
Relaxed Dissimilarity-based Symbolic Histogram Variants for Granular
Graph Embedding

Luca Baldini1 a, Alessio Martino2,3 b and Antonello Rizzi1 c

1Department of Information Engineering, Electronics and Telecommunications, University of Rome “La Sapienza",
Via Eudossiana 18, 00184 Rome, Italy

2Institute of Cognitive Sciences and Technologies (ISTC-CNR), Italian National Research Council,
Via San Martino della Battaglia 44, 00185 Rome, Italy

3Department of Business and Management, LUISS University, Viale Romania 32, 00197 Rome, Italy

Keywords: Structural Pattern Recognition, Supervised Learning, Embedding Spaces, Granular Computing, Graph Edit
Distances, Graph Embedding.

Abstract: Graph embedding is an established and popular approach when designing graph-based pattern recognition
systems. Amongst the several strategies, in the last ten years, Granular Computing emerged as a promising
framework for structural pattern recognition. In the late 2000’s, symbolic histograms have been proposed as
the driving force in order to perform the graph embedding procedure by counting the number of times each
granule of information appears in the graph to be embedded. Similarly to a bag-of-words representation of
a text corpora, symbolic histograms have been originally conceived as integer-valued vectorial representation
of the graphs. In this paper, we propose six ‘relaxed’ versions of symbolic histograms, where the proper
dissimilarity values between the information granules and the constituent parts of the graph to be embedded
are taken into account, information which is discarded in the original symbolic histogram formulation due
to the hard-limited nature of the counting procedure. Experimental results on six open-access datasets of
fully-labelled graphs show comparable performance in terms of classification accuracy with respect to the
original symbolic histograms (average accuracy shift ranging from -7% to +2%), counterbalanced by a great
improvement in terms of number of resulting information granules, hence number of features in the embedding
space (up to 75% less features, on average).

1 INTRODUCTION

In the last two decades, we witnessed a growing in-
terest of the scientific community in applying pat-
tern recognition (and related fields) techniques to the
domain of graph data structures. This interest can
be naturally explained by the representation power
conveyed by the semantic and topological descrip-
tion that graph domain offers in describing processes
where objects or entities interact together. In fact,
structured data such as graphs are largely used to
model complex phenomena in different application
fields such as economic markets, human social inter-
actions, immune systems, disease diffusion and gen-
erally in situations where parts of the system under
investigation are connected together in a network rep-

a https://orcid.org/0000-0003-4391-2598
b https://orcid.org/0000-0003-1730-5436
c https://orcid.org/0000-0001-8244-0015

resented as a graph.
On the other hand, the deployment of pattern

recognition techniques in graph domain is a non-
trivial operation due its implicit structured and com-
binatorial nature. Compared to geometric spaces
such as the Euclidean one, basic algebraic operations
like the computation of similarity or dissimilarity be-
tween two graphs are not naturally defined. Further-
more, vector data are static objects with predefined
length, whilst different patterns in a set of graphs
can show different sizes in terms of number of nodes
and/or edges, posing additional limitations in utiliz-
ing a plethora of well-known statistical learning algo-
rithms (Bunke, 2003).

It is possible to spot three main approaches in the
current literature for dealing with the limitations im-
posed by the non-geometrical nature of the graph do-
main. The most intuitive and natural approach con-
sists in defining an ad-hoc dissimilarity measure di-

Baldini, L., Martino, A. and Rizzi, A.
Relaxed Dissimilarity-based Symbolic Histogram Variants for Granular Graph Embedding.
DOI: 10.5220/0010652500003063
In Proceedings of the 13th International Joint Conference on Computational Intelligence (IJCCI 2021), pages 221-235
ISBN: 978-989-758-534-0; ISSN: 2184-3236
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

221

rectly in the graph domain, notably Graph Edit Dis-
tances (GED) (Bunke and Jiang, 2000; Riesen et al.,
2010; Bunke and Allermann, 1983). In the latest
decades, kernel methods have been deeply studied
as a valid approach for combining pattern recogni-
tion and graph domain (Ghosh et al., 2018; Kriege
et al., 2020). Given a kernel function κ : G × G
where G is the graph domain, kernel methods mea-
sure the pairwise similarities between graphs. When
the resulting kernel matrix K (i.e., the matrix con-
taining all the pairwise kernel evaluations between
the available graphs) is positive (semi)definite, κ is
valid dot product in an implicit Hilbert space. Op-
posite to kernel methods, graph embedding proce-
dures explicitly map graphs into a geometric embed-
ding space thanks to a suitable embedding function
Φ : G → X , where X ⊆ Rn. This approach results
very flexible since it enables the use of all the algo-
rithmic frameworks available in the field of pattern
recognition. The main challenge posed by graph em-
bedding approaches is to correctly design a Φ func-
tion able to keep topological and semantic properties
of the original domain intact in the target domain. For
this reason, several mapping functions have been pro-
posed and applied in different application domains.
A straightforward method consists in manually col-
lect n relevant descriptive numerical features of the
graph into a n-length real-valued vector. Such ap-
proach can be tedious and requires a deep (and often
not available) knowledge of the underlying process.
In (Bunke and Riesen, 2008), the authors introduced
a graph embedding procedure based on dissimilarity
representation (Pękalska and Duin, 2005; Duin and
Pękalska, 2012). Given a set R of n prototype graphs
extracted from the training data and a graph G to be
embedded, the vector representation of G can be ex-
pressed as an n-length vector whose ith component is
defined as d (pi,G), where pi ∈ R and d : G ×G is
a suitable dissimilarity measure. Major drawbacks of
this procedure are the computational cost needed for
evaluating d(·, ·) between large graphs and/or large
datasets and the choice of enough informative pro-
totypes to populate R (Pękalska et al., 2006). An-
other interesting human inspired paradigm known as
Granular Computing (GrC) (Zadeh, 1997; Bargiela
and Pedrycz, 2003; Pedrycz, 2001) can be exploited
for graph embedding scope. A GrC approach con-
sists in extracting relevant information (known as in-
formation granules) by observing the problem at dif-
ferent levels of abstraction. In (Bianchi et al., 2014),
GrC has been employed for extracting automatically
relevant prototype subgraphs in conjunction with the
symbolic histogram representation for performing the
embedding procedure (Del Vescovo and Rizzi, 2007a;

Del Vescovo and Rizzi, 2007b). In particular, from
the symbolic histogram perspective, the ith compo-
nent of the embedded graph G is obtained by count-
ing the occurrences of ith relevant substructure (i.e.,
the granule extracted with a suitable granulation pro-
cedure) in G. The process of occurrences counting
is accomplished by an hard-limiting function which
triggers a counter whether the dissimilarity measure
between the specific prototype and a subgraph g ∈ G
is below a given threshold.

In this paper, we investigate a novel approach
based on symbolic histograms for granular graph em-
bedding. In particular, we ‘relax’ the evaluation of
the occurrences for the symbolic histogram in favour
of three different types of functions, that is, instead of
relying on counting the number of occurrences (i.e.,
an integer-valued embedding vector), we take into
consideration the proper dissimilarity values when
searching for granules occurrences within the graph
to be embedded, following the rationale behind the
aforementioned dissimilarity space embedding.

