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Abstract: Recent developments in machine and deep learning have made it possible to expand the realms of traditional
audio pattern recognition to real-time and practical applications. This work proposes a novel framework for
robust bird species identification using the neural network (RoBINN) based on their unique vocal signatures.
To make the network robust and efficient, data augmentation is performed to create synthetic training sam-
ples for bird species with less available recordings. Further, inherent properties of audio signals are suitably
leveraged via effective speech recognition-based feature engineering techniques to develop an end-to-end con-
volutional neural network (CNN). Additionally, the proposed model architecture for the CNN framework
employs residual learning and attention mechanism to generate attention-aware features, which enhances the
overall accuracy of birdcall identification. The proposed architecture employs an exhaustive dataset with
21375 recordings corresponding to 264 bird species. Experimental results validate the proposed bird species
classification technique in terms of accuracy, F1-score, and binary cross-entropy loss.

1 INTRODUCTION AND
RELATED WORKS

With the advancements in machine and deep learn-
ing (DL) techniques, audio and speech recognition
have evoked widespread interest from industry and
academia. To this end, bird species identification via
their unique chirping sounds is one of the emerg-
ing applications of ML and DL in speech recogni-
tion. The number and diversity of bird species in
an ecosystem is a critical indicator of the biodiversity
and sustainability of the natural habitat (Priyadarshani
et al., 2018). Thus, bird species identification has be-
come fundamental to worldwide research related to
the ecosystem’s overall health and well-being.

Identifying bird species via appearance is tedious
in nature and has led to the development of various
audio-based recognition methods (Lasseck, 2018),
(Sankupellay and Konovalov, 2018), (Chakraborty
et al., 2016). However, classification via such tradi-
tional approaches are challenging due to the presence
of background noise and multiple bird species in the
same recording clip. Moreover, conventional audio
recognition approaches that perform audio tagging,
emotion and music classification, and sound event de-

tection, etc. employ smaller datasets, thereby result-
ing in low accuracy (Kong et al., 2020).

In this regard, with the easy access of large
datasets to the research community combined with
the success of ML and DL in multi-faceted engineer-
ing paradigms, several recent works such as (Gyires-
Tóth and Czeba, 2016) ,(Sang et al., 2018), (Xie et al.,
2019), (Sankupellay and Konovalov, 2018) employ
deep convolutional neural networks (CNNs) for bird
species identification. However, the authors therein
consider the classification of 11 and 46 species, re-
spectively. Further, the results are observed to be less
accurate with an increase in the number of species,
thereby making their performances highly dependent
on the number of bird species.

The work in (Zhao et al., 2017) employs the Gaus-
sian mixture model along with support vector ma-
chines (SVMs) to perform the classification of 11
species. However, the proposed approach was ob-
served to be inaccurate for multiple concurrent bird
acoustic events. Next, the work (Chakraborty et al.,
2016) performed classification of 26 species using dy-
namic kernel-based SVM and deep neural network
(DNN). However, the authors therein did not account
for the noisy environment condition. The subsequent
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work in (Kong et al., 2020) employed pre-trained au-
dio neural networks (PANNs) on a very large scale au-
dio dataset, and its architecture included Wavegram-
Logmel-CNN. However, the approach achieved an ac-
curacy of 43.9% on AudioSet tagging.

Thus, motivated by the success of DNNs, this pa-
per develops a novel deep learning-based identifica-
tion system for bird species in order to address the
voids of the recent state-of-the-art works. Further, it
is demonstrated that the proposed framework achieves
desirable accuracy under noisy environments and can
differentiate between the different species in a multi-
species audio clip. The novelty and main contribu-
tions of the paper can be summarized as follows.
• A novel end-to-end bio-acoustic signal recogni-

tion system is developed for bird species classi-
fication using audio recordings containing multi-
species birdcalls as well as accounting for a noisy
environment.

• The robust bird species identification using neu-
ral network (RoBINN) architecture is developed
wherein the attention mechanism is embedded
into the network via residual learning to generate
attention aware features and refine adaptive fea-
tures.

• Exhaustive experiments demonstrate that the pro-
posed RoBINN framework is precise as well as
superior to state-of-the-art bird species identifica-
tion architectures.

The usage of the term ‘robust’ in the proposed de-
sign has a two-fold significance. Firstly, RoBINN
can successfully perform bird species identification in
challenging noisy environments. Secondly, by virtue
of the residual learning and attention mechanism as-
pects in the proposed architecture, complex spectral
features present in the audio clips can be identified to
yield more precise results.

