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Abstract: Process mining provides various techniques in response to the increasing demand for understanding the exe-
cution of the underlying processes of software systems. The discovery and conformance checking techniques
allow for the analysis of event data and verify compliances. However, in real-life scenarios, the event data
recorded by software systems often contain numerous activities resulting in unstructured process models that
are not usable by domain experts. Hence, event log abstraction is an essential preprocessing step to de-
liver a desired abstracted model that is human-readable and enables process analysis. This paper provides an
overview of the literature and proposes a novel approach for transforming fine-granular event logs generated
from client-server applications to a higher level of abstraction suitable for domain experts for further analysis.
Moreover, we demonstrate the validity of the suggested method with the help of two case studies.

1 INTRODUCTION

Newly born software solutions emerge every day to
fulfill the demand for digitalization. The continu-
ous development of new applications is leading us
toward the establishment of software systems with
complex internal processes. For instance, univer-
sities provide distributed software solutions to sup-
port research data management and enable reusability,
findability, and accessibility of research data (Yazdi
et al., 2016; Politze et al., 2020). It results in a
heterogeneous and distributed IT infrastructure with
a complex and unstructured landscape of user pro-
cesses. To tackle this issue, data modeling and ex-
ploring researchers’ processes would help domain ex-
perts understand and monitor user behaviors and dis-
cover the underlying operational processes. Such a
process-oriented modeling allows for the discovery of
the challenges researchers face during their research’s
life-cycle (Valdez et al., 2015).

To analyze the dynamic behavior of users and
monitor the status of operational processes, we use
process mining techniques which enables us to dis-
cover process models (Yazdi, 2019). Two main pro-
cess mining tasks are process discovery and confor-
mance checking (van der Aalst, 2016). Process dis-
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covery aims to discover a process model that repre-
sents the real descriptive behavior, based on real-life
events. There are various process discovery algo-
rithms including but not limited to Inductive Miner
(IM), Alpha miner, Fuzzy miner, or Heuristic miner.
Conformance checking compares a process model
with an event log to find commonalities and differ-
ences. It enables us to measure the fitness of the dis-
covered model (Van der Aalst et al., 2012). Various
software products such as ProM (Van Dongen et al.,
2005), Disco (Günther and Rozinat, 2012) , Rapid-
miner (Mans et al., 2014) are available to assist us
with process analysis tasks.

Often, software systems work in a complex in-
frastructure where a user request may require many
software components and microservices to help for
executing a task. This complex infrastructure of-
ten results in a n:m relationship between server-side
events and client-side events that are too fine-grained.
Applying process discovery to these low-level event
logs often results in obtaining an unstructured process
model called “Spaghetti”, that is unsuitable for pro-
cess analysis (van der Aalst, 2016). Hence, various
event log abstraction techniques have been developed
to transform fine granular (low-level) event logs to a
higher level of abstraction (high-level). However, the
main challenge is to find a desired abstraction level
that is interpretable by domain experts and still de-
scribes the reality of the business activities.
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Table 1: The work of literature and classification based on abstraction techniques.

Author Grouping Input Data Event Perspective Mapping
Relationship Internal Abstraction Validity Quality Indicator Target Domain

Su. Un. Co. Di. Pr. De.
(Begicheva and Lomazova, 2017) X X Sequential n:1 X Formal Fitness Acyclic Cases

(Mannhardt et al., 2016) X X Sequential n:1 X Real-Life Fitness & Matching Error Information Systems
(Tax et al., 2016) X X Sequential n:m X Synthetic Levenshtein Distance Parallel Activities
(Liu et al., 2018) X X Sequential n:1 X Synthetic Fitness & Precision & Generalization Information Systems

(de Leoni and Dündar, 2020) X X X Non-Sequential n:1 X Real-Life Fitness Information Systems
(Mannhardt and Tax, 2017) X X Sequential n:1 X Real-Life Fitness Automatic Pattern Discovery

Our Approach X X X Non-Sequential n:m X Real-Life Fitness, PCC Client-Server Applications

In order to deal with the challenge of abstracting
low-level events, many methods are proposed (and
discussed in Section 2). Some of the existing meth-
ods rely on unsupervised learning techniques to clus-
ter groups of events into a higher-level of events. On
one hand, current unsupervised learning methods are
not able to acquire a suitable degree of abstraction and
on the other hand, it leads us to an unclear relabeling
strategy for the cluster of abstracted events. These
learning methods either require manual labeling by
domain experts or automatic concatenation of labels
that create unreadable and long activity names. Fur-
thermore, there are several supervised learning meth-
ods to overcome the mentioned challenges. However,
these methods either utilize training sets to guide the
abstraction process or rely on domain experts’ inputs
for the task of relabeling the activity names. Hence
relabeling abstracted activity names is a non-trivial
task. The challenges mentioned earlier describe the
necessity for an approach to abstract low-level event
logs to a suitable higher-level of granularity.

