the
use-case described entities could be mapped to appli-
cation profiles. The resulted metadata is of course
only as good as the provided application profiles are
and this can be seen in the resulting figures pretty
well. Furthermore, the results show that the map-
ping between application profiles has the advantage
that the requirements can be easily described across
different ontologies, opening up a larger variability
and additionally, because of the customizable nature
of application profiles, they can be adjusted or cre-
ated with the to be mapped metadata in mind. This

can be seen in figure 4 where multiple ontologies are
targeted in an application profile and the names are
used to fit with the to be mapped metadata. Such a
possible combination eliminates part of the need to
define a full custom ontology for the use-case. How-
ever, there are some downsides since the mapping for
now only supports structures, where there is a key-
value structure that does not need any further link-
ing. When the values specify an instance, the map-
ping currently is too limited to represent this structure.
As an example, a definition like “qudt:unit” expecting
a “qudt:Unit” instance will not be mapped correctly,
however a future extension of the application profile
mapping could have the potential to tackle such an is-
sue. Lastly, the current dcat structure is defined manu-
ally by the HDF5 Structure Descriptor by linking ev-
ery key-value pair to a specific group or dataset and
adding the necessary terms. This, however, could also
be defined automatically by the proposed mapping
algorithms if the fitting key-value pairs are present.
Suppose the HDF5 Structure Descriptor would pro-
vide the keys of “identifier”, “dataset”, “catalog”
and “class” tied with the values of “Catalog” and
“Dataset”, the application profile shapes provided for
the dcat ontology would map these entries to their
intended representation. These shapes can be found
here: https://github.com/SEMICeu/DCAT-AP.

6 CONCLUSION

In this paper a method for automatically extracting
and mapping metadata values was presented and val-
idated on an HDF5 use-case. The presented method
makes use of previous work which created a general
pipeline definition for extracting metadata and ex-
tended it by giving a concrete implementation of the
metadata mapping part. This novel concrete metadata
mapping implementation method can receive applica-
tion profiles and based on them produces interopera-
ble metadata by looking at the closest matches. The
results of this approach show promise and validate the
mapping’s operationality. Therefore, this approach
has implications for generally mapping metadata val-
ues when a number of fitting application profiles are
present.

7 FUTURE WORK

Following on this work, a couple of open questions
are still left which can be answered by some future
work. First, this method assumes to be generally us-
able when given fitting application profiles, however

KDIR 2021 - 13th International Conference on Knowledge Discovery and Information Retrieval

178



validating this on a couple of other use-cases with e.g.
more detailed application profiles would be interest-
ing to see the limitations and the computational ef-
ficiency. Comparing the “FAIRness” of datasets by
utilizing or not utilizing this method could addition-
ally show the effectiveness. Furthermore, the current
similarity determination is very simple. Therefore, it
might be interesting how different similarity measures
compare against each other in the approach. Things
like checking if a label only contains certain words
or going further and determining similarity based on
a created word embedding might all be valid options
which could improve the method and ease its use. The
method could furthermore be extended to addition-
ally utilize RML mapping definitions, this was in this
work however a bit out of scope. Lastly, the current
implementation and results utilize labels which are fit-
ting based on the defined name in the HDF5 file which
could be improved by a custom mapping property.

ACKNOWLEDGEMENTS

The work was partially funded with resources granted
by Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) – Project-ID 432233186
– AIMS.

REFERENCES

AtomGraph (2019). JSON2RDF. https://github.com/
AtomGraph/JSON2RDF.

Ben De Meester, Pieter Heyvaert, and Thomas Delva
(2021). RDF Mapping Language (RML).

Das, S., Sundara, S., and Cyganiak, R. (2012). R2RML:
RDB to RDF mapping language. W3C recommenda-
tion, W3C. https://www.w3.org/TR/2012/REC-r2rml-
20120927/.

Grönewald, M., Mund, P., Bodenbrenner, M., Fuhrmans,
M., Heinrichs, B., Müller, M. S., Pelz, P. F., Marius,
P., Preuß, N., Schmitt, R. H., and Stäcker, T. (in press
2021). Mit AIMS zu einem Metadatenmanagement
4.0: FAIRe Forschungsdaten benötigen interoperable
Metadaten.