The remainder of the paper is structured as fol-
lows: in Section 2 we describe the GrC-based classi-
fication system, along with the original symbolic his-
tograms definition; Section 3 contains the main nov-
elty of the paper, as we describe the six ‘relaxed’ sym-
bolic histograms variants; Section 4 regards the com-
putational experiments, including an exhaustive com-
parison against state-of-the-art techniques. Finally,
Section 5 concludes the paper. The paper also fea-
tures an Appendix in which we give an example of
how GrC-based pattern recognition systems allow a
certain degree of interpretability by analyzing the re-
sulting granules of information.

2 GRANULAR GRAPH
EMBEDDING WITH
SYMBOLIC HISTOGRAMS

In this section, we describe the procedure that allows
the embedding and classification of a set of graphs
according to the GrC paradigm. The core idea be-
hind this method is to synthesize an alphabet of sym-
bols A = {s1, . . . ,sn}, namely the set of meaningful
and relevant subgraphs extracted from the training
set under analysis by following a granular approach.
The symbols, i.e. granules of information, emerge
thanks to a granulation procedure based on the Ba-
sic Sequential Algorithmic Scheme (BSAS) free clus-
tering method (Theodoridis and Koutroumbas, 2008),
driven by a resolution parameter θ which determines
the granularity level of observation. Finally, the gen-

NCTA 2021 - 13th International Conference on Neural Computation Theory and Applications

222

erated alphabet A is employed for building the sym-
bolic histogram of each graph, hence moving the clas-
sification problem towards a metric space where any
statistical classifier can be employed. In the seminal
paper (Bianchi et al., 2014), this approach has been
successfully exploited for building a graph classifica-
tion system named GRALG.

2.1 Substructures Extraction

Starting from the training set S (tr), this block extracts
a set of subgraphs S (tr)

g . The design of this block is
crucial for two different aspects that can undermine
the entire embedding procedure. From a memory
footprint point of view, an exhaustive extraction of all
the subgraphs in S (tr) can be unfeasible. In fact, the
number of subgraphs that can be extracted from a sin-
gle graph grows combinatorially with the number of
its nodes. This poses a serious limitation to the usabil-
ity of this approach, constricting the application field
to problems involving graphs of small size. Addition-
ally, the computational cost of the following blocks,
in particular the granulation procedure, are strongly
influenced by the number of elements in S (tr)

g , pos-
sibly making the entire graph embedding procedure
unfeasible. The second aspects regards the choice
of the desired topology of the subgraphs to be ex-
tracted (e.g., cliques, paths, stars and the like). Even
though this point can give flexibility to our approach,
the selection of an appropriate traversal algorithm is
not trivial and likely influences the performance of a
graph classification system driven by finding mean-
ingful subgraphs for graph embedding purposes (like
the one we present in this work) since the topological
properties of the original graphs must be reflected in
the subgraphs to be extracted. In this work, we use the
stratified stochastic extraction procedure proposed in
(Baldini et al., 2021) in order to limit the cardinality
of S (tr)

g to a user-defined value W . The procedure goes
as follows:

1. For a given problem-related class, say the ith, find
the number of subgraphs to be extracted as f =

W · |S
(tr,i)|
|S | , where S (tr,i) denotes the subset of S (tr)

containing only patterns belonging to class i

(a) A single graph G is extracted uniformly at ran-
dom from S (tr,i)

(b) The selected graph G is visited using one of the
many traversing strategies available in the com-
puter science and graph theory communities–
such as Breath First Search (BFS), Depth First
Search (DFS) and random walks–until a fixed
number of nodes V are visited

(c) Visited nodes and edges are stored in the result-
ing subgraph g and collected into S (tr,i)

g

(d) The procedure goes back to 1a until the cardi-
nality of S (tr,i)

g has reached f

2. The procedure goes back to 1 until all classes are
considered.

The rationale behind the stratified approach is that
the bucket of subgraphs S (tr)

g is actually a bucket-of-
buckets S (tr)

g = {S (tr,1), . . . ,S (tr,c)}, with c being the
number of classes, in such a way that the ith bucket
only contains subgraphs extracted from patterns be-
longing to class i. This assures that, if compared to
a purely uniform random extraction (Baldini. et al.,
2019), all classes are represented in the bucket, with
a stratified number of subgraphs that scales according
to the frequency of the class itself (see Step #1), to
ensure fairness in the distribution.

2.2 Granulation Method for Alphabet
Synthesis

In this subsection, we give a formal description of
the process that synthesizes the alphabet A . In the
spirit of GrC, each symbol si ∈ A is an highly infor-
mative mathematical entity following the principle of
justifiable granularity related to the specific level of
abstraction at which the problem has been observed
(Pedrycz and Homenda, 2013). In the literature, many
authors have given several different definitions of in-
formation granule: fuzzy sets, rough sets and shad-
owed sets (Pedrycz et al., 2015) are just few exam-
ples on how granules can be practically formalized.
In our work, we follow a clustering-based approach
(Wang et al., 2016) for formally defining a granule
of information. As anticipated in Section 2, the core
of the granulation procedure is the BSAS algorithm
working directly on the set of subgraphs S (tr)

g . It re-
lies on four fundamental actors: a threshold of in-
clusion θ, a clustering representative g∗, a dissimi-
larity measure d : G ×G → R and a threshold Q of
maximum allowed number of clusters. By varying θ,
the clusters resolution will change accordingly, effec-
tively impacting on the granularity level. Thus, we
generate a set of partitions P = {Pθ1 , . . . ,Pθt}, where
partition Pθi collects each cluster C emerged by im-
posing θi as the resolution value. In order to account
for only well-formed clusters as candidate informa-
tion granules, we define the following cluster quality
index F (C,ρ) ∈ [0,1] (the lower is better):

F (C,ρ) = ρ ·Ψ(C)+(1−ρ) ·Ω(C) (1)

as the linear convex combination between Ψ(C) and
Ω(C), respectively compactness and cardinality of

Relaxed Dissimilarity-based Symbolic Histogram Variants for Granular Graph Embedding

223

cluster C, weighted by a trade-off parameter ρ∈ [0,1]:

Ψ(C) =
1

|C−1| ∑g∈C
d (g∗,g) (2)

Ω(C) = 1− |C|
|S (tr)

g |
(3)

In this work, we assume g∗ be the MinSOD
(Del Vescovo et al., 2014; Martino et al., 2019b) ele-
ment of C, that is the graph that minimizes the pair-
wise sum of distances among all patterns in the clus-
ter. Clearly, the dissimilarity measure d must be tai-
lored to the input space under analysis (i.e., the graph
domain): our choice felt on a weighted GED-based
heuristics named node-Best Match First (nBMF). Full
details on nBMF, along with detailed pseudocodes,
can be found in (Baldini. et al., 2019; Martino and
Rizzi, 2021).

Finally, each cluster proves its validity by compar-
ing its own quality F (C) with a threshold τ ∈ [0,1].
The MinSoDs of the surviving clusters are then col-
lected together in the alphabet A .

Recalling that S (tr)
g is actually a set-of-sets, the

above procedure is independently evaluated on each
class-related bucket S (tr,i)|ci=1: this means that c class-
aware alphabets A(i)|ci=1 are returned, hence the over-
all alphabet simply reads as the concatenation of the
class-related alphabets A = ∪c

i=1A(i).

