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Abstract: Event logs are more and more considered for helping IT personnel understand system behaviour or perfor-
mance. One way to get knowledge from event logs is by extracting conversations (a.k.a. sessions) through
the recovering of event correlations. This paper proposes a highly parallel algorithm to retrieve conversations
from event logs, without having any knowledge about the used correlation mechanisms. To make the event log
exploration effective and efficient, we devised an algorithm that covers an event log and builds the possible
conversation sets w.r.t. the data found within the events. To limit the conversation set exploration and quicker
recover good candidates, the algorithm is guided by an heuristic based upon the evaluation of invariants and
conversation quality attributes. This heuristic also offers flexibility to users, as the quality and invariants can
be adapted to the system context. We report experimental results obtained from 6 case studies and show that
our algorithm has the capability of recovering the expected conversation sets in reasonable time delays.

1 INTRODUCTION

Log analysis gathers approaches and tools allowing
to continuously extract knowledge from event logs.
The benefits of knowledge extraction from event logs
are substantial: they can be employed for security au-
dits (Salva and Blot, 2020b), real-time anomaly detec-
tion (Zhang et al., 2019), or model learning (Conforti
et al., 2016; Salva and Blot, 2020a).

Event logs are usually recorded from (complex)
distributed systems made up of concurrent compo-
nents, e.g., Web service compositions or Internet of
things (IoT) systems. To retrieve what happens from
the event logs of such systems, correlation mecha-
nisms, e.g., execution trace identifiers, are employed
to propagate context ids and keep track of the process
contexts. Unfortunately, every company devises its
own correlation mechanisms, therefore correlations
used with distrusted systems are more and more com-
plex to understand and retrieve. The problem strongly
hampers the automatic analysis of event logs to get
useful knowledge materialised here under the form of
conversations (a.k.a. sessions), i.e. sequences of cor-
related events interchanged among different compo-
nents that achieve a certain goal.

Event correlation has been widely studied in dif-
ferent kinds of domains, e.g., process mining, or event
association mining. In short, many approaches try
to recover conversations by mining frequent associ-
ation rules in event logs, without using correlation

mechanisms (Fu et al., 2012; Musaraj et al., 2010).
Other works propose to recover conversations by us-
ing some correlation patterns (Conforti et al., 2016;
Motahari Nezhad et al., 2011). In particular, Process
spaceship (Motahari Nezhad et al., 2011) gathers a set
of algorithms allowing to scan event logs and retrieve
conversation sets. The event correlations are mined
by using a sort of breadth search strategy over the
parameter assignments found in events. It explores
all the possible correlations over the domain of pa-
rameter assignments and prunes them with interest-
ingness properties. The interesting conversation sets
are found at the expense of time complexity.
Contribution: we propose another highly parallel
algorithm to retrieve conversations from event logs,
without having any knowledge about the used corre-
lation mechanisms. To make the event log exploration
effective and efficient, our algorithm is based upon a
formalisation of the notion of correlation patterns and
is guided by the quality of the generated conversa-
tions. As there is no consensus about what a rele-
vant conversation should be, the conversation quality
can be adapted to meet user needs and viewpoints.
Our algorithm is based upon a strategy mixing the di-
vide and conquer paradigm with the depth-search ap-
proach and a heuristic based upon the evaluation of
invariants and conversation quality attributes. Both
the strategy and heuristic allow to quicker find a first
solution. Our algorithm can also return the conver-
sation sets that meet quality attributes, and sort them
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from the best to the lowest quality. In comparison to
(Motahari Nezhad et al., 2011), our algorithm is de-
vised to concentrate the exploration on the conversa-
tion sets having correct correlations and good quality,
and not on the exploration of the correlation domain.
We show that the worst complexity is reduced. Fur-
thermore, our approach offers flexibility to users, as
the quality and invariants can be adapted to express
the user knowledge about the system or to meet appli-
cation contexts. This paper also provides an empirical
evaluation, which investigates the precision and recall
of the conversation sets generated from 6 event logs
generated by real IoT systems, along with the perfor-
mance of our algorithm.

