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Sparse coding has been widely used in image processing. Overcomplete-based sparse coding is powerful
to represent data as a small number of bases, but with time-consuming optimization methods. Orthogonal
sparse coding is relatively fast and well-suitable in image compression like analytic transforms with better
performance than the existing analytic transforms. Thus, there have been many attempts to design image
transform based on orthogonal sparse coding. In this paper, we introduce an extension of sparse orthonormal
transform (SOT) based on unions of orthonormal bases (UONB) for image compression. Different from
UONB, we allocate image patches to one orthonormal dictionary according to their direction. To accelerate
the method, we factorize our dictionaries into the discrete cosine transform matrix and another orthonormal
matrix. In addition, for more effective implementation, calculation of direction is also conducted in DCT
domain. As expected, our framework fulfills the goal of improving compression performance of SOT with
fast implementation. Through experiments, we verify that proposed method produces similar performance to
overcomplete dictionary outperforms SOT in compression with rather faster speed. The proposed methods are

from twice to four times faster than the SOT and hundreds of times faster than UONB.

1 INTRODUCTION

For the past decades, sparse coding, which express
the input image with a small amount of information
minimizing the loss of original information as much
as possible, has been an important tool and is widely
used in many signal and image processing applica-
tions (Zhang et al., 2015). In compression, they have
not yet been applied in standards, but many works to
design transform for compression or transform coding
scheme to be used for compression standards (Sezer
etal., 2015) have been proposed. Because sparse cod-
ing can increase coding efficiency by rate-distortion
optimization and quantization as in (Kalluri et al.,
2019), a set of sparse coding transforms can replace
conventional transforms, such as DCT.

Sparse coding techniques are generally based on
an overcomplete dictionary (Aharon et al., 2000),
(Elad and Aharon, 2006), indicating a dictionary with
larger number of columns than the number of rows.
Therefore, its atoms are generally nonorthogonal with
redundant properties and can make better representa-
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tive dictionary to input signal. Owing to this charac-
teristic, it has been a powerful tool in fields. Mathe-
matically, given a dataset X € RV it is formulated
as:

in{ X — DAII} + 1Al } I
min{ X —DAIF +A Al f. )

where D € R"*"™ is an overcomplete dictionary (m >
n)and A € R™N is a sparse coefficient.

However, for sparse coding based on an over-
complete dictionary, finding an appropriate dictionary
is generally a nondeterministic polynomial time-hard
problem. This requires iterative optimization such
as the method of optimal directions (MOD), the al-
ternating direction method of multipliers (ADMM)
and augmented Lagrange multipliers (ALM), with
greedy algorithms, such as basis pursuit and orthog-
onal matching pursuit to estimate the approximate
value (Zhang et al., 2015). They are sufficiently
good methods to solve the sparse approximation prob-
lem, but they inevitably require considerable time and
memory resources for learning. Therefore, it is one of
main open problems in the field to design fast and ef-
ficient dictionary learning algorithms.
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To overcome this problem, (Lesage et al., 2005)
proposed a sparse coding method. When a dictio-
nary is square and orthogonal, the dictionary learning
scheme becomes the orthogonal Procrustes problem.
Therefore, this is solved by relatively simple and ef-
ficient singular value decomposition (SVD). (Lesage
et al., 2005) and (Rusu and Dumitrescu, 2013) pro-
posed methods implementing an overcomplete dic-
tionary using unions of orthonormal bases (UONB).
The basic formulation, which was proposed first by
(Lesage et al., 2005), is formulated as:

. 2
min{ |X — [D1[Dal...[DLJAIE + 1A }

(2)
st. DI'D;=D,DI =1,

where D; € R"*" is an orthogonal sub-dictionary and
i=1,..,L

On the other hands (Schiitze et al., 2016), (Sezer
et al., 2008) and (Sezer et al., 2015) proposed efficient
dictionary learning methods based on an orthogonal
dictionary. Orthogonal sparse coding techniques are
mathematically simple and fast because they also re-
quire iterative optimization, but there are closed-form
solutions of dictionary and coefficient matrix for each
iteration. They cannot only compute the orthogonal
dictionary via singular value decomposition, but the
coefficients are also easily computed by inner prod-
ucts and thresholding.