2.3 Embedding with Symbolic
Histograms

In this block, the embedding function Φ : G → X
is implemented by following the symbolic histogram
paradigm (Del Vescovo and Rizzi, 2007b). This
method allows the embedding of a graph G into a fea-
ture space X according to two core sets: the first is a
collection of prototype substructures that, in our case,
coincides with the alphabet A obtained in Section 2.2;
the second Gexp is the set of subgraphs that compose
G. In other words, Gexp = {g1, . . . ,gk} is a (possi-
bly non-exhaustive) decomposition of the graph G in
k atomic units. The symbolic histogram hA

G is then
defined as:

hA
G = [occ(s1,Gexp) , . . . ,occ(sn,Gexp)] (4)

By observing Eq. (4), we can see that hA
G is an integer-

valued vector with n components, where n = |A |. The
process of counting occurrences of a symbol si ∈A in
Gexp is performed by the function occ : A ×G → N,
defined as follows:

occ(si,Gexp) = ∑
g∈Gexp

Γ(si,g) (5)

In Eq. (5), Γ is a function that defines whether a sym-
bol si can be matched with a subgraph g∈Gexp. Exact
match between two graphs (also known as graph or
subgraph isomorphism) is often an unpractical opera-
tion for its hardness from a computational complexity
point of view, especially when nodes and edges are
equipped with real-valued vectors or even with cus-
tom data structures (Emmert-Streib et al., 2016). In
order to account for inexactness in the matching pro-
cedure, Γ evaluates the degree of dissimilarity d(si,g)
between si and g, then it triggers the counter (i.e., a
match is considered a hit) only if this value does not
exceed a symbol-dependent threshold ζsi :

Γ(si,g) =

{
1 if d(si,g)≤ ζsi

0 otherwise
(6)

2.4 Alphabet Optimization

After having synthesized a candidate alphabet A ,
each graph from the dataset at hand can be embedded
toward the resulting embedding space X ⊆Rn. A nat-
ural question that arise is how to determine the quality
of this embedding space in order to evaluate the good-
ness of A . A possible solution already explored in
GRALG consists in training a classifier H in the em-
bedding space and evaluating a performance measure
π : X → R of H in classifying a validation set. Then,
π can be interpreted as a critic of H about the embed-
ding space X . In order to automatize the search for
a suitable and informative alphabet, an evolutionary
optimization phase (driven, for example, by a differ-
ential evolution (Storn and Price, 1997)) whose fitness
function relies on π can be employed, aiming at syn-
thesizing ever-improving alphabets.

The genetic code of each individual,
summarized in Eq. (7), contains w =

{wnode
ins ,wnode

del ,wnode
sub ,wedge

ins ,wedge
del ,wedge

sub } ∈ [0,1]6,
which are the nodes and edges insertion, deletion,
substitution weights for the weighted GED and
γγγ, the set of parameters driving nodes and edges
dissimilarity measures (if applicable). Additionally,
the procedure optimizes the relevant parameters for
the granulation procedure, namely the maximum
number of clusters allowed for BSAS Q ∈ [1,Qmax],
the quality threshold τ ∈ [0,1] for promoting symbols
to the alphabet and the compactness-vs-cardinality
trade-off parameter ρ ∈ [0,1].

[w γγγ Q τ ρ] (7)

The objective function J1, to be minimized, is defined
as follows:

J1 = α · (1−π)+(1−α) · |A |
|S (tr)

g |
(8)

NCTA 2021 - 13th International Conference on Neural Computation Theory and Applications

224

Thus, Eq. (8) can be read as a linear convex combina-
tion between the performance π (leftmost term) and
the penalty (rightmost term), with the latter aiming at
fostering sparse alphabets according to a user-defined
trade-off parameter α ∈ [0,1].

More in detail, each individual from the evolving
population reads S (tr)

g (the set of subgraphs extracted
from the training set), S (tr) (the training set), S (vs)

(the validation set) and exploits Q, τ and ρ for driv-
ing the granulation procedure which, in turn, relies on
the nBMF dissimilarity measure driven by w and γγγ (if
applicable). As the alphabet A is returned by the gran-
ulation procedure (Section 2.2), the embedding takes
place (Section 2.3). Therefore, the individual builds
two instance matrices, namely H(tr) and H(vs), respec-
tively an |S (tr)|×n and |S (vs)|×n matrix which see the
symbolic histograms of the training set and validation
set organized as rows. The performance π ∈ [0,1] is
chosen as the classification accuracy obtained by H
trained with H(tr) in classifying H(vs).

Once the evolutionary strategy is completed, the
optimal alphabet Ã is retained together with the opti-
mal genetic code which leads to the synthesis of H̃(tr),
H̃(vs), respectively the vector representation of S (tr)

and S (vs) obtained with Ã .

2.5 Feature Selection and Test Phase

It is not rare that after the alphabet optimization de-
scribed in the previous section, the cardinality of the
optimal alphabet set ñ = |Ã | can be very large, that is
Ã may contains a large number of symbols and thus
spanning vectors in high-dimensional spaces. There
are several problems that can arise and negatively
impact the performances of a classification system,
including the curse of dimensionality (Tang et al.,
2014), longer training and testing times, deteriorated
model interpretability (Martino et al., 2020). For this
reason, a feature selection phase should be applied to
Ã in order to remove uninformative, redundant and in
general not necessary symbols for the classification
task. A wrapper approach based on an evolutionary
algorithm has been designed for this purpose, where
the genetic code of each individual is a binary mask
m ∈ [0,1]ñ which allows the selection of a subset of
features. Hence, each individual:

1. reads H̃(tr) and H̃(vs)

2. according to the 0’s in m, the corresponding
columns of H̃(tr) and H̃(vs) are removed, lead-
ing to projected matrices H̃′(tr) ∈ R|S (tr)|×n′ and
H̃′(vs) ∈ R|S (vs)|×n′ where n′ = ∑

ñ
i=1 mi

3. a classifier H is trained on H̃′(tr) and its own per-
formance measure ω is computed as the misclas-

sification rate on H̃′(vs)

The objective function (to be minimized) is then de-
fined as:

J2 = (1−λ) ·ω+λ · n
′

ñ
(9)

which, as in the case of Eq. (8), reads as a convex
linear combination between the error rate on the val-
idation set (leftmost term) and the ratio of selected
symbols (rightmost term), weighted by a user-defined
trade-off parameter λ ∈ [0,1].

Once the optimization is completed, the optimal
mask m∗ is retained with H∗(tr) ∈ R|S (tr)|×n∗ , H∗(vs) ∈
R|S (vs)|×n∗ as well, where n∗ = ∑

ñ
i=1 m∗i . Accordingly,

the optimal alphabet A∗ ⊂ Ã is created by selecting
the features indicated by the 1’s in m∗.

The reduced alphabet A∗ is the main actor when it
comes to address the generalization capabilities of the
whole system with a set of test data S (ts). In fact, S (ts)

is embedded thanks to A∗, hence returning H∗(ts) ∈
R|S (ts)|×n∗ , then the classifier H is trained on H∗(tr)
and finally tested on H∗(ts).

3 RELAXED SYMBOLIC
HISTOGRAMS

From Section 2.3, let us recall the original symbolic
histogram. In short, it aims at representing the graph
to be embedded as a vector collecting (in the ith po-
sition) the number of occurrences of the ith symbol
from the alphabet A within the graph to be embedded
G, with the latter being properly decomposed (Gexp)
to facilitate the search-and-matching procedure. It is
clear that the original symbolic histogram reads as
an integer-valued vector, where the proper symbol-
to-subgraphs dissimilarity values (i.e., d(si,g) in Eq.
(6)) are not taken into account. Inspired by dissimi-
larity spaces (Section 1), where the dissimilarity value
amongst data is the core of the embedding procedure,
here below we present six different strategies in order
to populate the symbolic histogram, while at the same
time taking into account the dissimilarities between
symbols in the alphabet and the constituent parts of
the graph to be embedded.