The paper is organized as follows: we provide
some definitions and notations on events, correlations
and conversations in Section 2. Our approach is pre-
sented in Section 3. The next section shows some ex-
perimental results. Section 5 discusses related work.
Finally, Section 6 summarises our contributions and
draws some perspectives for future work.

2 CORRELATIONS AND
CONVERSATIONS

2.1 Preliminary Definitions

We denote E the set of events of the form e(α) with e
a label and α an assignment of parameters in P. The
concatenation of two event sequences σ1, σ2 ∈ E∗ is
denoted σ1.σ2. ε denotes the empty sequence. For the
sake of readability, we also write σ1 ∈ σ2 when σ1 is
a (ordered) subsequence of the sequence σ2. Events
are partially ordered in event logs. This is expressed
with these partial order relations:

• <t⊆ E×E, which orders two actions according to
their timestamps,

• <c⊆ E×E, which orders two actions if the occur-
rence of the first action implies the occurrence of
the second one,

• <:=<t ∪ <c is the transitive closure of <c and
<t .

We also use the following notations on events and
sequences to make our algorithms more readable:

• f rom(e(α)) = c denotes the source of the event
when available; to(e(α)) = c denotes the destina-
tion;

• isReq(e(α)), isResp(e(α)) are boolean expres-
sions expressing the nature of the event;

• A(σ) =
⋃

e(α)∈σ

α is the set of parameter assign-

ments of σ.

2.2 Event Correlation and Conversation

The correlation mechanisms used from one system to
another are seldom the same, but they often comply
with some correlation patterns. Most of these patterns
are introduced and discussed by (Barros et al., 2007).
Correlation patterns always define the association of
successive events into conversations by means of pro-
tocol information or event content. Given an event se-
quence σ= e1(α1) . . .ek(αk)∈E∗, we formulate these
patterns as follows:

• Key based correlation: an event e(α) is corre-
lated with σ if all the events share the same keys
or properties formulated by the same parameter
assignment set: α∩α1∩·· ·∩αk 6= /0;

• Chained correlation: e(α) is correlated with σ

if e(α) shares some references with ek(αk): α∩
αk 6= /0;

• Function based correlation: this pattern is
somehow a special case of the previous ones. A
function f : E→ L firstly assigns to each event
a label of the form ”l:=label” in L according to
the event parameter assignments. For instance,
a function f can be designed to return company
names from ip addresses. For an event e(α), we
consider that α is completed with these label as-
signments. Then, the event correlation is per-
formed with one of the previous patterns;

• Time-based correlation: e(α) is correlated with
σ if it carries a time-based relationship with the
events of σ. This pattern is somehow a special
case of the previous one, in the sense that a la-
bel can be injected into an event w.r.t. a condition
on time. A function f : E→ L assigns labels of
the form ”t:=l” to events according to timestamps.
For example, considering that timestamps are real
numbers, the function f : E→ L, f (e(α)) = {t :=
f loor(time(e(α))/T )} provides the same labels
to the events occurring in the same time lapse T .

An event correlation can be formulated with one
of these patterns but also with expressions composed
of pattern conjunctions or disjunctions. To make our
algorithm readable, we write e(α) correlates σ if the
event e(α) correlates with a sequence σ by such a cor-
relation pattern-based expression.

We consider that correlations between pairs of
successive events may change as different patterns
might be used within the same conversation. These
correlation changes are explicitly observed by the
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successive sets of parameter assignments used. In ref-
erence to (OASIS Consortium, 2007), we call these
sets of parameter assignments correlation sets. A
conversation corresponds to an event sequence inter-
changed among components, whose events correlate
by means of correlation sets. Finally, we call the set
of parameters used in a correlation set, a correlation
key:

Definition 1. Let σ = e1(α1) . . .ek(αk) ∈ E∗.

• σ is a conversation iff ∀1 < i ≤ k :
ei(αi) correlates e1(α1) . . .ei−1(αi−1)

• corr(σ) = {cs1, . . . ,csk−1} denotes the set of cor-
relation sets of σ, with csi ⊆ αi∩αi+1

• K(σ) is the set of correlation keys of corr(σ).
• K(C) =

⋃
σ∈C K(σ) is the set of correlation keys

of the conversation set C.