The remainder of the paper is organized as fol-
lows. Section II describes the overall workflow of the
proposed RoBINN framework for bird species iden-
tification followed by the detailed model architecture
in Section III. The experimental results and discussion
are presented in Section IV followed by the conclud-
ing remarks in Section V.

2 OVERALL WORKFLOW OF
THE PROPOSED ROBINN
FRAMEWORK

This section presents a brief overview of the various
components involved in the proposed deep learning-
based bird identification framework.

2.1 Dataset Description

The dataset used in this work is ‘Cornell Bird Chal-
lenge’ (CBC)’ dataset (Cornell Lab of Ornithology,
2020) obtained from xeno-canto.org (Planqué et al.,
2005). The dataset includes 264 unique bird species
with 21375 recordings belonging to different bird
sounds. The training data consists of both audio data
and metadata which includes various parameters such
as type of audio channel, length, altitude, dates, lo-
cation, etc. The audio data is sampled at 8 different
sampling frequencies, out of which more than 95%
are sampled at 44.1 kHz and 48 kHz. Further, visual
information of about 75.8% of the birds is available
while recording the training data at 64 different loca-
tions, each associated with the latitude and longitude
of the concerned area. The duration of each audio sig-
nal in the training data varies from 5 seconds to 500
seconds.

2.2 Data Preprocessing

The training data comprises of audio files in 8 dif-
ferent sampling frequencies which are re-sampled to
a common sampling frequency of 32 kHz. Subse-
quently, short-time Fourier transform (STFT) is em-
ployed to obtain the spectrogram of the entire audio
event in a windowed manner. The STFT parame-
ters such as the window width and degree of over-
lap between successive windows are chosen similar
to (Zhao et al., 2017).

2.3 Data Augmentation

For training a DNN, a large amount of data sam-
ples are required corresponding to each of the bird
species. The training dataset comprises of some bird
species with fewer samples. Thus, data augmentation
approach has been employed to create new and syn-
thetic training samples by adding small perturbations
to the initial training set. The various data augmenta-
tion techniques employed in this work are discussed
as follows.

2.3.1 Standardization

Standardization technique generates a synthetic sam-
ple x̄ as

x̄ =
x−µ

σ
(1)

where x, µ, and σ denote the actual sample point,
mean and standard deviation corresponding to all the
samples in the dataset.
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Figure 1: Work flow diagram for proposed DL-based bird identification framework: RoBINN.

2.3.2 Adding White Noise

To enhance the performance of the proposed model
under noisy conditions, additive white Gaussian noise
(AWGN) is added to the audio signal data.

2.3.3 Audio Shifting

The audio clip is shifted towards the left or right di-
rection with a random time scale. For example, if the
audio is shifted towards left or right with x seconds,
the first or the last x seconds will be marked as zero,
respectively. This work considers a random shifting
of the bird sounds by 5000 µs similar to the related
work in (Schlüter and Grill, 2015).

2.3.4 Audio Stretching

The speed of the audio clip is modified by a factor
without affecting the pitch. A factor of 1.2 is con-
sidered for the work under discussion similar to the
related work in (Schlüter and Grill, 2015).

2.3.5 Changing the Pitch

The pitch of the sound is either lowered or raised by
keeping the speed of sound constant. Each sample
was pitch shifted by 10 values ranging from -10 to
10.

2.3.6 Mixup

Mixup corresponds to training of the DNN on convex
combinations of pairs of training examples and their
corresponding classes (Zhang et al., 2017). The vir-
tual training sample x̄ is constructed by employing the
input vectors xi and x j as

x̄ = λxi +(1−λ)x j (2)

where λ ∈ [0,1] denotes a tuning parameter and its
corresponding label y can be obtained as

ȳ = λyi +(1−λ)y j (3)

where yi and y j denote one-hot label encodings.

2.3.7 SpecAugment

Similar to the work in (Park et al., 2019), using time
and frequency masking techniques, this data augmen-
tation technique is applied to the log-mel spectrogram
of an audio clip.

2.4 Feature Engineering

Feature engineering, one of the most essential compo-
nents of an ML process, creates features that enable
the simpler functioning of the ML-based algorithms
by using relevant domain knowledge. Thus, the per-
formance of any ML algorithm critically depends on
the features on which the training and testing are per-
formed.