In this paper, we describe an iterative supervised
abstraction technique for client-server applications.
Whereas client-side event logs are used as the train-
ing set to describe the server-side event logs, and the
Pearson Coefficient Correlation (PCC) is employed
to measure event similarity for the task of abstracting
activity names. The method described in this study is
built on top of the suggested approach in (Yazdi and
Politze, 2020) for acquiring the server-side event logs.
Accordingly, we are relying on the OAuth2 workflow
for recording the server-side event logs. The client-
side event log plays the role of descriptive user activ-
ities that are understandable by domain experts and
enable us to map low-level server-side event logs to
high-level activities.

Overall, in this paper, we try to answer the follow-
ing research questions in client-server applications:

1. How can we abstract event logs so that they are
reliable and descriptive for the domain experts?

2. How to balance the abstraction granularity with
respect to process models’ fitness?

As suggested in the literature (Buijs et al., 2012), we
use the model fitness as an indicator of the suitabil-
ity of the discovered model. Furthermore, with the
help of two case studies, we evaluate the validity and

scalability of our approach.
The rest of this paper is as follows. Section 2 in-

troduces the related work and studies related to event
log abstraction techniques. In Section 3, we provide
the preliminaries and formal models used throughout
the paper. Section 4 describes the approach used to
enable the event log abstraction for client-server ap-
plications. We examine our approach with the help
of two case studies in Section 5. In Section 6, we
address the challenges and possible future work. Fi-
nally, in Section 7, we discuss the benefits and the
contributions of our work.

2 RELATED WORK

There has been a recent research trend on event log
abstraction methods and their challenges (van Zelst
et al., 2020). This section categorizes different crite-
ria that we find essential for every abstraction method
and describes the work of literature accordingly. Ad-
ditionally, we position our work concerning each cri-
terion. Table 1 provides an overall birds-eye-view of
related works and how the suggested approach differs
from other existing solutions.

2.1 Log Abstraction Strategies

In this part, we elaborate on several event log abstrac-
tion criteria, their benefits and drawbacks. Further-
more, we also position our work accordingly.

2.1.1 Grouping Strategy

The grouping strategy refers to the learning tech-
niques used for converting low-level event logs to a
higher-level of granularity. There are two main cat-
egories of abstraction operations: aggregation and
elimination (Smirnov et al., 2012). The event elim-
ination operation leads to a naive approach by omit-
ting insignificant events. However, this way results
in models that are underfitting and misses informa-
tion about eliminated events. The aggregation opera-
tion generates a significant group of events in which
a combination of relatively insignificant events exists.
There are two sub-domains of the aggregation oper-
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ation, namely, unsupervised and supervised learning
methods.

Unsupervised abstraction methods rely on com-
pletely automated techniques to group events and of-
ten result in less accurate high-level models. The la-
bels in these methods are regenerated either by con-
catenation of activities or by using assumptions with-
out the involvement of domain knowledge. Authors in
(Mannhardt and Tax, 2017) use Local Process Model
(LPM) discovery to identify frequent activity patterns
in the process model automatically, and authors of
(de Leoni and Dündar, 2020) use clustering methods
to group activities based on the frequency of occur-
rences and use clusters’ centroids for relabeling cor-
responding groups. Unsupervised learning methods
are beneficial if no domain knowledge is available or
acquiring additional information is not feasible.

On the contrary, supervised learning methods are
the most common and practiced technique used for
simplifying process models. These methods rely on
some form of external or additional information to
group and relabel event logs. Authors in (Begicheva
and Lomazova, 2017; Mannhardt et al., 2016; Tax
et al., 2016; Liu et al., 2018) use supervised learn-
ing techniques either by capturing additional informa-
tion or creating a training data set to annotate fine-
granular event logs. As the supervised learning tech-
nique is considered to be a more reliable abstraction
technique for real-life scenarios and allows for ad-
ditional domain experts’ interventions, our approach
also focuses on a supervised learning method.