3.1 Sum

The sum strategy aims at collecting, in the ith posi-
tion of the symbolic histogram, the sum of distances
between the ith symbol in the alphabet and the con-
stituent parts of the graph to be embedded. Formally,

hA
G = [sum(s1,Gexp) , . . . ,sum(sn,Gexp)] (10)

Relaxed Dissimilarity-based Symbolic Histogram Variants for Granular Graph Embedding

225

where the sum : A×G → R operator reads as
sum(si,Gexp) = ∑

g∈Gexp

d(si,g) (11)

3.2 Mean

The sum strategy is characterized by a couple of
caveats: a) dissimilarity values are summed up re-
gardless of their magnitude, b) the number of dissim-
ilarities that are summed up is not taken into account.
Especially in light of the second caveat, the mean
strategy accounts for the mean of distances between
the ith symbol in the alphabet and the constituent parts
of the graph to be embedded. Formally,

hA
G = [mean(s1,Gexp) , . . . ,mean(sn,Gexp)] (12)

where the mean : A×G → R operator reads as

mean(si,Gexp) =
1
|Gexp| ∑

g∈Gexp

d(si,g) (13)

It is worth noting that |Gexp| varies on a graph-based
fashion (i.e., each symbolic histogram has its own
scaling factor as it depends on the graph G to be em-
bedded) and it is not equivalent to a constant scaling
of all symbolic histograms.

3.3 Median

It is well known that outliers might have a non-
negligible impact on the mean of a set of scalar values.
In our case, this reflects on very high or very low dis-
similarities that might skew the mean value. In order
to mitigate this effect, a more robust statistic based on
the median value is considered. Formally,
hA

G = [median(s1,Gexp) , . . . ,median(sn,Gexp)] (14)
where the median : A×G → R operator reads as

median(si,g)=

d |Gexp |
2

if |Gexp| is even
d |Gexp|−1

2
+d |Gexp |+1

2
2 if |Gexp| is odd

(15)
and d ∈R1×|Gexp| is a vector that collects the pairwise
dissimilarities between si and all items in g ∈ Gexp,
sorted in ascending order.

3.4 Thresholded-sum

The three strategies discussed so far in Sections 3.1–
3.3 aim at aggregating, according to different oper-
ators, the pairwise symbol-to-subgraphs dissimilari-
ties for populating a given entry of the symbolic his-
togram. Yet, as introduced in Section 3.2, all dis-
similarities (regardless of their magnitude) are enti-
tled to contribute to a given entry of the symbolic his-
togram vector. Taking inspiration from the original

symbolic histogram (Section 2.3), we let dissimilari-
ties contribute to a given operator if and only if their
magnitude is below a given threshold.

As the sum operator is concerned, in Eq. (10), the
sum(·, ·) operator, formerly Eq. (11), is replaced by
the following thresholded sum (or, for short, t-sum :
A×G → R) operator

t-sum(si,Gexp) = ∑
g∈Gexp

d(si,g)≤ζi

d(si,g) (16)

where, recall, ζi is a symbol-aware inclusion thresh-
old.

3.5 Thresholded-mean

The thresholded mean follows the same rationale be-
hind t-sum(·, ·): only dissimilarities below a given
threshold are entitled to contribute to the mean value
for populating the symbolic histogram entries. That
is, the mean(·, ·) operator defined in Eq. (13) to be
plugged into the symbolic histogram (see Eq. (12))
is replaced by the following thresholded mean (or, for
short, t-mean : A×G → R) operator

t-mean(si,Gexp) =

∑ g∈Gexp
d(si,g)≤ζi

d(si,g)

|{g : d(si,g)≤ ζi,∀g ∈ Gexp}|
(17)

3.6 Thresholded-median

Finally, the thresholded median (or, for short,
t-median : A ×G → R) reads as the median(·, ·) op-
erator in Eq. (15). The major difference is that the
(sorted) vector d will only contain dissimilarities be-
low the symbol-related thresholds ζi.

4 TESTS AND RESULTS

4.1 Datasets Description

In order to test the proposed algorithm and the dif-
ferent embedding strategies, the following six open-
access datasets from the IAM Repository (Riesen and
Bunke, 2008) are considered:

AIDS: The AIDS dataset is composed by graphs rep-
resenting molecular compounds showing activity
or not against HIV. Molecules are converted into
graphs by representing atoms as nodes and the co-
valent bonds as edges. Nodes are labeled with
the number of the corresponding chemical sym-
bol and edges by the valence of the linkage.

NCTA 2021 - 13th International Conference on Neural Computation Theory and Applications

226

GREC: The GREC dataset consists of graphs repre-
senting symbols from architectural and electronic
drawings. Drawings have been pre-processed and
ending points, circles, corners and intersections
are considered as nodes labelled with their posi-
tion and type. Edges connecting such nodes are
equipped with a hierarchical data structure that
identifies the type of connection and its charac-
teristics.

Letter: The Letter datasets involve graphs that rep-
resent distorted letter drawings. Amongst the
capital letters of the Roman alphabet, 15 have
been selected due to them being representable
by straight lines only. Drawings are then con-
verted into graphs by considering lines as edges
and ending points as nodes. Nodes are labelled
with a 2-dimensional vector indicating their po-
sition, whereas edges are unlabelled. Three dif-
ferent amount of distortion (Low, Medium, High)
account for three different datasets, hereinafter re-
ferred to as Letter-L, Letter-M and Letter-H, re-
spectively.

Mutagenicity: The Mutagenicity dataset is com-
posed by graphs representing molecular com-
pounds showing mutagenicity properties or not.
Similar to the AIDS dataset, nodes correspond to
atoms (labelled with their chemical symbol) and
edges are labelled with the valence of the linkage.

In Table 1 we show some basic statistics about the six
datasets. As the nodes and edges dissimilarities are
concerned, all of them are customized according to
the nodes and edges attributes for each dataset. GREC
is the only dataset for which the dissimilarity mea-
sures between nodes and edges are parametric them-
selves: such values populate γγγ which shall be opti-
mized, as described in Section 2.4. Full details on the
dissimilarity measures for AIDS, Letter and GREC
can be found in (Martino and Rizzi, 2021) and (Bal-
dini et al., 2021). For Mutagenicity, as instead, the
dissimilarity measures between nodes and edges are
plain non-parametric simple matching between their
respective labels.

4.2 Comparison amongst Embedding
Strategies

The algorithm parameters are set as follows:

• a simple random walk is employed as graph
traversing strategy for mining subgraphs of maxi-
mum order V = 5 for the extraction phase (i.e., for
populating S (tr)

g))1

1In our previous work (Baldini. et al., 2019), we wit-

• a modified BFS2 is employed for extracting sub-
graphs for the embedding phase (i.e., for building
Gexp)

• W = 10%, 30%, 50% of |S (tr)
max|, with the latter be-

ing the maximum number of subgraphs of max-
imum order V = 5 attainable from the training
graphs3 (i.e., an exhaustive extraction)

• Qmax = 500/c, where c is the (dataset-dependent)
number of classes

• maximum number of 20 generations for both dif-
ferential evolution stages (alphabet optimization
and feature selection)

• 20 individuals for the population of the first dif-
ferential evolution (alphabet optimization)

• 100 individuals for the population of the second
differential evolution (feature selection)

• α = 0.9 in the fitness function J1 of the first dif-
ferential evolution (major weight to performance)

• λ= 0.1 in the fitness function J2 of the second dif-
ferential evolution (major weight to performance)

• K-Nearest Neighbours with K = 5 as classifica-
tion system H

• ζi = 1.1 ·Ψ(Ci) as (cluster-dependent) tolerance
value for the symbolic histograms evaluation.