3 THE APPROACH

Given an event log produced by a concurrent and
distributed system, our algorithm aims at assembling
events into conversations. We assume that events are
ordered with the < relation. When several log files
are given, we assume that they can be assembled with
<t or <c. In particular, the causal order relation <c
may help assemble two log files given by two systems
whose internal clock values slightly differ. <c indeed
helps order the actions a1(α1) in a first log that im-
ply the occurrence of other actions a2(α2) in a second
one. The analysis of the pairs (a1(α1),a2(α2)) helps
compute the difference of time between these two sys-
tems.

Our approach begins by formatting the event log
into an event sequence S of events of the form e(α)
by means of regular expressions. Several techniques,
e.g., (Vaarandi and Pihelgas, 2015; Messaoudi et al.,
2018), can assist users in the mining of patterns or ex-
pressions from log files, which can be used to quickly
derive regular expressions. Afterwards, our algorithm
is devised to explore the possible correlations among
the successive events of the sequence S, thus in a
depth-wise way, while being efficiently guided by the
construction of conversations and their consistencies.
This notion of consistency is expressed by means of
correlation patterns, conversation set invariants and
conversation set quality. These two last notions are

/a0(id :=4) /a1(id :=5) ok1(id :=4, id1:=1) ok2(id :=5, id2:=1)
/buy1(item:=i , id1:=1) / login (a:=acc) /buy2(item:=i , id2:=1)
logged(a:=acc) ok3(id1 :=1, content=done)
ok4(id2 :=1, content :=done)

Figure 1: (Formatted) Event Sequence Example.

presented in the remainder of this section, then we
introduce our conversation set extraction algorithm.
Figure 1 illustrates a simple example of formatted
events, which will be used as a running example.

3.1 Conversation Set Invariants

As stated previously, an event e(α) complements a
current conversation σ iff e(α) correlates σ. From
this correlation notion, we derive properties that must
hold (invariants) on a conversation set C. These in-
variants will allow our algorithm to stop the explo-
ration of a candidate conversation set when they don’t
hold.

In accordance with the correlation patterns, an
event must correlate with only one conversation σ in
C with a unique correlation set: a correlation set cs
of corr(σ) cannot be empty, cs cannot be found in
another conversation σ2 of C. Besides, σ must have
parameter assignments for building potential correla-
tion sets; it must include parameter assignments that
cannot be found in any other conversation σ2. These
invariants are formulated in the following proposition:

Proposition 2 (Conversation Set Invariants). Let C
be a conversation set and σ∈C. Inv stands for the set
of conversation set invariants:

• ∀cs ∈ corr(σ) : cs 6= /0

• ∀cs ∈ corr(σ),∀σ2 ∈C \{σ} : cs∩A(σ2) = /0

• A(σ)\
⋃

σ2∈C\{σ}A(σ2) 6= /0

Additionally, other invariants can be defined to
meet user preferences. For instance, the following
invariant forbids the use of the parameters in NK to
build correlation keys. The last invariant imposes
conversations to start with a request.

• ∀k ∈ K(σ) : k∩NK = /0

• ∀e1(α1) . . .ek(αk) ∈C : isReq(e1(α1))

For readability, we denote that the conversations
of a conversation set C meet conversation invariants
with C satisfies Inv.

3.2 Conversation Set Quality

Our algorithm uses quality metrics as another way
to limit the conversation set exploration, but also to
prioritise this exploration among several conversation
set candidates. We formulate a comprehensive qual-
ity metric of a conversation set C by means of a util-
ity function for representing user preferences. We
have chosen the technique Simple Additive Weighting
(SAW) (Yoon and Hwang, 1995), which allows the
interpretation of these preferences with weights. The
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(a) First conversation sets generated from the sequance of Figure 1

(b) Final Conversation sets

Figure 2: Conversation sets after Steps 1-4 of Algorithm 18 and after the last step. Q is the conversation set quality.

following definition refers to quality metrics Mi(C)
over conversation sets, themselves calculated with
metrics mi(σ) over conversations:

Definition 3 (Conversation Set Quality). Let C be
a conversation set. Q(C) is a utility function defined
as: 0≤Q(C) = ∑

n
i=1 Mi(C).wi ≤ 1 with 0≤Mi(C) =

∑σ∈C mi(σ)
|C| ≤ 1, wi ∈ [0;1] and ∑

k
i=1 wi = 1.