In addition, this fits well in image compression.
Many image compression methods depend on ana-
Iytic transforms. Transform is similar in purpose to
sparse coding in that it represents the input signal with
minimal basis. Because of this reason, there have
been many attempts to substitute analytic transform
with sparse coding-based ones. However, the over-
complete dictionary is not a square matrix and does
not have to be orthogonal. Then, it does not contain
the same bases as the transform and has no inverse
transform. Because of these problems, these meth-
ods cannot replace the existing analytic transforms re-
gardless of its capabilities. Unlike this, the existing
orthogonal transforms such as discrete cosine trans-
form (DCT) and Karhunen-Loeve transform (KLT)
have been widely used in image compression field and
the orthogonal dictionaries, since orthogonal sparse
coding have similar properties with the transforms,
such as it is invertible and satisfies Parseval’s theorem.
Sparse orthonormal transform exploited the orthogo-
nal sparse coding scheme and proposed an orthogo-
nal transform for image compression. This is theo-
retically reduced to the KLT in Gaussian process and
superior in non-Gaussian processes with higher com-
putation speed than that of overcomplete dictionary-
based methods.
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In this paper, we expand the SOT to outperform
the performance of orthonormal dictionary learning
based on the union of orthonormal bases. However,
different from (Lesage et al., 2005), which use block
coordinate relaxation or greedy orthogonal matching
pursuit in coefficient update, we adapt hard threshold
method of inner product, used in orthogonal sparse
coding. To this end, we classify input data and allo-
cate each orthogonal dictionary and its coefficients to
each classified input data. When the number of or-
thogonal dictionaries increases, the compression per-
formance also increases, but the computational time
is also proportional to the number. To prevent this,
we use a double-sparsity structure proposed in (Ru-
binstein et al., 2010). We use a DCT matrix as a
fixed base dictionary of double-sparsity structure. In
this way, we design a transform which outperform the
performance of the SOT, but this algorithm is rather
faster.

2 SPARSE ORTHONORMAL
TRANSFORM

For the past few decades, there have been many at-
tempts to make data-driven transforms using sparse
coding to achieve better performance than analytic
transforms (Sezer et al., 2015), (Ravishankar and
Bresler, 2013). Especially the orthogonal dictionary-
based sparse coding does not only give more com-
pact representations of input data than existing an-
alytic transforms, but also decorrelates the data like
analytic transforms. Also, the orthonormal dictionary
can not be only applied as a dictionary form, but also
as a transform. It is because the inverse matrix of or-
thonormal dictionary is its transpose, ||X — GA||12r =
|G"X — G"GA||;. = ||GTX — Al|3.. The first is a dic-
tionary form and the last is equal to transform, which
makes data sparse by product. In this section, we in-
troduce a recent work based on an orthogonal sparse
coding called sparse orthonormal transform (SOT).
In (Sezer et al., 2008) and (Sezer et al., 2015), the
basic idea of SOT is simple. It was designed based on
an orthogonal sparse coding methodology. Sezer et
al. formulated a transform with an orthonormal ma-
trix and an Ly norm constraint to the transform coef-

ficients:
ind X — GA|2 1A }
min{ X — GAJ[7- 44 o)
st. GTG=GGT =1,

where A is the sparse transform coefficient, G is the
SOT matrix, and 1, is n X n. They use an iterative op-
timization methods to find two variables, a dictionary
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and a coefficient matrix. This problem is solved by
following algorithm:

Given the dataset X = {xi,x2,...,x,} € RV,
A > 0 and initial orthonormal matrix G,

Initialization:

G=0Gop.

Iterations:
Iterate until the stopping criterion is met:
1. Update the coefficients:

A=T(G"X,\\/?) .

2. Find the optimal dictionary:
(a) Compute the singular value decomposition:

XAT =uzvT.
(b) Update new dictionary:
G=UVT.