In Figures 1, 2 and 3, we report the results obtained
by equipping the GRALG classification system pre-
sented in Section 2 with the six different symbolic
histograms-inspired embedding methods as described
in Section 3. Each figure corresponds to either one of
the three subsampling rates W in order to address the
performances of the system as a function of the can-
didate number of subgraphs for the granulation phase.
In order to account for the stochastic nature of the al-
gorithm, results in the following have been averaged
across 10 different runs. We explored the efficiency
of our approach under three different point of views,
i.e. the classifier performance measured on the test set
S (ts) and the cardinality of the alphabet before (|Ã |)

nessed that there is no clear winner between BFS or DFS
in terms of performances and/or running times, so the ratio-
nale behind choosing random walks is that there exist the
possibility of having both star-like and path-like subgraphs
in S (tr)

g .
2As proposed in (Baldini. et al., 2019), we use BFS to

extract subgraphs in such a way that already-visited nodes
do not appear as root nodes for following traversals: this
ensures a complete coverage of the graph to be embedded
whilst, at the same time, keeping a low number of resulting
subgraphs.

3AIDS: 27589; GREC: 21009; Letter-L: 7975; Letter-
M: 8217; Letter-H: 12603; Mutagenicity: 449519.

Relaxed Dissimilarity-based Symbolic Histogram Variants for Granular Graph Embedding

227

Table 1: Statistics of the considered datasets: number of graphs in training, validation and test set (|S (tr)|, |S (vs)|, |S (ts)|),
number of classes (c) and type of nodes and edges labels. Adapted from (Riesen and Bunke, 2008).

Dataset |S (tr)| |S (vs)| |S (ts)| c Node Labels Edge Labels

AIDS 250 250 1500 2 string + integer + R2 integer†

GREC 286 286 528 22 string + R2 tuple
Letter-L 750 750 750 15 R2 none
Letter-M 750 750 750 15 R2 none
Letter-H 750 750 750 15 R2 none
Mutagenicity 1500 500 2337 2 string integer
† In our experiments, by following (Bianchi et al., 2014), the edge label has been dis-
carded.

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

0.93

0.81

0.66

0.92

0.79

0.91

0.66

0.76

0.96

0.66

0.93

0.96

0.89

0.87

0.66

0.93

0.89

0.88

0.66

0.81

0.89

0.88

0.67

0.89

0.97

0.92

0.91

0.97

0.91

0.99

0.92

0.9

0.83 0.82

0.97

0.98

0.97

0.99

0.83

0.97

0.92

0.69

(a) Accuracy on the Test Set.

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

82.67

143

86.67

121

160.3

333.7

121

213

68.67

84

144.3

10

295.7

116.7

168.7

260

306

234.3

360

166

354.7

45.67

308.3

104

326.3

8

90.33

132

175

427

123.7

262.3

121

196.3

217.7

378.3

116

253

182

275.7

316

450.3

(b) Embedding space dimensionality before Feature Selec-
tion.

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

14.33

52.33

5.67

30.67

39.33

83.33

23.33

63.33

6.33

20.67

34.33

1

77.33

13.33

22

43

66.67

157

14.67 18

74.67

105.3

4

127

61.33

120

1

164.7

50

84.33

131.7

75.33

101.3

113.3

147

76

209.7

116.3

23.33

112

23.33

153

(c) Embedding space dimensionality after Feature Selection.
Figure 1: Results at 10% subsampling rate. Color maps are normalized row-wise (i.e., independently for each dataset), with
a white-to-blue range mapping smallest-to-largest values.

and after (|A∗|) the feature selection phase (see Sec-
tion 2.5). It is worth noting that the performances on
the test set are obtained by the classifier H trained
with H∗(tr). Recall from Section 2.5 that the vectorial

representation H∗(ts) of S (ts) is obtained thanks to the
selected embedding procedure using the optimized al-
phabet A∗.

By comparing Figures 1a, 2a and 3a it is pos-

NCTA 2021 - 13th International Conference on Neural Computation Theory and Applications

228

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

0.92

0.67

0.92

0.67

0.77

0.96

0.67

0.91

0.79

0.89

0.87

0.67

0.91

0.8

0.89

0.88

0.8

0.96

0.9

0.88 0.88

0.67

0.82

0.97

0.93

0.92

0.81

0.97

0.93

0.91

0.99

0.93

0.91

0.97 0.97

0.68

0.98

0.68

0.99

0.82

0.97

0.92

(a) Accuracy on the Test Set.

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

138.7

86.67

106.3

123.7

191.7

180.3

101.3

139.7

172.3

171

11.67

290.7

121.7

234.7

237.7

237.7

304.7

312.3

142.7

494

8

151

340.3

28.33

233.7

151.7

252

231.7

348.7633.3 564.3

261

412

221.7

301

297

460.7

295.7

374.7

378.7

298.7

387.7

(b) Embedding space dimensionality before Feature Selec-
tion.

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

23.33

32

15.33

27.33

54

23.33

33

17.67

43.67

39

1

66.67

12

51.33

46

56 105.3

18.33

1

172.7

120.3

1

108.7

87.33

112.3

155.7175 171.3

65

201.7

27.67

111.3

144

84.33

251

123.7

161.3

203

29.33

108.3

163.3

30

(c) Embedding space dimensionality after Feature Selection.
Figure 2: Results at 30% subsampling rate. Color map details in the caption of Figure 1.

sible to spot the differences in terms of accuracy.
The results depicted in the first two columns (Mean
and Medium) witnessed that the selected embedding
methods are reaching comparable performances with
respect to the Original symbolic histogram method
equipped with the hard-limiting function regardless
of the number of candidate information granules W .
A note should be mentioned for AIDS, which is ar-
guably attaining lower level of performances (6~7
%) when compared with the Original column. On
the other hand, the remaining four approaches, i.e.
Sum, t-Mean, t-Median and t-Sum, show (on average)
worst performances when compared to Mean, Median
and Original. We again can observe an exception for
AIDS: when using the Sum aggregation operator, it
shows the highest result in terms of accuracy.

An interesting behaviour that emerge from the
tests regards the number of symbols that compose

the alphabets A∗ and Ã . With respect to thresh-
olded methods (t-Mean, t-Median, t-Sum and Orig-
inal), Mean, Median and Sum are by far producing
optimal alphabets with lower number of symbols, re-
gardless of W . This can be spotted by observing Fig-
ures 1c, 2c, 3c and their counterparts before the fea-
ture selection phase (Figures 1b, 2b, 3b), suggesting
that such reduction in terms of number of features is
not due to the feature selection phase but is a proper
characteristic of the aggregation function. With the
exception of Mutagenicity, all datasets show a clear-
cut difference in terms of alphabet cardinality when
not-thresholded methods are exploited. We advance
the hypothesis that by using hard-limiting functions
in the symbolic histograms, the resulting dynamic
of each vector component can be influenced by the
choice of the threshold. In fact, the set of parameters
(notably those related to the dissimilarity measure, i.e.