The conversation quality metrics can be general
or established with regard to a specific system con-
text. Like invariants, our approach actually does not
limit the metric set. We give below some examples
implemented in our prototype tool. Two first met-
rics m1 and m2 evaluate whether a conversation σ fol-
lows the classical request-response exchange pattern
(sender sends a request to receiver, ultimately return-
ing a response). m1 evaluates the ratio of requests in
σ associated to some responses with ReqwResp(σ).
m2 measures the ratio of responses following a prior
request with RespwReq(σ). We observed that when
m1 or m2 are close to 0, this means that the event log
may include a lot of noise, or that the event log is in-
complete, or that the correlation sets are incorrect.

0 < m1(σ) =
|ReqwResp(σ)|+1
|Req(σ)|+1

≤ 1 (1)

0 < m2(σ) =
|RespwReq(σ)|+1
|Resp(σ)|+1

≤ 1 (2)

The metric m3 examines whether σ is composed of
correlated events, in other terms, whether σ has more
than one event:

m3(σ) =

{
1 if corr(σ) 6= /0

0 otherwise (3)

The metric m4 measures the ratio of events that
belong to a chain of events. An event e(α) sent by
component c1 to c2 belongs to an event chain if e(α)
is followed by another event sent by c2 or nothing, and
e(α) is preceded by an event sent to c1 or nothing.
These two notions are formulated with f (e(α)) and
p(e(α)). Events(σ) stands for the set of events of σ.

f (e(α)) =


1 if ∃e2(α2) : e(α)< e2(α2)∧

to(e(α)) = f rom(e2(α2)) or
@e2(α2) : e(α)< e2(α2)

0 otherwise

p(e(α)) =


1 if ∃e2(α2) : e2(α2)< e(α)∧

f rom(e(α)) = to(e2(α2)) or
@e2(α2) : e2(α2)< e(α)

0 otherwise

0 < m4(σ) =
∑(e(α))∈σ f (e(α)+ p(e(α)))

2|Events(σ)|
≤ 1 (4)
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3.3 Conversation and Correlation Set
Extraction Algorithm

Algorithm 1: Conversation and Correlation Set Ex-
traction Parallel Algorithm.

input : Event sequence S , boolean first

output: Conversation set CS,

struct PRIORITYTHREADPOOL

PriorityTask List List
run(): while there is a task in L do

choose the Task with hightest Priority Q;

run Task;

end struct

struct PRIORITYTASK,

Conversation set C, int i, Priority Q, sequence σ

run(): call FindCS(C, i,σ);
end struct

Pool := PriorityThreadPool();

T := set of N sub-sequences σ uniformly extracted from S of length L

starting by a request;

foreach σ = e1(α1) . . .ek(αk) ∈ T do
Add PriorityTask({e1(α1)},1,Q = 1,σ) to Pool;

C1, . . . ,Cn:= Wait end of Pool;

Choose correlation key set K(C) among K(C1), . . . ,K(Cn);

Extract CS from S with K(C);

Procedure: FindCS(C, i,σ).
1 : FindCS1: FindCS(1): FindCS: FindCS
2 if i≤ k then
3 foreach σ1 = e1(α1) . . .ek(αk) ∈C : ei(αi) correlates σ1 do
4 CS := P (αi ∩αk))\{ /0} ;

5 foreach cs ∈CS do
6 σ2 := σ1.ei(αi);

7 corr(σ2) := corr(σ1)∪{cs};
8 C2 :=C∪{σ2}\{σ1};
9 if C2 satisfies Inv and Q(C2)≥ T then

10 add PriorityTask(C2, i+1,Q(C2),σ) to Pool;

11 C3 :=C∪{ei(αi)};
12 corr(ei(αi)) := /0;

13 if C3 satisfies Inv and Q(C3)≥ T then
14 add PriorityTask(C2, i+1,Q(C3),σ) to Pool;

15 else
16 return C;

17 if first and Q(C)≥ T 2 then
18 STOP Pool;