Harrow, I., Balakrishnan, R., Jimenez-Ruiz, E., Jupp, S.,
Lomax, J., Reed, J., Romacker, M., Senger, C., Splen-
diani, A., Wilson, J., and Woollard, P. (2019). On-
tology mapping for semantically enabled applications.
Drug Discovery Today, 24(10):2068–2075.

Heinrichs, B. and Politze, M. (2020). Moving Towards a
General Metadata Extraction Solution for Research
Data with State-of-the-Art Methods. 12th Interna-
tional Conference on Knowledge Discovery and In-
formation Retrieval.

Iglesias, E., Jozashoori, S., Chaves-Fraga, D., Collarana,
D., and Vidal, M.-E. (2020). SDM-RDFizer. Pro-
ceedings of the 29th ACM International Conference
on Information & Knowledge Management.

Kontokostas, D. and Knublauch, H. (2017). Shapes Con-
straint Language (SHACL). W3C recommenda-
tion, W3C. https://www.w3.org/TR/2017/REC-shacl-
20170720/.

Labra Gayo, J., Prud’hommeaux, E., Boneva, I., and Kon-
tokostas, D. (2017). Validating rdf data. Synthesis
Lectures on the Semantic Web: Theory and Technol-
ogy, 7:1–328.

Ledvinka, M. and Kremen, P. (2020). A comparison
of object-triple mapping libraries. Semantic Web,
11:483–524.

Mattmann, C. and Zitting, J. (2011). Tika in Action.
Perego, A., Beltran, A. G., Albertoni, R., Cox, S., Brown-

ing, D., and Winstanley, P. (2020). Data Catalog
Vocabulary (DCAT) - Version 2. W3C recommen-
dation, W3C. https://www.w3.org/TR/2020/REC-
vocab-dcat-2-20200204/.

Politze, M., Claus, F., Brenger, B. D., Yazdi, M. A., Hein-
richs, B., and Schwarz, A. (2020). How to Manage IT
Resources in Research Projects? Towards a Collabo-
rative Scientific Integration Environment. European
journal of higher education IT, 1(2020/1):5.

Prabhune, A., Stotzka, R., Sakharkar, V., Hesser, J., and
Gertz, M. (2018). MetaStore: an adaptive meta-
data management framework for heterogeneous meta-
data models. Distributed and Parallel Databases,
36(1):153–194.

Souza, D., Freire, F., and Freire, C. (2017). Enhanc-
ing JSON to RDF Data Conversion with Entity Type
Recognition.

TopQuadrant (2021). Importing Data using Active Data
Shapes. http://www.datashapes.org/active/import.
html#json.

Verborgh, R. and Taelman, R. (2020). Ldflex: A read/write
linked data abstraction for front-end web developers.
In Pan, J. Z., Tamma, V., d’Amato, C., Janowicz, K.,
Fu, B., Polleres, A., Seneviratne, O., and Kagal, L.,
editors, The Semantic Web – ISWC 2020, pages 193–
211, Cham. Springer International Publishing.

W3C (2012). OWL 2 Web Ontology Language Doc-
ument Overview (Second Edition). Technical re-
port, W3C. https://www.w3.org/TR/2012/REC-owl2-
overview-20121211/.

W3C (2021). ConverterToRdf - W3C Wiki. https://www.
w3.org/wiki/ConverterToRdf.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. J.,
Appleton, G., Axton, M., Baak, A., Blomberg, N.,
Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E.,
Bouwman, J., Brookes, A. J., Clark, T., Crosas, M.,
Dillo, I., Dumon, O., Edmunds, S., and Evelo, Chris
T. ... Mons, B. (2016). The FAIR Guiding Principles
for scientific data management and stewardship. Sci-
entific data, 3:160018.

Wood, D., Lanthaler, M., and Cyganiak, R. (2014). RDF 1.1
Concepts and Abstract Syntax. W3C recommenda-
tion, W3C. https://www.w3.org/TR/2014/REC-rdf11-
concepts-20140225/.

Automatic General Metadata Extraction and Mapping in an HDF5 Use-case

179