2.1.2 Input Data

Input Data notes the nature of data in the form of dis-
crete or continuous events. The discrete events are a
set of infinite numbers of values (ex. categorical or
real values), and continuous events refer to as a set
of data that can take any values (ex. activity names).
Event logs can be in the form of discrete sequences
of events or continuous as a result of the execution of
activities. Most techniques covered in the literature
review are using some form of continuous activity
names for the analysis. However, authors in (de Leoni
and Dündar, 2020) vectorize the sequences of contin-
uous event data and transformed the event log into the
discrete data format. The discrete data, facilitates the
execution of data mining algorithms, such as analyz-
ing the frequency of occurrences of activities within
an event log. Likewise, our approach adopts both con-
tinuous event data for discovering process models and
discrete event data for the task of measuring the simi-
larity of two activities.

2.1.3 Event Perspective

Event Perspective points to the effect of the order of
appearing event logs on the abstraction technique.
Most of the literature’s procedures exploit only the
order of the sequence of events as they appear in the
low-level events. Authors in (de Leoni and Dündar,
2020) use the non-sequential order of events with un-
supervised abstraction methods. In the system under
study, the order of execution of events are not se-
quential due to the nature of the distributed systems,
hence, our approach has to incorporate non-sequential
events.

2.1.4 Mapping Relationship

The mapping relationship between instances of low-
level to higher-level activities. There are 1:1, n:1,
n:m mapping relationships. In the case of 1:1 map-
ping, there is no abstraction that can be performed
as the level of granularity does not change, i.e., for
every event, there is only one corresponding activity.
Most of the literature focuses on n:1 mapping or also
known as shared functionality, i.e., for every low-level
event log, there might be multiple higher-level activi-
ties. In software systems, user activities are often not
directly corresponding to a recognizable event on the
server-side, hence resulting in a n:m mapping rela-
tionship. We position our work as n:m mapping rela-
tionship as there are both 1:1 as well as n:1 mappings
between event logs of each level.

2.1.5 Internal Abstraction Modeling

Internal Abstraction Modeling highlights the use of
probabilistic or deterministic factors to identify the
sequence of event distributions. Similar to our sug-
gested approach, most of the literature focuses on
deterministic strategies. However, authors in (Be-
gicheva and Lomazova, 2017) also employ the theory
of regions to classify corresponding high-level activi-
ties, and authors in (Tax et al., 2016) adopt the Condi-
tional Random Fields (CRF) as a probabilistic factor
for the task of event sequence relabeling.

2.1.6 Validity

Validity describes the evaluation procedure used to
demonstrate the soundness of a suggested technique.
Unlike the authors of (Begicheva and Lomazova,
2017) that only use formal mathematical representa-
tion, all other works examine their approach over ei-
ther real-life or synthetic event logs. However, only
the authors of (Mannhardt et al., 2016) evaluate their
technique by implementing their approach in a real
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infrastructure. It is particularly important because de-
spite the existence of real-life event logs, it does not
include real challenges that exist in the field, such as
noise, outliers, or missing data in event logs. We val-
idate our method with real-life event logs by directly
collecting and utilizing event logs from an existing
software system to demonstrate the effectiveness of
our approach.

2.1.7 Quality Indicator

These indicators support the quality dimensions of the
discovered abstracted process model. Usually discov-
ered models are evaluated based on metrics such as
fitness, precision and generalization, which gives ad-
ditional insights into the changes by the event log ab-
straction process (van der Aalst, 2016). According
to (Buijs et al., 2012), fitness quantifies the extent to
which the discovered model can accurately reproduce
the cases recorded in the log. Precision quantifies the
fraction of the behavior allowed by the model, which
is not seen in the event log. Generalization assesses
the extent to which the resulting model will be able to
reproduce the future behavior of the process.

With respect to our literature study, only the au-
thors of (Liu et al., 2018) have successfully reported
the quality of their approach with the help of fit-
ness, precision, and generalization. The rest of schol-
ars in the field have either reported the model fitness
as the only quality factor or have backed their work
with supplementary measures such as Matching Error
as a threshold for excluding unreliable matches be-
tween fine-granular event logs and high-level activi-
ties (Mannhardt et al., 2016). Nevertheless, authors
in (Tax et al., 2016) solely leverage from the Leven-
shtein similarity distance as a degree to express the
closeness of two traces from different granularity lev-
els. In our study, besides the model fitness, we ad-
ditionally use the Pearson Coefficient Correlation to
compare and identify similar high-level activities.