7 (-,a) is a hard-threshold operator, which zeror-
izes when the absolute value is smaller than a. U
and V are left and right singular vector matrix respec-
tively. They verify that SOT is the principled exten-
sions of KLT because this transform is theoretically
reduced to KLT in Gaussian processes. It is well-
known that the KLT is optimal in Gaussian process
and it shows that the optimal dictionary in Equation
(3) has same structure with KLT in Gaussian process.
In other words, the SOT is also optimal in Gaussian
process, and is superior to KLT in non-Gaussian pro-
cess. They experimentally show the transform is su-
perior to DCT and KLT in image compression.

3 PROPOSED METHOD

3.1 Motivation

(Sezer et al., 2015) proposed the SOT, which im-
proves the existing analytic transforms in image com-
pression and has the same properties of analytic trans-
forms. In addition, it is relatively efficient than over-
complete dictionary-based methods because it elim-
inates time-consuming greedy algorithms by orthog-
onal sparse coding schemes. However, the orthog-
onal dictionary is well fit to compress images, but
restricts its performance because of its size. To the
best of our knowledge, there are some attempts to
achieve close performance to an overcomplete dic-
tionary with orthogonal dictionary, but an orthogo-
nal dictionary generally has poorer performance than
the one of overcomplete dictionary. Dictionaries with

larger size generally have more redundant represen-
tation, so they produces sparser representation of the
input data.

In this paper, we propose an extension of SOT.
To overcome the limitation of orthogonal dictionary,
we construct the dictionary as several orthogonal dic-
tionaries such as UONB in (2). However, because
large number of dictionaries require more computa-
tions and time, we propose another technique to miti-
gate the problem.

3.2 Algorithm Explanation

We used the method in (Lesage et al., 2005) to con-
struct overall dictionary and modified this for fast im-
plementation. (Lesage et al., 2005) exploits a greedy
algorithm to update coefficients A in Equation (2).
Different from UONB, coefficients update scheme of
orthogonal sparse coding exploits simple hard thresh-
old method (Schiitze et al., 2016). To extend the or-
thogonal sparse coding algorithm in Section 2 to our
algorithm, we assign each input data to an orthogonal
dictionary. In other words, we classify input data to
generate more optimal orthogonal dictionary for each
group. We discern input image patches by their direc-
tions. We assume that when the patches with similar
direction are gathered, the more optimal dictionary is
generated. The assumption comes from DCT, which
gives optimal performance for horizontal or vertical
directional patches in image compression, but poor
performance for arbitrary directional patches (Pavez
et al., 2015).
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Figure 1: The basis of two-dimensional discrete cosine
transform. Each basis include horizontal or vertical direc-
tional information.

In this paper, we exploit the DCT matrix because
of its characteristics for improving performance and
reducing time spent for the SOT. As the DCT is pop-
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ular in image compression fields, it has been impor-
tant to analyze and extract information of images in
the compressed domain for fast implementation. In
particular, (Shen and Sethi, 1996) designed an edge
model in the DCT domain, based on the characteris-
tics of the DCT. As mentioned earlier, the DCT gives
optimal performance for horizontal and vertical direc-
tional data. It is because the bases of the DCT repre-
sent the horizontal and vertical directions or the di-
agonal directions made by their combinations. The
two directional bases have the same edge complex-
ity, according to their order. This is well illustrated
in the bases in Figure 1. The bases in the red box
show the same complex edge information in differ-
ent directions. (Shen and Sethi, 1996) directly ex-
tracted low-level features, such as edge orientation,
edge offset, and edge strength, from DCT compressed
images. (Shen and Sethi, 1996) suggested four met-
rics for edge orientation, with coefficients based on
the 8x8 block DCT, and we use and introduce one of
the metrics.

For simple and efficient implementation, the pro-
posed method exploit DCT matrix in two ways. First,
we discern the patches in DCT domain with a formu-
lation below:

—1/]¢
e tan—!( =), where  Cp;Cip >0
90° — tan~!( g—?(‘) ), where CpyCip <0,
“4)

where Cy; and Cj are DCT coefficients in (0, 1) and
(1, 0), which are corresponding to the bases in the red
box in Figurel. We restrict the range of direction from
0° to 90°.