We can now present our Conversation and Corre-
lation Set Extraction algorithm, given in Algorithm
1. It takes as input an event sequence S along with
a boolean f irst determining whether the algorithm
must stop after finding one conversation set that meet
quality requirements. Algorithm 1 exploits two struc-
tures. PriorityThreadPool implements the thread pool
paradigm to run tasks in parallel w.r.t. a set of avail-

able threads. The choice of the task to execute is
guided by a priority Q, which is equal to the con-
versation set quality. These tasks are modelled with
the PriorityTask structure, which holds a conversation
set, an index i, a priority Q and an event sequence
to explore. When a PriorityTask is executed by the
PriorityThreadPool, the procedure FindCS(C, i,σ) is
called. Algorithm 1 somehow mimics human being
by implementing the divide and conquer paradigm. It
extracts N event sequences of length L in S and analy-
ses them in parallel to quicker find the best correlation
key sets. Given a sequence σ, it prepares a first task
composed of the conversation set C equal to the first
event of σ and supplies it to the thread pool. It results
that FindCS({e1(α1)}, i = 2,σ) is called. Next, ev-
ery event of σ are successively covered by recursively
supplying a new task that calls the procedure FindCS
with a new conversation set.

The procedure FindCS(C, i,σ) takes the event
ei(α) ∈ σ and tries to find a conversation σ1 in C such
that ei(αi) correlates σ1. If such a conversation ex-
ists, the procedure builds for every possible correla-
tion set (line 5) a new conversation set C2 with the new
conversation σ.ei(αi). An additional conversation set
C3 is built to consider that the event ei(αi) might also
be the beginning of a new conversation (line 11). For
every new conversation set that meet conversation in-
variants and quality requirement Q(), a new Priority-
Task is instantiated with the priority Q() (lines 10 and
14). The quality requirement is materialised by the
thresholds T and T 2 ≥ T . The latter can be used to
re-enforce the desired conversation set quality when
the algorithm is stopped after finding one solution.

Consider the example of event sequence S of Fig-
ure 1. Some steps of Algorithm 1 and the final con-
versation sets are illustrated in Figure 2. Algorithm 1
starts with the first event a0 and creates a first conver-
sation set C1. The next event /a1 cannot be correlated
to /a0, hence a new conversation is begun. The 3rd
event ok1 can correlate with /a0 with {id := 4}, C1
becomes C11. The event ok1 could also have been
the first event of a new conversation in a new conver-
sation set C12. But, the third invariant of Proposition
2 does not hold (id := 4 is the only assignment allow-
ing to identify the conversation /a0, but the assign-
ment is also found in the conversation ok1). Hence,
C12 is not kept. The same situation happens with the
4th event ok2. The 5th event /buy1 can correlate with
ok1 (conversation set C1111), but, at this stage, it may
also be the first event of a new conversation (C112).
Finally, two conversation sets are recovered from the
sequence S by Algorithm 1, C f 1 and C f 2 given in
Figure 2(b). With regard to conversation quality, C f 1
is the best candidate. Q(C f 2) is lower than Q(C f 1)
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because C f 2 contains two conversations composed of
one response only.
Algorithm Complexity: At worst, the complexity
of the procedure FindCS is exponential time. It ex-
plores conversation sets while covering the event se-
quence S. Given a conversation set C, it builds new
conversation sets: 1) by completing a conversation
with an event ei(αi) (lines 3-10) or 2) by creating a
new event conversation (lines 11-14). 1) At worst,
FindCS complements the conversations of C with
ei(αi = {p1, . . . , pP}) in 2P−1 different ways because
there is at most 2P − 1 possible correlation sets in
α∩{p1, . . . , pP} (line 4). With 1) and 2), Procedure
FindCS builds 2P new conversation sets from C at
worst. While covering every event of S, the procedure
covers 1+(2P)+ · · ·+(2P)(k−1) conversation sets. Its
complexity is then proportional to M∗( 2kP−1

2P−1 ) as 2P is
different from 1, with M the complexity for comput-
ing the quality of one conversation set. Even though
the quality metrics may be different from one user to
another, it sounds reasonable to estimate that the met-
ric computation complexity is O(k2). The algorithm
of Process spaceship (Motahari Nezhad et al., 2011)
is double exponential time in the worst case. Hence
the depth-wise strategy used in our algorithm offers a
better time complexity.