2.1.8 Target Domain

The application domain that a technique is primar-
ily focused on. Unfortunately, most of the literature
is not generic enough and aims for a particular ap-
plication domain. For instance, the suggested solu-
tion in (Begicheva and Lomazova, 2017) only targets
the non-recursive activities (acyclic cases). The tech-
nique in (Tax et al., 2016) intends for the abstraction
of only parallel activities with any executive order.
The automatic pattern discovery and clustering of ac-
tivities is the focus of the authors in (Mannhardt and
Tax, 2017). Other literature under study appear to fo-
cus on the analysis of information systems such as a

digital whiteboard software (Mannhardt et al., 2016),
user behavior analysis on software systems (Liu et al.,
2018), and analysis of the frequency of a website vis-
its (de Leoni and Dündar, 2020). On the contrary, we
propose a universal approach that can be employed
over client-server applications.

2.2 Summary

Despite the focus on acyclic cases in (Begicheva and
Lomazova, 2017), authors only use a formal repre-
sentation to demonstrate the handling of duplication
in the event logs but have ignored the stuttering sub-
sequences of activities. Moreover, the approaches
suggested by (Mannhardt et al., 2016) and (Liu et al.,
2018) rely on manual labeling of low-level events
to high-level activities through interviews, observa-
tions, and excluding traces with missing or unknown
events. The method proposed in (Tax et al., 2016) is
capable of dealing with parallel activities; However,
it relies on excessive domain knowledge. Methods
such as (de Leoni and Dündar, 2020) and (Mannhardt
and Tax, 2017) take advantage of using unsupervised
learning techniques to relabel the abstract traces auto-
matically. Cluster centroids or label concatenations
generate the new labels for the higher-level activi-
ties, but the technology acceptance for the domain
experts is uninvestigated. Although the authors in
(Mannhardt and Tax, 2017) use Local Process Models
(LPM) and automatic pattern discovery techniques to
automatically detect start and end of activities, it is
limited to a fixed number of candidates LPMs based
on the event frequency ranking.

Overall, almost all the authors have used the In-
ductive Miner (IM) algorithm to discover process
models. The IM algorithm can deal with infrequent
behaviors while ensuring the soundness of the discov-
ered process model (Leemans et al., 2014). Addition-
ally, different variations of Petri Nets notations have
been used to illustrate the discovered model. By refer-
ring to Table 1, it is clear that none of the approaches
is suitable to be utilized in the existing infrastructure
and either relies on internal probabilistic abstraction
techniques or requires extensive domain knowledge
to help with the task of relabeling the abstracting ac-
tivities.

3 PRELIMINARIES

In this section, we provide the basic concepts and for-
mal models used throughout the paper.

Given a set A, σ = 〈a1,a2, . . . ,an〉 ∈ A∗ is the set
of all finite sequence over the A. σ(i) = ai denotes
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the ith element of the sequence. β(A) is the set of all
multi-sets over set A. PNE(A) is the set of all non-
empty subsets over the set A. |σ| = n is the length of
σ. For σ1 , σ2 ∈ A∗, σ1 ⊆ σ2 if σ1 is a sub-sequence
of σ2. e.g., 〈g,b,o〉 ⊆ 〈z,g,b,b,g,b,o,q〉. For σ ∈ A∗,
{a∈σ} is a set of elements in σ. For σ∈A∗, [a∈σ] is
a multi-set of elements in σ, e.g., [a ∈ 〈g,b,z,g,b〉] =
[g2,b2,z].

(Event, Event Log) An event is a n-tuple e =
(t,c,ac,as) and e ∈ L. Where t ∈ T is the event
timestamp, c ∈C is the case id, ac ∈ Ac is the client-
side activity. as ∈ As is the server-side activity, such
that for each client-side activity, there is a set of
corresponding server-side activities in respond to a
user request. We denote ξ = T ×C × Ac × As as
the universe of all events for the original event log,
s.t. L ⊆ ξ. In the event log, each event can ap-
pear only once. Hence, events are uniquely iden-
tifiable by their attributes. Additionally, we denote
ξ f = Tstart ×Tcomplete×C×Ac as the universe of ab-
stracted events. The abstracted event log is repre-
sented as L f ⊆ ξ f , and each event e f ∈ L f is a n-tuple
e f = (tstart, tcomplete,cc, a′c) where {tstart, tcomplete} ∈ T
are the start and completion timestamp of an event re-
spectively, representing a full software execution life-
cycle, cc ∈ C is the case id, and a′c ∈ Ac is the ab-
stracted activity name.

