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Abstract: Hyperspectral imaging (HSI) has found applications in remote sensing, agriculture, medicine, and biology.
HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral di-
mension. Hyperspectral microscope imaging (HMI) is an emerging imaging spectroscopy technology, which
combines the advantages of HSI with microscopic imaging; HSI provides rapid, nondestructive, and chemical
free data analysis, whereas a microscope can be used to study microstructure of a sample such as nanoparti-
cles. Integration of HSI and microscopy, results in nondestructive evaluation using both spatial and spectral
information along with analysis at the molecular or cellular level. The aim of the survey is an overview of the
recent applications for HMI in medicine and biology fields.

1 INTRODUCTION

Microscopic image processing has been an essen-
tial part of advancements and discoveries in biology,
chemistry, medicine, and other related fields. One ex-
ample is successful completion of the human genome
sequencing project (Wu et al., 2008). It plays a crit-
ical role in cancer diagnosis and prognosis process-
ing large amount of image data that when processed
manually could be nor accurate and even impossible
(time-lapse cell tracking) to process manually.

Hyperspectral imaging (HSI) has been known
and widely utilized for many years as a rapid non-
destructive technique. It is based on acquiring for
every spatial pixel spectral responses in more than
a hundred contiguous spectral bands, in a single
observation, from the visible and near-infrared, in-
frared, mid-infrared, and thermal infrared regions
of the electromagnetic spectrum (from 400nm up to
100µ m). Henceforth, the hyperspectral technology
has been implemented in various fields including re-
mote sensing, food and agriculture, medical science,
art, history, forensic science and document process-
ing. Comparing with monochrome or RGB images
which have only one- (Figure 1) or three-color chan-
nels (Figure 2), hyperspectral images can have sev-
eral hundred spectral bands. A hyperspectral image

a https://orcid.org/0000-0002-8260-1592

denotes a 3D cube, where height and width are con-
sidered as two spatial dimensions, and λ (the number
of spectral bands) represents the spectral dimension
(Figure 3).

Figure 1: top left: color image, top right: monochrome im-
age, bottom : intensity diagram.

Recently, hyperspectral microscopy is emerg-
ing as a powerful technology that has found many
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Figure 2: top: RGB data cube, bottom: intensity diagram.

biomedical and other applications including disease
diagnosis, nanotechnology research, microorganism
detection, microscopic contaminants analysis. It is
the result of combining conventional microscope sys-
tems and spectroscopy technology to collect both high
spatial and spectral information. Although being very
similar to conventional optical microscope images,
HSI microscope images have the complete reflectance
spectral response for each pixel in the spatial do-
main which enables non-destructive measurements.
The first development of a hyperspectral microscope
imaging system, integration of an imaging spectrom-
eter and an epifluorescence microscope, was used to
classify spleen cells of a Balb/c mouse, (Tsurui et al.,
1999). Two years later, by combining a standard
epifluorescence microscope and an imaging spectro-
graph, (Schultz et al., 2001) developed a prototype
of a hyperspectral imaging microscope to capture and
identify a complete emission spectrum from a micro-
scope slide, during a single-pass evaluation.The ma-
jor problem of both above-mentioned systems was
their small fields of view. To solve this issue, (Con-
stantinou et al., 2009) integrated a confocal scanning
microscope with a prototype hyperspectral imager to
capture the entire slide image. Since then, an exten-
sive research and development has been conducted
on HSI microscope technology. The use of machine
learning for generating, manipulating, and analysis of
high volumes of data at faster rate, has advanced the
technology significantly.

Figure 3: top: hyperspectral data cube, bottom: spectral
signature.

The purpose of this paper is to provide a sum-
mary of research on the subject in recent years (2016
-2021). HMI instruments are presented in section 2.
Application areas of the HMI in medicine and biology
fields are discussed in section 3, and section 4 con-
cludes the paper. Finally, all acronyms used in this
manual are listed in the Appendix.

2 INSTRUMENTS

A typical HMI system consists of two parts: the opti-
cal and the mechanical subsystems. The optical sub-
system includes: (1) hyperspectral camera and (2)
a microscope, while the mechanical section is com-
posed of (3) a controller of the mechanical system and
(4) a stepper motor for stage movement control (Fig-
ure 4). Point scanning, and line scanning are among
major methods for acquiring hyperspectral images. A
point scanning hyperspectral camera can measure a
spectrum for each pixel at a time. To construct a
whole image, the sample should be re-positioned in
both x and y direction. The hyperspectral camera
shown in figure 4, is an example of point-scan imager
that the stage can move in both X and Y directions
(horizontal directions). A line-scan imager collects
data, one vertical line at a time. The stage movement
is only in one direction (left to right or right to left).
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To create two spatial dimensions, multiple lines are
assembled to form a complete image. The stepper
motor electronically controls stage’s movement.

Figure 4: The microscopic hyperspectral imaging system
(Ortega et al., 2019).

A microscope can acquire information about the
microstructure of a sample. Microscope types used
with HMI technology are fluorescence, confocal, and
dark field.