Relaxed Dissimilarity-based Symbolic Histogram Variants for Granular Graph Embedding

229

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

0.92

0.81

0.97

0.68

0.91

0.97

0.67

0.75

0.96

0.66

0.93

0.89

0.88

0.67

0.93

0.81

0.97

0.9

0.86

0.68

0.82

0.96

0.91

0.86

0.97

0.920.94

0.91

0.84

0.93

0.92

0.99

0.93

0.91

0.85

0.98

0.98

0.69

0.99

0.85

0.91

0.69

(a) Accuracy on the Test Set.

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

59

167.7

144.3

180

210.7

165

124.7

276.3

259

310.7

13

452.7

89

270.7

113.3

330.3

173.3

21.33

296.3

216

325.7

39.33

178.7

259

347

316.3407.7

264

319

287

564.3

271.7

366

359

386.3

275.7

356

400.3

403.3

317.7

386.3

531.7

(b) Embedding space dimensionality before Feature Selec-
tion.

Mean

Median
Sum

t-M
ean

t-M
edian

t-S
um

Orig
inal

AIDS

GREC

Letter-L

Letter-M

Letter-H

Mutagenicity

5.33

44.33

10

37.33

60.67

76.67

52

50.33

12.33

60.33

60.67

59

1

115.3

6

54.67

59.67

22.67

53.33

148.7

177.7

24

1.67

143.3

116.7

147

2.33

97.67

154.7

108.3

295.3

42.67

148.3

152.3

80

151.7

202

179

46.33

138

263.3

43.67

(c) Embedding space dimensionality after Feature Selection.
Figure 3: Results at 50% subsampling rate. Color map details in the caption of Figure 1.

w, γγγ) explored by the evolutionary algorithm might
not be suitable enough for imposing an expressive dis-
similarity measure able to fairly compare the symbols
with the substructure set Gexp. In this particular sit-
uation, most of the symbols would not be matched
with substructures in Gexp, leading to an uninforma-
tive embedding space spanned by flat vectors possibly
having many null components. On the other hand,
the evolutionary algorithm in the attempt to optimize
the error rate might be tempted to relieve this issue
by exploring granulation parameters (i.e., Q, τ and ρ)
which allow larger alphabets with higher chances of
scoring matches between symbols and the substruc-
tures of the graphs to be embedded. Clearly, this
situation does not hold in non-thresholded methods,
where each match counts (albeit proportionally to its
dissimilarity degree): in turn, this means that a given
symbol from the alphabet is (in very plain terms) ‘al-

ways found’ in the graph to be embedded which is
therefore completely explored during the embedding
procedure.

4.3 Comparison against
State-of-the-Art Techniques

In Section 4.2 we focused the computational results
on the comparison amongst the six different strate-
gies for populating the symbolic histograms presented
in Section 3. Hereinafter, we move the comparison
against other state-of-the-art techniques, summarized
in Table 2. Competitors span a variety of approaches
for graph classification (as briefly reviewed in Section
1), namely:
• classifiers working on the top of pure graph

matching similarities (Riesen and Bunke, 2008;
Riesen and Bunke, 2009a);

NCTA 2021 - 13th International Conference on Neural Computation Theory and Applications

230

• kernel methods (Da San Martino et al., 2016;
Martino and Rizzi, 2020);

• several embedding techniques (Riesen and Bunke,
2009b; Gibert et al., 2011), including GrC-based
(Martino et al., 2019a; Baldini. et al., 2019; Mar-
tino and Rizzi, 2021; Baldini et al., 2021) and
neural-based ones (Bacciu et al., 2018; Martineau
et al., 2020).

The accuracy of the last eight methods are obtained
from our own experiments. For the remaining com-
peting algorithms, we directly quote results from their
respective papers.

Clearly, GRALG also whether equipped with ‘re-
laxed’ symbolic histograms, is able to reach state-of-
the-art performances for 4 out of 6 datasets while,
at the same time, is able to return an interpretable
model: the same peculiarity only holds in other GrC-
based pattern recognition systems (namely (Martino

et al., 2019a; Baldini. et al., 2019; Martino and Rizzi,
2021; Baldini et al., 2021)), whilst it is well-known
that other learning paradigms, notably those based on
artificial neural networks (Xu et al., 2019), lack any
interpretation.

Specifically, for AIDS and Letter-H the perfor-
mance shift with respect to the most performing tech-
nique is below 1%; for Letter-L and Letter-M the gap
slightly increases to approximately 2%. Mutagenic-
ity and GREC are the only two datasets for which
the shift with respect to the most performing tech-
nique becomes larger: approximately 10% for the for-
mer and approximately 6% for the latter dataset, if we
omit the results obtained via cross-validation.

Table 2: Comparison against state of the art graph classification system in terms of accuracy, expressed in percentage. Best
accuracy amongst all subsampling values have been reported for methods based on GRALG. A dash (-) indicates that a given
dataset has not been tested in the literature on the corresponding model.

Technique AIDS GREC Letter-L Letter-M Letter-H Mutagenicity Reference

Bipartite Graph Matching + K-NN - 86.3 91.1 77.6 61.6 - (Riesen and Bunke, 2009a)
Lipschitz Embedding + SVM 98.3 96.8 99.3 95.9 92.5 74.9 (Riesen and Bunke, 2009b)
Graph Edit Distance + K-NN 97.3 95.5 99.6 94 90 71.5 (Riesen and Bunke, 2008)

Graph of Words + K-NN - 97.5 98.8 - - - (Gibert et al., 2011)
Graph of Words + kPCA + K-NN - 97.1 97.6 - - - (Gibert et al., 2011)
Graph of Words + ICA + K-NN - 58.9 82.8 - - - (Gibert et al., 2011)

ODD ST+ kernel 82.06* - - - - - (Da San Martino et al., 2016)
ODD ST TANH

+ kernel 82.54* - - - - - (Da San Martino et al., 2016)
CGMM + linear SVM 84.16* - - - - - (Bacciu et al., 2018)

G-L-Perceptron - 70 95 64 70 - (Martineau et al., 2020)
G-M-Perceptron - 75 98 87 81 - (Martineau et al., 2020)

C-1NN - - 96 93 84 - (Martineau et al., 2020)
C-M-1NN - - 98 81 71 - (Martineau et al., 2020)

Hypergraph Embedding + SVM 99.3† - - - - 77.0† (Martino et al., 2019a)
RECTIFIER + K-NN 99.07 95.57 97.12 92.16 91.60 - (Martino and Rizzi, 2021)

Dual RECTIFIER + K-NN 99.13 96.61 96.40 93.04 91.31 - (Martino and Rizzi, 2021)
HCK Hypergraph kernel + SVM 89.5*† - - - - 73.3† (Martino and Rizzi, 2020)
WJK Hypergraph kernel + SVM 99.5*† - - - - 82† (Martino and Rizzi, 2020)
EK Hypergraph kernel + SVM 99.5*† - - - - 75.4† (Martino and Rizzi, 2020)

SEK Hypergraph kernel + SVM 99.6*† - - - - 75.3† (Martino and Rizzi, 2020)
GRALG (simple random walk)

original symbolic histogram 99.16 84.04 96.58 86.58 73.84 74.73 (Baldini. et al., 2019)

GRALG (stratified random walk)
original symbolic histogram 99 85 97 92 91 69 This work

also in (Baldini et al., 2021)
GRALG (stratified random walk)

sum symbolic histogram 99 77 96 93 91 67 This work

GRALG (stratified random walk)
mean symbolic histogram 93 82 97 94 92 68 This work

GRALG (stratified random walk)
median symbolic histogram 92 84 97 93 92 67 This work

GRALG (stratified random walk)
t-sum symbolic histogram 98 82 97 91 88 69 This work

GRALG (stratified random walk)
t-mean symbolic histogram 93 85 98 89 88 67 This work

GRALG (stratified random walk)
t-median symbolic histogram 93 82 97 90 88 68 This work

* Results refer to cross-validation rather than a separate test set.
†

Only chemical symbol type (categorical) as node label. Edge labels are discarded.