(Trace) Let x be a set of activities. Then x ∈ e,
σx = 〈ex1 ,ex2 , . . . ,exn〉 is defined as a trace in the event
log, s.t., for each exi ,ex j ∈σx, 1≤ i< j≤ n : πC(exi)=

πC(ex j) and πT (exi) ≤ πT (ex j). Trace σ ∈ L is a se-
quence of activities. Note that there are no special
start and end activities.

(Labeled Petri net) A Petri net is a n-tuple N =
(P,T,F) where P is the set of places, T the set of tran-
sitions, P∩T = /0, F ⊆ (P×T )∪ (T ×P) represents
the flow relation. A labeled Petri net N = (P,T,F, l,A)
extends the Petri nets with a labeling function l ∈ T 9
A which maps a transition to an activity from A. As
an example, if l(t) = a, then a is an observed activity
when transition t is executed.

4 APPROACH

Figure 1 represents the overview of our approach to
abstract event logs in client-server applications, ac-
companied with example event logs’ transformation
throughout the procedure. Note that in the sample
logs of figure 1, the client activity names are repre-
sented as [activityName]@[webPage] to indicate the
web page that a client activity is occurring. In the
following section, we elaborate on every step for the
recursive log abstraction.

Algorithm 1: Recursive Event Log Abstraction.
Input: Fine-granular event log L
Output: Abstracted event log L f

1 set PCC threshold (Θ) to 1;
2 discover Petri net model for L using the

Inductive Miner;
3 clone L to L′ as a temporary event log;
4 while fitness ≥ 0.8 do
5 foreach L′ do
6 convert L′ to a vectorized weighted

matrix MAc×As ;
7 foreach e do
8 calculate the vector similarity(∆)

between every ac;
9 if ∆≥Θ then

10 relabel the activity ac by the
concatenation of the two
similar activity names a′c;

11 replace the corresponding
event in L′ with
e′ = (t,c,a′c,as);

12 end
13 end
14 end
15 Lower PCC threshold Θ by ϒ

16 end
17 foreach c in L′ do
18 while a′ci

= a′c j
do

19 capture the first (tstart) and last
(tcomplete) occurring event for the
activity a′c ;

20 create event e f = (tstart, tcomplete,c, a),
and append to L f ;

21 end
22 end
23 return L f

Additionally, algorithm 1 demonstrates a recur-
sive log abstraction process using PCC (Benesty et al.,
2009). The PCC enables us to calculate the similar-
ity of different client-side activities by assessing the
corresponding server-side activity occurrences.

Our approach applies the IM algorithm on top of
the event log for the process model discovery task
(step 1 of fig. 1). We clone the original event log
L to a temporary event log L′ to be further abstracted
and reused for the recursive process (Step 2 of fig.
1). Then the abstracted event log is replayed over the
discovered model generated from the original log to
evaluate model fitness (step 3 of fig. 1). During this
process, the fitness of the discovered model is calcu-
lated by: fitness = True Positive

True Positive+False Negative . The True
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Figure 1: The general overview of the approach and sample event logs transformation throughout the abstraction process.

Positive is the number of traces that align with the dis-
covered model, and the False Negative is the number
of traces that do not align with the discovered model
(Jouck et al., 2018). If the discovered model can com-
pletely replay the traces from L′, the model’s fitness is
1. Hence, as the log abstraction increases, the fitness
decreases.

In line 6 of the Algorithm 1, the event log e =
(t,c,ac,as) ∈ L is transforming to a vectorized de-
scriptive matrix MAc.As , i.e., the first column of the
matrix is the group of client-side activities (ac), and
every other column represents a server-side activity
(as). Each row carries the number of executions of
server-side activities to a corresponding client-side
activity. Note that we increment the number of as oc-
currences per ac (step 4 of fig. 1). The weighted ma-
trix M enables vector similarity analyses with higher
accuracy.