Then, we quantize the 0 in L levels. L is the num-
ber of orthogonal dictionaries used in the proposed
method. As in (Lesage et al., 2005), we construct the
dictionary as a set of several orthonormal dictionar-
ies, i.e. D = [D1|D3|...|DL], where D;s are orthogonal
square matrix. Then, we classify input data into L
groups and assign each to an orthogonal dictionary.
When the value of L increases, it is generally natural
that the performance of compression also improves.
We verify this via experiments in Section 4.

However, with the performance improvement, the
number of orthogonal dictionaries is also increased.
Because this leads to increasing computation time, it
significantly impairs the strength of orthogonal sparse
coding. To prevent this, the DCT matrix is used again.
We exploit the so-called double sparsity method pro-
posed in (Rubinstein et al., 2010). (Rubinstein et al.,
2010) proposed the method to bridge the gap between
analytic approach and learning-based approach. They
factorize a dictionary as two matrices, which are a
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prespecified base dictionary and an atom representa-
tion matrix.

We construct our dictionary by the product two-
dimensional DCT matrix as a fixed base dictionary
and another dictionary, which is only computed via
optimization procedure.

In a mathematical formulation:

D=TH, )

where T is a DCT matrix in R"*” and H is an or-
thonormal matrix in R"*",

As mentioned above, the object of using DCT
matrix as base dictionary is to reduce the convergence
time of algorithm. Because it is well-known that the
DCT matrix produces quite good sparsity in advance,
it accelerates the algorithm with fewer iterations
than the case, which constructs dictionary with only
a dictionary. Based on equations (4) and (5), our
proposed method can be formulated in detail:

For an input data X = [X;|Xz]...|X;] € RV,
where the X; is the patch of which direction is be-
tween (90°/L)(i — 1) and (90°/L)i, the dictionary is
D = T[H,|H;|...|H.) € R™E" and the sparse coeffi-
cient matrix is A = [AT|AT|...|[A]]T € RE™N,

L
min ¥ {|1X ~ THA + A4y
H; A =1

st. HIH;=HH! =1,

where i =1,...,L.

For efficient implementation, all data is processed
in DCT domain during all procedure. First, input im-
age patches are transformed in DCT domain by prod-
uct with two-dimensional DCT matrix. Second, the
patches are classified through Equation (4). Since
a DCT matrix is orthonormal matrix, the Frobenius
norm of the DCT matrix, ||T| 7> 18 1. Then the Equa-
tion (6) is transformed as follows:

(6)

L N
min & {[1%—Had ;+ 1A}

st. HIH;=HH! =1,
where X; = T7X;, the transformed data in DCT do-
main.

Then, our overall proposed algorithm is indicated
below:

(N

Given the input v/n X y/n image patches, the dataset
X = {x1,%2,...,.%n} € RN X > 0 and the number of
dictionaries, L,

Initialization:
1. The input data X;s are transformed into DCT
domain.
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2. Classify the transformed data X;s into L groups
via Equation(4).

Iterations:
Iterate until the stopping criterion is met:

1. Update the coefficients: for each coefficient
matrix [ =1,...,L,

A;j=T(HT X, \2).

2. Find the optimal dictionary: For each orthogo-

nal dictionary [ =1, ..., L,
(a) Compute the singular value decomposition:

)A(l'Al-T = U,‘E,'ViT.
(b) Update dictionary by the inner product:
H; =UV!.

4 EXPERIMENTS

4.1 Experimental Environment

We experimented with our methods using images in
Figure 2. To create equivalent environments for com-
parison, we resized the image to 256 x 256 pixels and
segmented it to 256 x 256 or 8 x 8 patches before ap-
plying the algorithm. To measure the performances
of different algorithm, we focused on image compres-
sion, comparing PSNR (dB) with the number of used
coefficients. Sparse coding-based algorithms are de-
pendent on the value of A in their formulation, Equa-
tions (3) and (6), and this decides the best sparsity.
In the compression sense, the optimal value is varied
from the number of coefficients or bases used in com-
pression scheme. In this paper, we heuristically try to
find the value for each level of sparsity before these
experiments for each method. Then, in experiments,
we only use the optimal values of A as prior informa-
tion and do not consider the computation time to find
1t.