The basic spectral properties are obtained by
transforming the time-based raw audio signal into its
frequency domain counterpart via the Fourier trans-
form. A frequency representation is essential for ex-
traction of useful characteristics of the signal. This
signal is further divided into segments to get a spec-
trum, which determines the strength of the signal over
various frequencies present in the waveform. Fur-
ther, the frequencies present in the segments are con-
verted into log-mel scales. One of the major steps
is to pass the spectrum through the mel-frequency fil-
ters/analyser to get the log-mel spectrums (Kahl et al.,
2019) as it concentrates on only certain spectral com-
ponents. As a function of frequency regions, these fil-
ters are spaced non-uniformly on the frequency axis.
Log-mel spectrograms are visual representations of
frequency differences in the received log-mel spec-
trums.

2.5 Log-mel Spectrogram

The mel-scaled spectrogram is evaluated employing
the time-series input and subsequently this power
spectrogram is converted to decibel (dB) units. The
minimum and maximum frequencies for the thresh-
old are set as 50 Hz and 16 kHz respectively. The
spectrogram is then resized to 224*224 to fit into the
proposed network architecture. The other parameters
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selected for the generation of the mel spectrograms
are sampling rate of 32 KHz and 64 number of mel
bins. A window length of 1024 is chosen which de-
scribes the size of the window employed to evaluate
discrete Fourier Transform (DFT) of the audio signal.
The hop length which refers to the extent of the win-
dow shift along the audio signal during the processing
of the short-term Fourier transform is set as 320. Let
the mel-spectrum be represented as X [k]. The loga-
rithm of the mel-spectrum logX [k] can be expressed
as (Yan et al., 2019)

logX [k] = logH[k]+ logE[k] (4)

where H[k] and E[k] denote the spectrum envelope
and spectrum details, respectively. On taking Inverse
DFT of the above equation one obtains,

x[k] = h[k]+ e[k], (5)

where x[k] is referred to as cepstrum, h[k] repre-
sents the spectral envelope and is termed as the Mel-
frequency cepstral coefficients (MFCC) .
A block diagram representation of the overall work-
flow of the proposed DL-based bird identification
framework: RoBINN is given in Fig. 1.

3 SYSTEM OVERVIEW

This section details the various components of the
proposed model architecture.

3.1 Mish Activation Function

Conventional ResNet-based architectures typically
employ rectified linear unit (ReLU) activation func-
tion. However, a major disadvantage associated with
the ReLU activation function is that it loses the gradi-
ent information caused by the breakdown of negative
inputs to zero. To overcome this shortcoming, sev-
eral activation functions have been proposed in liter-
ature namely Leaky ReLU, ELU, SELU, swish, Mish
etc. Despite Mish having the most complex interfer-
ence, it has been demonstrated to provide better em-
pirical results in comparison to others (Misra, 2019).
Thus, this work employs the Mish activation function
in the basic block. Mish is a non-monotonically self-
regulating activation function and is unlimited in the
positive direction i.e can have much higher positive
values (Misra, 2019). The slight allowance for neg-
ative values enables the network for better gradient
flow in comparison to absolute zero limit as in ReLU.
For an input x, the mish function f (x) can be mathe-
matically defined as [give ref]

f (x) = x∗ tanh(ln(1+ ex)). (6)

Figure 2: Basic block for residual learning.

Figure 3: General architecture of convolutional block atten-
tion module (CBAM).

3.2 Residual Blocks

Residual blocks are skip-connection blocks used in
the input layer to learn residual functions. The output
mapping H(x) can be expressed as f (x)+ x, where x
denotes the residual. The basic idea behind residual
block is that optimising residual mapping is simpler
than optimising unreferenced mapping. Fig. 2 gives a
pictorial representation of the basic residual learning
block wherein the activation function from the previ-
ous layers is being added to the activation of a deeper
layer in the network. This work employs the Mish
activation function in both basic and residual blocks.

3.3 Convolutional Block Attention
Module (CBAM)

It’s an attention module for the CNN framework (Woo
et al., 2018). CBAM converts intermediate function
maps into spatial and channel dimensions to derive at-
tention maps. The attention map is then element-wise
multiplied with the input function map to produce a
refined and highlighted output. Let the intermediate
feature map be represented as F ∈ RC×H×W , where C,
H, and W denote the number of channels, height, and
width of the feature map, respectively.