In the block between lines 7 to 13 of Algorithm
1, we evaluate the similarity between two client-side
activities (step 5 of fig. 1) and relabel logs by concate-
nating the client-side activity names (with a comma)

that falls into the PCC threshold (step 6 of fig. 1).
The PCC evaluates the strength of a linear association
between two vector variables and therefore quantifies
two events’ similarity. As the PCC description is out
of this paper’s scope, we refer the readers to (Benesty
et al., 2009) for the formula and extensive explana-
tion. The result of abstraction and relabeling is then
cycled back into the method (step 7 of fig. 1).

In our proposed approach, we initialize the ab-
straction process with PCC threshold Θ = 1 and grad-
ually reduce the threshold Θ by ϒ. As shown in Figure
1, the abstraction process is continued until a fitness
quality of 0.8 is reached. We propose the fitness of 0.8
as a criterion to stop the iterative abstraction process
in our algorithm as a fitness value below 0.8 cannot
replay event logs by that model completely (van der
Aalst, 2016; Buijs et al., 2012) and thus lose its cru-
cial quality dimension of a process model.

The block between lines 17 to 22 transforms the
event log format and thus, decreases the number of
events with each case’s same activity (step 8 of fig.
1). At this stage, every event would be accompa-
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Table 2: Results of each abstraction iteration over model fitness, number of activities and total number of events.

(a) Metadata Manager tool- case study 1.

PCC
Similarity Threshold 1 97-1 94-1 91-1 82-1 79-1 52-1 40-1 22-1

Fitness 1 0.91 0.89 0.88 0.88 0.84 0.79 0.77 0.73
# Client

Activities (ac) 21 16 15 14 11 10 8 7 6

# Events 13794 10302 9824 9268 7261 6414 5378 4735 4019

(b) Data Archiving tool - case study 2.

PCC
Similarity Threshold 1 97-1 91-1 88-1 85-1 82-1 55-1 28-1

Fitness 1 0.98 0.88 0.83 0.81 0.76 0.70 0.59
# Client

Activities (ac) 19 18 17 15 14 12 10 4

# Events 10487 9973 9481 8297 7920 6553 5481 2203

nied by the events’ start and completion time, i.e., the
time taken for the server-side components to process
and respond to a client-side request. In the case of
a single appearance of an event, the start and com-
pletion timestamp is the same to signify an instant
event occurrence. The resulting abstracted event log
is L f ⊆ ξ f where e f ∈ L f and e f = (tstart, tcomplete,c,
a′c).

5 EXPERIMENTAL
EVALUATIONS

To manifest a suggested method’s quality and reliabil-
ity, one needs to examine a system with at least two
experiments (Dean et al., 1999). Consequently, we
demonstrate the validity, robustness, and generaliza-
tion of our methodology to obtain a readable and uti-
lizable abstracted event log by conducting two rounds
of empirical evaluations in real-life scenarios. The
event logs obtained are from information systems pro-
vided by the RWTH-Aachen University for metadata
management and archiving of research data. We fol-
low (Rafiei and van der Aalst, 2019)’s instructions
for securing event logs that comply with EU GDPR
privacy regulations. Additionally, as mentioned ear-
lier, there is an n:m relationship between client and
server activities for the system under study. Respec-
tively, every user activity triggers a set of server-side
activities to process and execute the user’s demand for
a client-side operation. For the purpose of the case
studies, we have collected and analyzed client-server
event logs from two web applications, namely Meta-
data Manager and Data Archiving tool.

5.1 Case Study 1: Metadata Manager
Tool

As the name represents, the Metadata Manager is a
web application tool for researchers at the university
to provide customizable metadata schemas and enable
the classification and exploration of research data by
their metadata. The most typical user interactions are
providing metadata schemas, searching metadata, and
adding/editing metadata. Overall, we obtained event
logs for a duration of six months with 573 case ids
and 13794 events. Metadata Manager generates 21
unique client-side activities and 32 server-side activi-
ties responsible for processing user requests.
Results: By applying the proposed approach, we ob-
tained an abstracted process model portraying the pre-
sumed user interaction life-cycle. Figure 2a illustrates
the discovered complex Petri net before the abstrac-
tion of event logs. Figure 2c shows the discovered
abstracted model using our suggested approach. Ta-
ble 2a demonstrates the result of the iterations of pro-
cess abstraction until no further abstraction is pos-
sible. For the proof of concept, we have executed
the process beyond our suggested fitness threshold.
While considering our recommended fitness criteria
as the breaking point for the abstraction process, we
obtain an event log with 10 activities, 6414 events,
and 573 cases with an overall fitness accuracy of 0.84.
Furthermore, by exploring the results in table 2a, we
observe that a suitable PCC threshold for classifying
similar events and combining events without compro-
mising the fitness on the Metadata Manager tool is 79-
1. Note that no further abstraction is possible below
the fitness of 0.73 as no more two events are similar
below the PCC threshold of 22-1. Thus, we achieved
a 52.39% decrease in the number of activities and
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(a) Metadata Manager tool Spaghetti model. (b) Data Archiving tool Spaghetti model.