All the algorithms used in these experiments are
conducted with the same stopping condition. We set
the stopping condition to the difference of objective
functions between present and 10 iterations past.

For equivalent comparisons, each algorithm and
all experiments were implemented using MATLAB
R2021a in Windows 10 Education on a same com-
puter, equipped with an Intel i7-9700 CPU and 32-GB
RAM.

4.2 Experimental Results
In this subsection, we first compare the SOT and the

proposed method with different number of dictionar-
ies for energy compaction. The SOT is achieved by

(a) Lena. (b) peppers.

Figure 2: The test image. We experiment and verify pro-
posed method with Lena and peppers image.

(a) Lena.

(b) peppers.

Figure 3: The object quality comparison: PSNR (dB) versus
the number of retained coefficient for 4 x 4 patches between
SOT and our methods.

the algorithm in Section 2. Figures 3 and 4 show
the comparison of the objective qualities, in PSNR
(dB), for each number of retained bases. All proposed
methods with different number of dictionaries outper-
form the SOT method in PSNR (dB). As shown in
Figures 3 and 4, our method has improvement from
SOT, which is constructed by one orthonormal dictio-
nary, in performance. We analyze the result rise from
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(b) peppers.

Figure 4: The object quality comparison: PSNR (dB) versus
the number of retained coefficient for 8 x 8 patches between
SOT and our methods.

two conditions: (a) sparse coding algorithms work
better based on the input data classified according to
their structure than whole unstructured input data, and
(b) the dictionary from small dataset is more adaptive
and well representative than from large dataset. In
addition, it is interesting that the difference of recon-
struction error between proposed method and SOT in
Figure 4 is less than the difference in Figure 3. Small
patches have more simple and dominant directional
information than large patches. Large patches usu-
ally have more complex and have diverse orientations.
This makes the difference.

Figure 5 explains the assertion (a) is reasonable.
We verify our proposed classification method for in-
put data by Equation (4) works well. Figure 5
plots the difference between two different classifica-
tion methods. We compare our classification method
based on Equation (4) with simply grouping the data
evenly in order. In Figure 5, ‘cls-direction’ indicates
our classification method using direction and ‘cls-
order’ indicates a sequentially grouping way. In all
cases, our methods produce better performance. It
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Figure 5: The object quality comparison: PSNR (dB) versus
the number of retained coefficient for 8 x 8 patches between
classification methods with different number of orthogonal
dictionaries.

indicates that the dictionary made of data including
similar structure is better at expressing than the dic-
tionary made of irregular and unstructured data.

To compare with the overcomplete dictionary-
based algorithm, we use UONB with optimization in
(Lesage et al., 2005) and block coordinate relaxation
algorithm, which is faster than the orthogonal match-
ing pursuit. Experiment is conducted by the differ-
ent numbers of dictionaries of proposed method and
UONB from 2 to 5. Figure 6 shows the experimen-
tal result. We observe that the difference between our
method and UONB in Figure 6. In Figure 6, proposed
method is more powerful for small patches. In Figure
6-(b), performance graphs of UONB have the cross-
ing point of performance at about 4 retained coeffi-
cients. At the two and three in X-axis, the UONB with
two dictionaries gives better performance than oth-
ers, but at more than four coefficients, large number
of dictionaries make better performance. Different
from UONB, our method results in an improved per-
formance with the increasing number of dictionaries.
Comparing the two methods, our method outperforms
UONB when the number of coefficients is small. As
the number of bases increases, the performance dif-
ference of UONB is greater, and when a large number
of coefficients are used, UONB shows better perfor-
mance. We infer that this result comes from differ-
ence between overcomplete and orthogonal dictionar-
ies. Despite the number of dictionaries, our method
is based on square orthogonal dictionaries. This leads
to the difference of expressiveness when the number
of basis are increased.