The channel and spatial attention maps can be ex-
pressed as Mc ∈ RC×1×1 and Ms ∈ R1×H×W , respec-
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Figure 4: Model architecture of RoBINN.

tively. The entire process can be expressed as

F ′ = Mc(F)⊗F (7)

F ′′ = Ms(F ′)⊗F ′ (8)
where F ′ and F ′′ denote channel-refined feature, fi-
nal refined output respectively and ⊗ represents el-
ement wise multiplication. The attention values are
scattered along the spatial dimension during multipli-
cation. The channel and spatial modules can be ar-
ranged in a sequential or parallel manner. Research
shows that sequential arrangement tends to achieve
better result in comparison to the parallel one. Fur-
ther, in sequential arrangement, channel first-order is
marginally better in comparison to spatial first-order.

3.4 Model Architecture

This section describes the proposed model architec-
ture in detail. Fig. 4 depicts the block diagram rep-
resentation of the architecture. It consists of a total
number of 38 layers embedded with an attention mod-
ule. Log-mel spectrogram with 1000 frames and 64
mel bins of the audio data is taken as input in the de-
signed model architecture. The proposed model ar-
chitecture is parameterized as follows:

• l1-l2: Each of the two layers is represented by
a ConvBlock which comprises of a convolution
layer with kernel size 3× 3 and 512 channel fil-
ters. The output representation of the convolution
layer is subsampled using the average pooling of
size 2×2.

• l3-l8: Represented by three sequential basic
blocks which is a skip-connection block that con-
sists of two convolutional layers of 64 channel fil-
ters and 3×3 kernel size.

• l9-l16: Represented by 4 sequential basic blocks
with 128 channel filters of kernel size 3×3.

• l17-l28: Represented by 6 sequential basic blocks.
Each convolutional layer consists of 256 channel
filters of kernel size 3×3.

• l29-l34: 3 sequential basic blocks are used to repre-
sent these layers with 512 channel filters of kernel
size 3×3.

• l35-l36 : Represented by two ConvBlocks. The
output feature map from l36 is subsampled via
global average pooling to generate a fixed length
vector from the feature maps.

• CBAM : To generate attention aware features, it
sequentially infers attention maps along two dif-
ferent dimensions, channel and spatial, from an
input function map. It is followed by the sigmoid
function.

• l37-l38 : In this, a fully connected layer of 2048
hidden units is added to extract the embedding
features to enhance representation ability of the
signal. This is followed by another fully con-
nected layer which incorporates softmax function
to calculate the probabilities for the bird species.

Here, each convolutional layer is followed by batch
normalization (Ioffe and Szegedy, 2015) and then
non-linear Mish activation function is employed.
Dropout is applied after every downsampling opera-
tion and fully connected layer to prevent overfitting
of the network.

4 EXPERIMENTAL RESULTS
AND DISCUSSION

In this section, after the initial training on the record-
ings of the train data, the experimental results for the
validation set are obtained and analyzed. The dataset
used in this study is the ’Cornell Bird Challenge’
(CBC)’ dataset (Cornell Lab of Ornithology, 2020),
which was collected from xeno-canto.org (Planqué
et al., 2005). The dataset is highly skewed since the
number of recordings for a few species was very low,
while others had a large number of recordings. Fur-
ther, the recordings differed in length, quality and the
amount of noise. The various parameters used for the
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(a) (b)

Figure 5: (a) Accuracy score plot (b) Binary cross-entropy plot.

(a) (b)

(c)

Figure 6: (a) Precision score plot (b) Recall score plot (c) F1-score plot.

proposed RoBINN framework are summarized in Ta-
ble 1.

Table 1: Parameters for experimental setup.

Model Configuration
Parameter Value
Sample Rate 32000 Hz
Window Size 1024
Hop Size 320
Mel-bins 64
Minimum Frequency 50 Hz
Maximum Frequency 14000 Hz
Number of Classes 264
Dropout Probability 0.4
Maximum Epochs 50
K-cross validation 5
Input Spectrogram Size 224
Learning Rate 0.001

The model is trained for 50 epochs using K-cross val-
idation with K = 5. The binary cross-entropy (BCE)

loss function is chosen for optimization of the weights
associated with the proposed RoBINN framework.
This particular choice of the loss function is made ow-
ing to the following reasons. Firstly, it is well-known
that the BCE loss function is evaluated for every out-
put class and is independent of the other classes. Sec-
ondly, for a multi-label classification problem, the NN
should be designed such that the condition that an el-
ement belongs to a particular class does not influence
the decision for other classes. Let an audio clip be
denoted by xn, where n is the index of the audio clip
and yn ∈ {0,1}k denotes the label of xn. The quan-
tity f (xn) ∈ [0,1]k corresponds to the soft probabili-
ties provided by the model where k represents the to-
tal number of classes. The BCE loss function l can be
evaluated as (Yi-de et al., 2004)

l =−
N

∑
n=1

(yn ln f (xn)+(1− yn) ln(1− f (xn)) (9)

where N is the total number of audio clips.The Adam
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Table 2: Test F1-score comparison on the Cornell BirdCall Challenge dataset.