(c) Metadata Manager tool abstracted model. (d) Data Archiving tool abstracted model.

Figure 2: The discovered Petri net models before and after applying the event log abstraction technique.

53.51% abstraction in the total number of events for
the system under study.

5.2 Case Study 2: Data Archiving Tool

The Data Archiving tool is a web application for re-
searchers of the RWTH-Aachen University to archive
research data and restore files as demanded. The
users of this service can define a storage expiry
date to adhere to the requirements of funding or-
ganizations for research projects to ensure that re-
search data are available despite the expiry of a
project. The most typical user activities are up-
loading/downloading data, searching for a research
record, and restoring research data. In this case study,
we collected event logs for a duration of six months
with 413 case ids and 10487 events. The Data Archiv-
ing tool generates 19 unique client-side activities and
28 server-side activities responsible for processing
user’s client-side requests.

Results: Figure 2b and 2d respectively illustrate the
discovered process model before and after applying
the abstraction technique respectively. By checking
the abstraction results at the suggested fitness criteria,
we reach an event log with 7920 events, 14 client-side
activities, with a fitness accuracy of 0.81. Table 2b
reports on the results with every abstraction iteration
until no two further activities are comparable. More-
over, we can find a suitable PCC threshold of 85-1
for achieving a desired level of abstraction. We also
observe that no further abstraction is possible below
the fitness of 0.59 as no more two events are simi-
lar below the PCC threshold of 28-1. Therefore, we
managed a 26.32% decrease in the number of activ-
ities and a 24.47% reduction in the total number of
events for the system under study.
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6 DISCUSSION AND FUTURE
WORK

We used the Data Follow Graph model to illustrate the
abstracted models due to ease of understanding for the
domain experts. We received various qualitative feed-
back, such as: “[. . . ] I can now understand the user
interactions and assess the user behaviors without be-
ing overwhelmed by many activities that do represent
the actual processes, [. . . ] I am wondering why we
have such a bad performance on restoring files, I need
to investigate this.”, referring to a violation of a KPI
for restoring files that was previously unknown. Thus,
the proposed method could successfully identify non-
functional requirements and draw developers’ atten-
tion to the right software components for further tech-
nical investigations.

Despite our effort to propose a generalizable event
log abstraction technique, the suggested method is
only applicable to client-server applications. We have
to acknowledge that one of the most time-consuming
and manual efforts in this technique is to evaluate
the input log for noise, outliers, and anomalies in the
event log. Unfortunately, despite our attempt, our
case studies’ report lacks the exploration of the pre-
cision and the generalization as other quality indica-
tors due to extensive computing power required for
calculating these factors via ProM implementation.
Thus these calculations never terminated. Moreover,
we use the concatenation of activity names for rela-
beling task; yet, this may cause readability issues for
some domain experts if the number of original activ-
ities increases drastically. Lastly, we are also relying
on event logs being generated by the OAuth2 work-
flow (authorization service). Consequently, there may
be server-side activities that are not recorded. So, fur-
ther study is required to validate our approach while
including all executing software components.

7 CONCLUSIONS

This paper describes a novel approach for event log
abstraction in client-server applications. In Section
2, we discussed the state of the art and elaborated on
the benefits and shortcomings of each work, and ex-
plained how our suggested method could overcome
existing limitations for the system under study. Our
suggested approach enabled us to gradually abstract
the fine-grained event logs to higher levels without
losing essential information, enabling the domain ex-
perts to use the appropriate discovered model for fur-
ther analysis. Besides answering our research ques-
tions, we evaluated the proposed approach with the

help of two real-life experiments. Overall, this work’s
contributions are adaptability of the approach to any
client-server application and enabling automatic rela-
beling of abstracted activity names at a desired level
of granularity. Additionally, it empowers discovering
the exact software execution life-cycle, facilitating the
discovery of user behavior on client-server applica-
tions with high accuracy.
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Dean, A., Voss, D., Draguljić, D., et al. (1999). Design and
analysis of experiments, volume 1. Springer.