4.3 Processing Time

One of our main contributions is to reduce computa-
tion and time with improved performance. To reduce
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Table 1: The processing time and number of iterations for each method. L indicates the number of orthogonal dictionaries. We
compare each algorithm with A optimal for two different number of retained coefficients. The bold texts indicate minimum

results.
. . SOT UONB Proposed
L | # of retained coefficients Iterations | Time (s) | Iterations | Time (s) Iterationsp Time (s)
| 3 2095 1.4553 - - - -
5 2741 1.9480 - - - -
) 3 - 622 49.7882 72 0.0498
5 - 536 82.9780 107 0.0650
3 3 - 628 | 343.3251 183 0.1174
5 - 505 97.5815 157 0.0872
4 3 - 482 57.8052 195 0.0920
5 - 754 | 101.3284 192 0.1007
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(b) 8 x 8 patches.

Figure 6: The object quality comparison: PSNR (dB) ver-
sus the number of retained coefficient for different patch
sizes of Lena image between UONB and our methods with
different number of orthogonal dictionaries.

time, we tried to make the best use of DCT matrix.
In Table 1, we compared SOT, UONB, and proposed
method for the number of iterations and spent time
in seconds until convergence. In this section, we ex-
periment UONB and proposed method for three dic-
tionary sizes, L = 2, 3, 4. Because SOT use only an
orthogonal dictionary, it is only marked in L = 1. For

designing equivalent experimental setting, we set As
optimal to two level of sparsity, 3 and 5. In this sec-
tion, the time to search A is not considered.

From the Table 1, we observe that our proposed
method works the best at all cases. SOT works better
than UONB in time. Although the number of itera-
tions required in convergence for SOT is much larger
than one required for UONB, SOT is much faster than
UONB, because it does not use greedy algorithms.
Comparing our method and UONB, the number of
iteration for our proposed method is several times
smaller than UONB. The degree of reduction is differ-
ent, about twice to four times, but in all cases our al-
gorithm requires less iterations. Comparing the com-
putation time, the differences become larger than iter-
ations. Because our method requires smaller number
of iterations as mentioned and computation time for
each iteration is much less than UONB like SOT, our
method is hundreds times faster than UONB on aver-
age.

One of the interesting points of this section is the
comparison between SOT and proposed method. Al-
though proposed method tries to find more dictionar-
ies and coefficients than SOT, we achieve reduction
in the number of iterations by factorizing a dictionary
into DCT matrix and an orthonormal matrix, and it
leads to prevent from increase in time.

S CONCLUSIONS

In this paper, we proposed a novel sparse coding-
based image transform framework for efficient imple-
mentation as the form of extension of SOT. Overcom-
plete dictionary-based methods produce good sparse
representation, but require a long time and many re-
sources because of their iterative or greedy optimiza-
tions. Also, it does not fit to image compression
as analytic transforms, which are invertible and sat-
isfy Parseval’s theorem. Orthogonal sparse coding is
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proposed to overcome the time-consuming algorithm
of overcomplete dictionary-based algorithm. The or-
thogonal sparse coding also has a lot in common with
analytic transforms such as DCT and KLT. Because
the dictionary is square and orthonormal, this is in-
vertible and conserves the energy of data. Thus, or-
thogonal sparse coding-based transforms for image
compression have been proposed for past decades.

One of these transforms is SOT. SOT is theoreti-
cally proved to outdo KLT (Sezer et al., 2015). We
extend the SOT based on unions of several orthonor-
mal dictionaries such as UONB. Although the num-
ber of variables to be computed increases, we pre-
vent from increasing computational time by making
the best use of DCT matrix for classification of input
data and factorization of dictionaries. As the result
of these efforts, the proposed method outperforms the
SOT with reduction of computation time. The section
4 verifies that our method satisfies the object of this
paper through PSNR graphs and a table of processing
time.

In this paper, we only proposed sparse coding-
based transform scheme for image compression. In
the future works, we attempt to design the overall
transform coding scheme for better image compres-
sion as in (Sezer et al., 2015).
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