In average, Algorithm 1 covers N sequences of
length L, whatever the event log size k. Additionally,
it relies on invariants and quality metrics to limit the
conversation set space exploration. As a result, the
average case complexity is much lower. This is con-
firmed by our experimentations presented in the next
section.

4 EVALUATION

The experiments presented in this section aim to eval-
uate the capabilities of our algorithm in terms of ef-
fectiveness and performance through these questions:

• RQ1: can the approach extract relevant conversa-
tion sets from event logs? We evaluate the rele-
vance of the conversation sets extracted by Algo-
rithm 1 by assessing the accuracy of the extracted
correlation key sets. This accuracy is studied with
precision and recall. Precision is here the fraction
of expected correlation key sets of conversations
among the retrieved ones. Recall is the fraction of
expected correlation key sets that were retrieved;

• RQ2: what is the performance of our algorithm?
How does it scale with the size of the event log?

4.1 Empirical Setup

This study was conducted on 6 IoT systems integrat-
ing varied devices and gateways communicating over
HTTP and UDP. We assembled and configured these
systems from a set of 7 commercial devices (3 sen-
sors, 2 gateways, 2 actuators). The behaviours of the
gateway(s) after the receipt of data from the sensors
differ in each configuration. We monitored these sys-
tems and collected event logs of about 2200 events,
which themselves include 5 to 9 parameter assign-
ments. We denote the logs S1 to S6. Furthermore,
we implemented Algorithm 1 in Java. Source codes
and event logs are available here1.

4.2 RQ1: Can the Approach Extract
Relevant Conversation Sets?

To study this question, we manually analysed the
event logs S1 to S6 to determine the relevant corre-
lation key sets, that is the correct and expected ones
for every conversation. We observed that all the con-
versations are identified by means of a key-based cor-
relation using the parameter session. Next, we applied
Algorithm 1 on event logs with the parameters N=20,
L=20 (20 sequences of 20 events were extracted by
Algorithm 1). The quality threshold of Algorithm 1
was set to 80% (the conversation sets whose quality
is lower are deleted). Finally, for every event log,
we collected the correlation key sets of the generated
conversations, and measured recall and precision. We
also analysed how the precision is distributed over the
N event sequences by measuring the ratio of occur-
rences of the expected correlation key sets, or in other
terms, the ratio of event sequences providing a preci-
sion equal to 100% among the N sequences.

Table 1: Recall, Precision and Occurrence ratio of the ex-
pected correlation key sets.

Correlation Key
Set Recall

Correlation Key
Set Precision

Occurrence Ratio of the
Expected Results

S1 100% 81% 65%
S2 100% 76% 55%
S3 100% 80% 65%
S4 100% 100% 100%
S5 100% 100% 100%
S6 100% 90% 40%

Table 1 shows the results for S1 to S6. We deduce
from Column 1 that Algorithm 1 always returns the
expected correlation key sets with these event logs.
This result comes from the fact that the quality met-
rics are suited to the event log contexts, i.e. the mes-

1https://github.com/sasa27/ConversationExtraction
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sage passing protocols HTTP and UDP composed of
request and responses.

The second column of Table 1 shows that Algo-
rithm 1 has good precision, although it returns some
unexpected results. After analysing them, we mostly
observed that Algorithm 1 returned unexpected cor-
relation key sets on account of sequences of succes-
sive UDP requests later followed by their successive
responses. In these cases, the algorithm built corre-
lation key sets composed of the expected parameter
session, along with the parameters status, group, idx,
or response because these ones are assigned to the
same values between two successive requests or re-
sponses. In this case, the quality is equal to 100%.
We believe that the definition of an additional met-
ric favouring smallest correlation key sets can help
lower the conversation qualities of these unexpected
correlation key sets. When Algorithm 1 splits up an
UDP request to its associated response into two con-
versations, conversation qualities are always lower to
100%, thanks to the metrics m1, m2, m4.