Paper Methodology F1-score
(Incze et al., 2018) A MobileNet pre-trained CNN model employing spectro-

grams of the audio clips.
0.474

(Knight et al., 2020) An AlexNet-based architecture which employs spectro-
grams of different frequency and amplitude scales for
bird species classification.

0.423

(Koh et al., 2019) An inception-v3 model with Adam optimizer which en-
hanced the results of the baseline ResNet-18 architecture.

0.567

(Sankupellay and Kono-
valov, 2018)

The ResNet-50 architecture was used to automate the
identification of bird species using audio syllables as the
basic recognition unit.

0.614

Proposed RoBINN An automated bird species identification framework
based on residual learning and attention mechanism.

0.632

optimizer is employed instead of the conventional
stochastic gradient descent to update the weights
of the network during the training period. Hyper-
parameters like the learning rate and momentum are
tuned during the training process to achieve accu-
rate results. The initial learning rate is set as 0.001
and subsequently adjusted based on the loss func-
tion. Further, in order to facilitate identification of
primary as well as any secondary bird species which
may be present in the audio recording, RoBINN per-
forms both frame and clip-level classification. Each
audio clip is segregated into multiple frames. A clas-
sifier is employed per frame to yield the class exis-
tence probabilities followed by an aggregation of the
classifier results for the entire audio clip.

The following performance metrics are employed
for evaluation of the RoBINN framework:
• Classification Accuracy: Ratio of correctly clas-

sified bird species samples to the total number of
samples.

• Precision : The ratio of true positives to the sum
of true positives and false positives.

• Recall : The ratio of true positives to the sum of
true positives and false negatives.

• F1-score : Harmonic mean of recall and precision.
Experiments were carried out on the training set

and evaluated on the test set. The various perfor-
mance metrics discussed earlier have been demon-
strated for the test dataset in figures 5(a)-(b) and 6(a)-
(c). The accuracy score versus number of epochs is
demonstrated in Fig. 5(a). It can be observed that
the accuracy score converges to a value of 0.64374
after 50 epochs.The BCE loss plot from Fig. 5(b)
is observed to attain a value of 0.0103. In addi-
tion, the precision and recall scores after each epoch
have been plotted in figures 6(a) and 6(b) respectively.
Further, the precision and recall scores are observed

to converge to 0.6435 and 0.6356, respectively after
50 epochs. The maximum F1-score achieved by the
proposed RoBINN framework is 0.63221 as demon-
strated in Fig.6(c).

Table 2 illustrates a comparison of the proposed
RoBINN framework with state-of-the-art bird species
identification systems. F1-score is employed to evalu-
ate various models owing to the imbalanced class dis-
tribution of the bird species classification problem. In
order to perform a fair comparison, only the proposed
architecture is replaced with the respective neural net-
works of the existing works while the remaining pa-
rameters are kept same as that of RoBINN. It can be
concluded from Table 2 that the proposed RoBINN
framework exhibits a superior bird species identifica-
tion in comparison to the existing studies.

5 CONCLUSIONS AND FUTURE
SCOPE

Recent developments in the field of deep and machine
learning have encouraged researchers to re-examine
the traditional approaches to solve a wide range of
engineering problems. Towards this end, bird species
identification, a real-time application of audio/speech
recognition has generated a lot of interest owing to
its importance in studies related to the well-being of
natural habitat. This paper proposes an end-to-end au-
tomatic bird identification technique RoBINN, which
employs some aspects of conventional speech recog-
nition via feature engineering into a robust and ef-
ficient deep neural network. Further, the model ar-
chitecture incorporates residual learning and attention
mechanism to generate attention aware features for
enhancing the accuracy of bird species recognition.
Exhaustive experimental results validate the optimal-
ity and precision of the proposed RoBINN framework
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for bird species identification in comparison to the ex-
isting works. In conclusion, the proposed method can
be deemed suitable for practical bio-acoustic monitor-
ing of bird species in terrestrial environments and can
be considered for deployment on a wider scale.

Future extensions of the work will explore vali-
dation of the proposed RoBINN framework using an
external dataset and study of recent transformer-based
DL model for bird species identification.
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