Relaxed Dissimilarity-based Symbolic Histogram Variants for Granular Graph Embedding

231

5 CONCLUSIONS

In this paper, we proposed six ‘relaxed’ variants
of symbolic histograms for graph classification pur-
poses. Inspired by the dissimilarity space embed-
ding, the ‘relaxed’ variants take into consideration the
proper magnitude of the dissimilarities when match-
ing the pivotal granules of information against the
constituent parts of the graphs to be embedded. Three
operators (mean, sum and median of distances) have
been proposed to aggregate such dissimilarity values,
with additional three variants which include a thresh-
olding stage in order to account only for similarities
that are ‘close enough’ with respect to the information
granule under analysis.

In order to test these variants against the original
symbolic histogram definition, we exploited a GrC-
based framework for graph classification, namely
GRALG, and plugged the different symbolic his-
togram variants within the embedding module.

Six open-access datasets of fully labelled graphs
corroborate the effectiveness of the ‘relaxed’ variants.
Especially when the thresholding stage is not em-
ployed, the resulting set of pivotal symbols is dras-
tically reduced with respect to the thresholded vari-
ants (including the original symbolic histogram). In
conclusion, the non-thresholded mean and median
emerged as the most interesting operators in order to
populate the (relaxed) symbolic histogram since they
leaded to very small embedding spaces while, at the
same time, maintaining interesting performances in
terms of accuracy on the test set.

REFERENCES

Bacciu, D., Errica, F., and Micheli, A. (2018). Contextual
graph markov model: A deep and generative approach
to graph processing. In 35th International Conference
on Machine Learning, ICML 2018, volume 1, pages
495–504.

Baldini., L., Martino., A., and Rizzi., A. (2019). Stochas-
tic information granules extraction for graph embed-
ding and classification. In Proceedings of the 11th
International Joint Conference on Computational In-
telligence - NCTA, (IJCCI 2019), pages 391–402. IN-
STICC, SciTePress.

Baldini, L., Martino, A., and Rizzi, A. (2021). Towards
a class-aware information granulation for graph em-
bedding and classification. In Merelo, J. J., Garibaldi,
J., Linares-Barranco, A., Warwick, K., and Madani,
K., editors, Computational Intelligence: 11th Inter-
national Joint Conference, IJCCI 2019 Vienna, Aus-
tria, September 17–19, 2019, Revised Selected Pa-
pers. Springer International Publishing.

Bargiela, A. and Pedrycz, W. (2003). Granular comput-
ing: an introduction. Kluwer Academic Publishers,
Boston.

Bianchi, F. M., Livi, L., Rizzi, A., and Sadeghian, A.
(2014). A granular computing approach to the design
of optimized graph classification systems. Soft Com-
puting, 18(2):393–412.

Bunke, H. (2003). Graph-based tools for data mining and
machine learning. In Perner, P. and Rosenfeld, A., ed-
itors, Machine Learning and Data Mining in Pattern
Recognition, pages 7–19, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Bunke, H. and Allermann, G. (1983). Inexact graph match-
ing for structural pattern recognition. Pattern Recog-
nition Letters, 1(4):245 – 253.

Bunke, H. and Jiang, X. (2000). Graph matching and simi-
larity. In Teodorescu, H.-N., Mlynek, D., Kandel, A.,
and Zimmermann, H.-J., editors, Intelligent Systems
and Interfaces, pages 281–304. Springer US, Boston,
MA.

Bunke, H. and Riesen, K. (2008). Graph classification based
on dissimilarity space embedding. In Joint IAPR
International Workshops on Statistical Techniques in
Pattern Recognition (SPR) and Structural and Syn-
tactic Pattern Recognition (SSPR), pages 996–1007.
Springer.

Da San Martino, G., Navarin, N., and Sperduti, A. (2016).
Ordered decompositional dag kernels enhancements.
Neurocomputing, 192:92 – 103.

Del Vescovo, G., Livi, L., Frattale Mascioli, F. M., and
Rizzi, A. (2014). On the problem of modeling struc-
tured data with the minsod representative. Interna-
tional Journal of Computer Theory and Engineering,
6(1):9.

Del Vescovo, G. and Rizzi, A. (2007a). Automatic classi-
fication of graphs by symbolic histograms. In 2007
IEEE International Conference on Granular Comput-
ing (GRC 2007), pages 410–410.

Del Vescovo, G. and Rizzi, A. (2007b). Online handwrit-
ing recognition by the symbolic histograms approach.
In 2007 IEEE International Conference on Granular
Computing (GRC 2007), pages 686–686. IEEE.

Duin, R. P. and Pękalska, E. (2012). The dissimilar-
ity space: Bridging structural and statistical pattern
recognition. Pattern Recognition Letters, 33(7):826–
832.

Emmert-Streib, F., Dehmer, M., and Shi, Y. (2016). Fifty
years of graph matching, network alignment and net-
work comparison. Information sciences, 346:180–
197.

Ghosh, S., Das, N., Gonçalves, T., Quaresma, P., and
Kundu, M. (2018). The journey of graph kernels
through two decades. Computer Science Review,
27:88–111.

Gibert, J., Valveny, E., and Bunke, H. (2011). Dimensional-
ity reduction for graph of words embedding. In Jiang,
X., Ferrer, M., and Torsello, A., editors, Graph-Based
Representations in Pattern Recognition, pages 22–31.
Springer Berlin Heidelberg, Berlin, Heidelberg.

NCTA 2021 - 13th International Conference on Neural Computation Theory and Applications

232

Kriege, N. M., Johansson, F. D., and Morris, C. (2020). A
survey on graph kernels. Applied Network Science,
5(1):6.

Martineau, M., Raveaux, R., Conte, D., and Venturini,
G. (2020). Learning error-correcting graph matching
with a multiclass neural network. Pattern Recognition
Letters, 134:68 – 76.

Martino, A., Frattale Mascioli, F. M., and Rizzi, A. (2020).
On the optimization of embedding spaces via infor-
mation granulation for pattern recognition. In 2020
International Joint Conference on Neural Networks
(IJCNN), pages 1–8.

Martino, A., Giuliani, A., and Rizzi, A. (2019a). (hy-
per)graph embedding and classification via simplicial
complexes. Algorithms, 12(11).

Martino, A. and Rizzi, A. (2020). (hyper)graph kernels over
simplicial complexes. Entropy, 22(10).

Martino, A. and Rizzi, A. (2021). An enhanced filtering-
based information granulation procedure for graph
embedding and classification. IEEE Access, 9:15426–
15440.

Martino, A., Rizzi, A., and Frattale Mascioli, F. M.
(2019b). Efficient approaches for solving the large-
scale k-medoids problem: Towards structured data.
In Sabourin, C., Merelo, J. J., Madani, K., and War-
wick, K., editors, Computational Intelligence: 9th In-
ternational Joint Conference, IJCCI 2017 Funchal-
Madeira, Portugal, November 1-3, 2017 Revised Se-
lected Papers, pages 199–219. Springer International
Publishing, Cham.