When several correlation key sets are returned, the
choice of the most relevant one by users can be guided
by the ratio of occurrence of the expected correlation
key sets (Column 3 of Table 1). For S1, S3, S4 and
S5, this ratio indicates that the right correlation key
set only was returned with most of the 20 event se-
quences. With S2 and S6, the ratios are lower, but
there is no other correlation key set that has a higher
ratio or close ratio. The ratios are lower with these
event logs because they are composed of non com-
municating events (neither requests or responses) that
lower conversation set qualities. Indeed, we observed
that when there is an overpresence of this kind of
events in the N event sequences, there is also an over-
presence of requests not followed by responses (here,
m1 strongly lowered quality measurements). Extend-
ing the sequence length (parameter L) allows to in-
crease the ratios.

In summary, Algorithm 1 provides good recall and
precision with these event logs. It is worth noting that
the capability of Algorithm 1 of finding accurate cor-
relation key sets depends on quality metrics. These
ones must be chosen w.r.t. the protocols used or the
event types.

4.3 RQ2: What Is the Performance of
Our Algorithm?

During our experiments, we observed that execution
times strongly depend on the event log size but also
on the conversation number, as Algorithm 1 checks
whether invariants hold and computes quality metrics
on conversation sets. Hence, to answer this question,
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Figure 3: Execution times vs. event log sizes.
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Figure 4: Execution times vs. conversation number.

we firstly studied how the tool scales with the size of
the event logs by limiting the conversation number to
20. We took the 20 first conversations of S1 and aug-
mented them using 40 to 10000 events. Additionally,
we measured execution times with regard to the num-
ber of conversations in the event logs from 10 to 200
conversations of 2 events. Figures 3 and 4 depict exe-
cution time curves and tendency curves.

The execution time curve of Figure 3 follows a
quadratic curve and reveals that Algorithm 1 performs
well in practice. In comparison to the algorithm worst
complexity, this can be explained by the fact that, in
real logs, a new event does not correlate so many ex-
isting conversations (because it does not share com-
mon parameters with the last event of the conversation
for instance) or because it breaks some conversation
set invariants. On one hand, this limits the number
of new conversation sets created. And on the other
hand, it eliminates conversation sets that have reached
a dead end. Overall, the ratio of new conversation sets
over eliminated conversation sets stays low. It results
that the algorithm is rather good in practice. Figure
4 depicts a cubic polynomial curve, which shows that
execution times quicker increase with regard to the
number of conversations. Here, we suspect a lack of
optimisation within our current implementation. In-
deed, the computation of invariant satisfiability (line
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9 of Algorithm 1) is done by iterating over all the
conversations of the conversation sets. Some inves-
tigations need to be conducted to try to reduce this
number of iterations, perhaps on leveraging on invari-
ant verifications that have already been checked on
the previous calls of Procedure FindCS.

5 RELATED WORK

Event correlation has been widely studied in different
kinds of domains, e.g., process mining, event asso-
ciation mining, or session recovery. Initially, some
approaches restricted the problem of recovering con-
versations with assumptions. For instance, the cor-
relation ids are assumed to be known in advance in
(Kliger et al., 1995; Gaaloul et al., 2008).

Later, several papers (Fu et al., 2012; Liu and Liu,
2010; Serrour et al., 2008; Musaraj et al., 2010) pre-
sented techniques based upon the mining of associa-
tion event rules among pairs of events. These rules
can be seen as conversations. The advantage of these
approaches is to not require any assumption on corre-
lation patterns as these ones are not considered. Log-
master (Fu et al., 2012) generates event association
rules with the computation of two event occurrence
numbers: the support count, which is the recurring
times of the preceding events which are followed by
the posterior event, and the posterior count which is
the recurring times of the posterior event that follows
the preceding events. Liu et al. proposed an approach
in (Liu and Liu, 2010) for discovering frequent cor-
relation relationships by optimising the Web access
pattern tree mining algorithm. Serrour et al. also pro-
posed to correlate events by extracting frequent event
correlation relationships, but they use graphs to ex-
press frequencies (Serrour et al., 2008). Conversa-
tions are then transformed into business processes.
Their approach requires to know the senders or re-
ceivers of the events. The delta algorithm presented
in (Musaraj et al., 2010) recovers correlations among
pairs of events by using linear regression methods to
derive the equations that describe the relationships
that exist between the numbers of different message
occurrences.