Günther, C. W. and Rozinat, A. (2012). Disco: Discover
your processes. BPM (Demos), 940:40–44.

Jouck, T., Bolt, A., Depaire, B., de Leoni, M., and van der
Aalst, W. M. (2018). An integrated framework for pro-
cess discovery algorithm evaluation. arXiv preprint
arXiv:1806.07222.

Leemans, S. J., Fahland, D., and Van Der Aalst, W. M.
(2014). Process and deviation exploration with induc-
tive visual miner. BPM (Demos), 1295(46):8.

Liu, C., Wang, S., Gao, S., Zhang, F., and Cheng, J. (2018).
User behavior discovery from low-level software exe-
cution log. IEEJ Transactions on Electrical and Elec-
tronic Engineering, 13(11):1624–1632.

Mannhardt, F., De Leoni, M., Reijers, H. A., Van Der Aalst,
W. M., and Toussaint, P. J. (2016). From low-level
events to activities-a pattern-based approach. In Inter-
national conference on business process management,
pages 125–141. Springer.

Mannhardt, F. and Tax, N. (2017). Unsupervised event ab-
straction using pattern abstraction and local process
models. arXiv preprint arXiv:1704.03520.

Mans, R., van der Aalst, W. M., and Verbeek, H. (2014).
Supporting process mining workflows with rapid-
prom. BPM (Demos), 56.

Politze, M., Claus, F., Brenger, B., Yazdi, M. A., Heinrichs,
B., and Schwarz, A. (2020). How to manage it re-
sources in research projects? towards a collaborative

Event Log Abstraction in Client-Server Applications

35



scientific integration environment. European Journal
of Higher Education IT, 2.

Rafiei, M. and van der Aalst, W. M. (2019). Mining roles
from event logs while preserving privacy. In Interna-
tional Conference on Business Process Management,
pages 676–689. Springer.

Smirnov, S., Reijers, H. A., and Weske, M. (2012). From
fine-grained to abstract process models: A semantic
approach. Information Systems, 37(8):784–797.

Tax, N., Sidorova, N., Haakma, R., and van der Aalst, W. M.
(2016). Event abstraction for process mining using
supervised learning techniques. In Proceedings of
SAI Intelligent Systems Conference, pages 251–269.
Springer.

Valdez, A. C., Özdemir, D., Yazdi, M. A., Schaar, A. K.,
and Ziefle, M. (2015). Orchestrating collaboration-
using visual collaboration suggestion for steering of
research clusters. Procedia Manufacturing, 3:363–
370.

van der Aalst, W. (2016). Process mining: data science in
action. Springer.

Van der Aalst, W., Adriansyah, A., and van Dongen, B.
(2012). Replaying history on process models for con-
formance checking and performance analysis. Wiley
Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 2(2):182–192.

Van Dongen, B. F., de Medeiros, A. K. A., Verbeek, H.,
Weijters, A., and van Der Aalst, W. M. (2005). The
prom framework: A new era in process mining tool
support. In International conference on application
and theory of petri nets, pages 444–454. Springer.

van Zelst, S. J., Mannhardt, F., de Leoni, M., and
Koschmider, A. (2020). Event abstraction in process
mining: literature review and taxonomy. Granular
Computing, pages 1–18.

Yazdi, M. A. (2019). Enabling operational support in the re-
search data life cycle. In Proceedings of the first Inter-
national Conference on Process Mining, pages 1–10.
CEUR.

Yazdi, M. A. and Politze, M. (2020). Reverse engineering:
The university distributed services. In Proceedings of
the Future Technologies Conference (FTC) 2020, Vol-
ume 2, pages 223–238. Springer.

Yazdi, M. A., Valdez, A. C., Lichtschlag, L., Ziefle, M., and
Borchers, J. (2016). Visualizing opportunities of col-
laboration in large research organizations. In Interna-
tional Conference on HCI in Business, Government,
and Organizations, pages 350–361. Springer.

KDIR 2021 - 13th International Conference on Knowledge Discovery and Information Retrieval

36