Pedrycz, W. (2001). Granular computing: an introduction.
In Proceedings Joint 9th IFSA World Congress and
20th NAFIPS International Conference, volume 3,
pages 1349–1354. IEEE.

Pedrycz, W. and Homenda, W. (2013). Building the
fundamentals of granular computing: a principle
of justifiable granularity. Applied Soft Computing,
13(10):4209–4218.

Pedrycz, W., Succi, G., Sillitti, A., and Iljazi, J. (2015).
Data description: A general framework of information
granules. Knowledge-Based Systems, 80:98–108.

Pękalska, E. and Duin, R. P. (2005). The dissimilarity rep-
resentation for pattern recognition: foundations and
applications. World Scientific.

Pękalska, E., Duin, R. P., and Paclík, P. (2006). Prototype
selection for dissimilarity-based classifiers. Pattern
Recognition, 39(2):189–208.

Riesen, K. and Bunke, H. (2008). Iam graph database
repository for graph based pattern recognition and ma-
chine learning. In Joint IAPR International Work-
shops on Statistical Techniques in Pattern Recognition
(SPR) and Structural and Syntactic Pattern Recogni-
tion (SSPR), pages 287–297. Springer.

Riesen, K. and Bunke, H. (2009a). Approximate graph
edit distance computation by means of bipartite graph
matching. Image and Vision Computing, 27(7):950 –
959.

Riesen, K. and Bunke, H. (2009b). Graph classification by
means of lipschitz embedding. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics),
39(6):1472–1483.

Riesen, K., Jiang, X., and Bunke, H. (2010). Exact and
inexact graph matching: Methodology and applica-
tions. In Managing and Mining Graph Data, pages
217–247. Springer.

Storn, R. and Price, K. (1997). Differential evolution – a
simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimiza-
tion, 11(4):341–359.

Tang, J., Alelyani, S., and Liu, H. (2014). Feature selection
for classification: A review. In Data Classification,
pages 37–64. CRC Press.

Theodoridis, S. and Koutroumbas, K. (2008). Pattern
Recognition. Academic Press, 4 edition.

Wang, X., Pedrycz, W., Gacek, A., and Liu, X. (2016).
From numeric data to information granules: A de-
sign through clustering and the principle of justifiable
granularity. Knowledge-Based Systems, 101:100–113.

Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., and Zhu,
J. (2019). Explainable ai: A brief survey on history,
research areas, approaches and challenges. In Tang,
J., Kan, M.-Y., Zhao, D., Li, S., and Zan, H., edi-
tors, Natural Language Processing and Chinese Com-
puting, pages 563–574, Cham. Springer International
Publishing.

Zadeh, L. A. (1997). Toward a theory of fuzzy information
granulation and its centrality in human reasoning and
fuzzy logic. Fuzzy Sets and Systems, 90(2):111–127.

APPENDIX

In Section 4.3, we stressed one of the most intrigu-
ing aspects of GrC-based pattern recognition systems:
the model interpretability. In fact, the resulting set of
information granules that populate the alphabet A is
automatically returned by the system during its syn-
thesis, without any intervention by the end-user. Fur-
thermore, it is worth recalling that the alphabet A con-
tains the set of pivotal granules of information on the
top of which the embedding is performed. In plain
terms, each information granule ‘behaves’ as a feature
in the embedding space since its recurrences within
the graphs to be embedded are the core of the em-
bedding procedure. If, in the so-synthesized embed-
ding space, a given classifier is able to discriminate
the embedded graphs, this inevitably suggests that the
features that describe the patterns are indeed informa-
tive, and so are the underlying information granules.

At this point, one might wonder whether these in-
formation granules are meaningful for the problem
at hand and validate a-posteriori the optimal alpha-
bet A∗, possibly with the help of field-experts (de-
pending on the application field of the problem). To
this end, we selected the best run (amongst the 10)

Relaxed Dissimilarity-based Symbolic Histogram Variants for Granular Graph Embedding

233

for the dataset Letter-L. In particular, amongst the re-
sults presented in Section 4.2, we selected the 10%
subsampling rate with the Mean operator for populat-
ing the ‘relaxed’ symbolic histogram. The rationale
behind this choice is three-fold:
1. Letter-L is a dataset composed by capital Roman

letter drawings and originally conceived for hand-
writing recognition tasks; conversely to datasets
such as AIDS and Mutagenicity (that pertain to
the world of biology) and GREC (that pertains to
the world of electronics), the three Letter datasets
are more suitable for a broader audience, since no
specific background is needed to understand the
data and the application under analysis;

2. from Figure 1a, it is possible to observe that the
average accuracy is approximately 97%: as for the
above discussion, this suggests that the resulting
symbols are indeed informative;

3. from Figure 1c, it is possible to see that the re-
sulting symbols is fairly low (approximately 5–
6 symbols) and this makes the validation of the
symbols less tedious and more comfortable to dis-
play.

In Figure 4 we show the 6 resulting symbols in A∗.
Let us recall from Section 4.1 that the Letter datasets
have unlabelled edges and the nodes are labelled with
a 2D vector of 〈x,y〉 coordinates. For the sake of vi-
sualization, all 〈x,y〉 coordinates are scaled in the uni-
tary hypercube.

Certainly the most unexpected subgraph is de-
picted in Figure 4f: a single node in the top-right por-

tion of the 〈x,y〉 plane. Despite it appears trivial, an
end-point in the top-right portion is a feature which
is common in several capital Roman letters: amongst
the 15 letters (classes) it worth mentioning E, F, H,
K, M, N, T and Z.

Figure 4e shows another typical portion of many
capital Roman letters: a horizontal top line. This fea-
ture is less common with respect to the single node
(Figure 4f), yet it is characteristic of letters such as E,
F, T and Z.

Figures 4a–4d show a series of vertical or slightly
oblique lines, where the striking difference is in their
position along the x-axis. Many different capital Ro-
man letters can be drawn as a combination of these
‘basic’ traits: M, for example, is a combination of
4 vertical or slightly oblique lines (left to right: verti-
cal, oblique, oblique, vertical) and the same reasoning
holds for letters such as N, V, X and W.

However, it should be noted that the claim of
this a-posteriori validation is not that every letter
can be drawn by assembling the six symbols as de-
picted in Figure 4 as-they-are. In fact, we recall that
the similarity between graphs follows an inexact ap-
proach: this means that these symbols are likely to be
stretched or somehow moved across the 〈x,y〉 plane to
faithfully ‘match’ the drawing of capital Roman let-
ters (recall that the dissimilarity between nodes fol-
lows the Euclidean distance between their coordi-
nates). If the ‘as-they-are conjecture’ was true, then it
would have been impossible to recognize letters such
as E (which is one of the 15 letters to be classified)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)
0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)
0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)
0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e)
0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f)
Figure 4: Resulting symbols for Letter-L (10% subsampling rate, Mean operator).

NCTA 2021 - 13th International Conference on Neural Computation Theory and Applications

234

due to the absence of vertical lines positioned in the
middle and the bottom of the 〈x,y〉-plane in the set of
symbols. However, there is an horizontal line (Fig-
ure 4e) that can easily be used to represent the three
horizontal lines in the letter E, counting three distinct
matches with different similarity degrees.

Relaxed Dissimilarity-based Symbolic Histogram Variants for Granular Graph Embedding

235