Other works use correlation patterns for recov-
ering conversations as the correlation mechanism
strongly reduces the amount of false positives when
systems are made up of concurrent components. The
approach given in (Dustdar and Gombotz, 2006) tries
to identify conversations by heuristically setting a ses-
sion duration threshold and then measuring the con-
versation quality. The session duration is updated by
the approach until the conversation quality exceeds a

given threshold. To reach this purpose, the approach
assumes that a service cannot begins several conversa-
tions concurrently, and that the conversations are sim-
ilar in terms of consumed services. These assump-
tions strongly limit its practical application.

The two papers (Conforti et al., 2016; Mota-
hari Nezhad et al., 2011) present algorithms whose
objectives and assumptions get closer to the ones of
Algorithm 1. BPMN Miner (Conforti et al., 2016)
is a tool specialised in the recovery of BPMN mod-
els. The novelty brought by BPMN Miner consists
in detecting sub-conversations to later depict sub-
processes. These conversations are obtained by split-
ting an event log into sub-logs by means of process
instance identifiers. The algorithm supports one cor-
relation pattern only (key based correlation). Then,
it uses the TANE algorithm for the discovery of func-
tional dependencies among events. When several can-
didate keys are available, it selects keys either with su-
pervision or by choosing the lexicographically small-
est candidate key. The latter builds a lot of incorrect
conversation sets.

Process spaceship (Motahari Nezhad et al., 2011)
gathers a set of algorithms allowing to correlate events
of event logs and represent processes with views.
The event correlations are mined by using a kind
of breadth search strategy over the set of parame-
ter assignments. The algorithms correlates events by
considering all the possible atomic assignments, then
conjunctions and finally disjunctions. In the mean-
time, this large set of possible correlation sets are
pruned by means of 4 metrics, e.g., length of conver-
sations, or occurrence of parameters used for corre-
lations. Our algorithm uses another strategy, which
aims at finding correlation sets while building con-
versations. Compared to Process spaceship, this can
be considered as a depth search guided by heuristics
based upon invariants and quality metrics. This strat-
egy allows to quicker find a first solution. Our algo-
rithm also has the capability of ordering conversation
sets that meet quality requirements.

6 CONCLUSION

This paper has proposed the design and implementa-
tion of an algorithm for the recovery of conversation
sets from event logs generated by concurrent and dis-
tributed systems. The algorithm explores the conver-
sation set space that can be derived from an event log
by implementing the divide and conquer paradigm.
Furthermore, it is guided toward the most relevant so-
lutions by means of conversation invariants and qual-
ity metrics. The latter can be adapted to define user
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preferences. The algorithm either provides a first cor-
relation key set that meets quality or returns a sorted
list along with the respective conversations sets.

Our evaluation showed that despite using invari-
ants and quality attributes, Algorithm 1 may still re-
turn several correlation key sets. In this case, the user
has to choose one set with which conversations are
finally extracted. We intend to reduce the need for
supervision and increase precision by improving our
approach with a decision-making algorithm. The lat-
ter will compute correlation key set scores, choose the
most appropriate set, and finally, will automatically
return one conversation set.

ACKNOWLEDGEMENT

Research supported by the French Project VASOC
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lahsène, Z. and Léonard, M., editors, Advanced Infor-
mation Systems Engineering, pages 405–419, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Vaarandi, R. and Pihelgas, M. (2015). Logcluster - a data
clustering and pattern mining algorithm for event logs.
In 2015 11th International Conference on Network
and Service Management (CNSM), pages 1–7.

Yoon, K. P. and Hwang, C.-L. (1995). Multiple attribute
decision making: An introduction (quantitative appli-
cations in the social sciences).

Zhang, X., Xu, Y., Lin, Q., Qiao, B., Zhang, H., Dang, Y.,
Xie, C., Yang, X., Cheng, Q., Li, Z., Chen, J., He, X.,
Yao, R., Lou, J.-G., Chintalapati, M., Shen, F., and
Zhang, D. (2019). Robust log-based anomaly detec-
tion on unstable log data. In Proceedings of the 2019
27th ESEC/FSE, page 807–817, New York, NY, USA.
Association for Computing Machinery.

Conversation Extraction from Event Logs

163