The fluorescence microscopy uses the fact that
light incident on molecule is absorbed and then emit-
ted in a different color, a process known as fluores-
cence. Being more sensitive, fluorescence micro-
scopes have gained several advantages over the re-
flected or transmitted ones. Often, it is possible to
attach fluorescent molecules to specific parts of the
specimen, making them the only visible ones in the
microscope .

The confocal microscope acts like a fluorescence
microscope, but instead of illuminating the whole
sample at the same time, it illuminates by passing
light through a defined point at specific depth, and
thus produces high resolution 3D images of the sam-
ple (Semwogerere and Weeks, 2005).

Dark-field microscope has the advantage of be-
ing a background-free which provides high sensitiv-
ity and a large signal-to-noise ratio. The un-scattered

light path and its reflection from the surface is ex-
cluded from the angular range of signal detection,
which causes flat surfaces to appear dark. This tech-
nology is usually utilized in imaging of live and un-
stained biological samples. Although producing the
high quality images, dark-field microscope provides
low light levels seen in the final image. Therefore, the
sample must be very strongly illuminated which can
damage the specimen (Harutyunyan et al., 2010).

3 HMI APPLICATIONS

Combining the advantages of hyperspectral technol-
ogy with microscopic imaging, the two past decades
have witnessed a growth of research interest in HMI
technology in numerous areas. Unlike conventional
microscope images, HMIs have a high spectral res-
olution which enables them to provide rapid, non-
destructive, and chemical-free evaluation methods.
This section briefly highlights applications of HMI in
medicine and biology.

3.1 Medicine

The HMI has been the fastest-growing and of a high-
demand in the medicine field where it has emerged as
a potential tool for non-invasive and accurate disease
diagnosis as well as treatment monitoring. It is of-
ten utilized for various tasks, including object identi-
fication or detection, visualization, classification, and
feature extraction or measurement.

To increases the chances of survival of patients,
early diagnosis of a fatal disease is an essential key
to treat it. For example, many cancer types can be
treated with a high chance of cure at early stages,
but late diagnosis makes the treatment difficult or im-
possible. To overcome the difficulties of traditional
inspection, automated visual inspection systems can
assist in identifying suspicious region in real-time
that can significantly increase the precision as well as
the treatment’s accuracy. HMI systems have shown
their potential as an alternative imaging technology in
identification or detection cells or tissues with high
sensitivity and specificity.

Table 1 summarizes various implemented ap-
plication examples, in terms of image data (or-
gans/specimens), spectral range measured in nanome-
ter (nm), spatial resolution (RES) in micrometer (µm),
microscope type, and research achievement.

Although pathology diagnosis is important, con-
ventional methods of pathology analysis important
for diagnosis, usually require numerous laborious,
time consuming procedures such as freezing, slicing,
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Table 1: Summary of key variables for object detection or
identification in hyperspectral microscopy images.

Author,
Year

Data Spectral
Range

Spatial
RES

Micro-
scope

Achievement

(Ben Ami
et al.,
2016)

RPE 420-
720

- fluo-
rescence

retinal health
& disease
investigation

(Leavesley
et al.,
2016)

colore-
ctal
tissue

390-
450

- fluo-
rescence

early
cancer
detection

(Seo
et al.,
2016)

five
Staphy
lococcus
species

450 -
800

- dark
field

Staphy
lococcus
species
identification

(Wang
et al.,
2016)

cervical
tissue

500 -
900

6.43 fluo-
rescence

early
cancer
detection
(cellular&
tissue)

(Graus
et al.,
2017)

peri-
pheral
blood

500 –
850

- fluo-
rescence

Candida
species
early& accu-
rate
identification

(Michael
et al.,
2017)

mouse
brain
tissue

- 0.47 fluo-
rescence

early
Alzheimer
detection

(Nyström
et al.,
2017)

mouse
brain
tissue

490 -
586

- confocal
Amyloid
deposits
detection
in tissue

(Palombo
et al.,
2018)

transge-
nic
mouse
brain
tissue

-
2 - 8 confocal early

Alzheimer
detection

(Wang
et al.,
2018)

rat bile
duct
carci-
noma

550 -
1000

- -
liver
tumor
analysis

(Yuan
et al.,
2018)

colon
tissue

400 -
1000

6450
-

early
cancer
detection

(Mahbub
et al.,
2019)

articular
cartilage
tissue

400 -
900

- fluo-
rescence

treatment
effects
detection

(Paugh
et al.,
2019)

eyelid
tissue
expressed
human
meibum

2800-
3050
(cm−1)

0.46
fluo-
rescence

protein lipid
compositional
detection

(Song
et al.,
2019)

ALK
P/N
lung
cancer
tissue

550 -
1000

3 -
early
lung
cancer
detection

(Wei
et al.,
2019)

renal
biopsy
tissue

400 -
1000

-
fluo-
rescence

membranous
nephropathy
detection

Author,
Year

Data Spectral
Range

Spatial
RES

Micro-
scope

Achievement

(Liu et al.,
2020)

mouse’s ear
skin

400 -
720

6 photo-
acoustic

early stage
cutaneous
cancers
detection

(Laimer
et al.,
2021)

FFPE tissue
450-
900

0.116 fluo-
rescence

amalgam
tattoos&other
pigmented in-
traoral lesions
identification

(Liu et al.,
2021)

normal
hepatic &
hepatic
carcinomas tis-
sue

450-
720

- fluo-
rescence

hepatic
carcinoma
cells
identification

hematoxylin and eosin staining, and manual analysis
which makes the diagnostic procedure much harder.
While healthy and normal cells or tissues are gener-
ally easier to distinguish, differentiating benign and
malignant ones is challenging. The accurate differ-
entiation depends on the experience of the histologi-
cal specialist. For example, to avoid unnecessary tis-
sue resection during surgery, tumor margins need to
be determined precisely. To reduce this burden, non-
invasive, rapid, and image-based classification system
are highly demanded. A microscope paired with hy-
perspectral imaging (HSI), has been shown to pro-
vide significant performance and promising results
for classification task.

Table 2 summarizes examples of classification
models, with key information on features.

Table 2: Summary of key variables of hyperspectral mi-
croscopy images classification.

Author,
Year

Data Spectral
Range

Spatial
RES

Micro-
scope

Classification
Achievement

(Deal
et al.,
2016)

Sprague
Dawley
rat

360-
600

- fluo-
rescence

hepatic carci-
noma cells

(Thatcher
et al.,
2016)

skin
tissue

400-
1000

1-10 fluo-
rescence

burn
injuries skin

(Alfonso-
Garcı́a
et al.,
2017)

pooled
meibum

2800
-3050
(cm−1)

0.46 fluo-
rescence

human
expressed
meibum spec-
tral
reference

(Bertani
et al.,
2017)

PBMC 500-
1000

1.95 epifluo-
rescence

M1/M2 polar-
ized human
macrophages

(Chen
et al.,
2019)

human
ovarian
cells

470-
900

- fluo-
rescence

live& dead
human ovar-
ian
cancer cells
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Table 2: Summary of key variables of hyperspectral mi-
croscopy images classification (cont.).

Author,
Year

Data Spectral
Range

Spatial
RES

Micro-
scope

Classification
Achievement

(Duan
et al.,
2019)

blood
cells

- - - Leukocyte

(Ogi
et al.,
2019)

human
neural
stem cells

470-
900

3.65 - neuronal cells

(Septiana
et al.,
2019)

human
pancreas
tissue

350-
1100

- optical elastic & col-
lagen
fibers

(Bengs
et al.,
2020)

suspicious
&healthy
area
multi-
spectral
endoscopic
videos

430-
680

- optical in-vivo head
&
neck
tumor type

(de Lu-
cena
et al.,
2020)

epithelial
tissue

900-
2500

1900 - skin tumor

(Huang
et al.,
2020)

blood
cells

400-
720

- - blood cells

(Wang
et al.,
2020a)

HCC
biopsy

400-
720

- multi-
photon

HCC

(Lv
et al.,
2021)

renal
biopsy
tissue

400-
1000

- optical Membranous
Nephropathy

(Sun
et al.,
2021)

bile duct
tissue

550-
1000

- - CC

The HSI has the advantage of acquiring spectrally
encoded information that can be utilized for disease
diagnosis purposes and surgery guidance in different
ways, such as contrast enhancement for visualization
or segmentation tasks, and virtually staining a tissue
or an organ without any chemical involvement.

The summary of the related studies is presented in
Table 3.

Extracting valuable information in medical im-
ages to identify the hidden pattern or subtle relation-
ship is a valuable task that leads to special medical
knowledge discovery that is critical to the accuracy of
diagnosis and treatment. Hyperspectral imaging tech-
nology is a promising technology to assist in feature
extraction and measurement tasks.

Relevant studies are reviewed in Table 4.

Table 3: Summary of key variables in hyperspectral micro-
scopic data visualization.

Author,
Year

Data Spectral
Range

Spatial
RES

Micro-
scope

Achievement

(Lin et al.,
2016)

Phantom
& ex-
vivo
tissue

- - - tissue surface
imaging

(Pichette
et al.,
2016)

in-vivo
brain
tissue

480 -
650

5.5 neuro-
surgical

brain hemo-
dynamic
behavior
visulaization

(Sen et al.,
2016)

in-vivo
blood
cells &
vessels
(mouse’s
retina)

800 -
1000

2 dark
field

increasing
leukocytes
OCT contrast

(Zhang
et al.,
2016)

H&E
stained
breast
cancer
tissue

400 -
700

1.12 lens-
free

high
resolution
,accurate
color
reproduction

(Bayramoglu
et al.,
2017)

mouse
lung
tissue

500 -
1000

- - virtual stain-
ing

(Li et al.,
2017)

in-vivo
retinal
tissue
(long-
Evans)

460 -
630

5.5 com-
mercial

rodent retina
color recov-
ery & vessel
contrast
enhancement

Table 4: Summary of key variables of feature extraction and
measurement tasks in hyperspectral microscope images.

Author,
Year

Data Spectral
Range

Spatial
RES

Micro-
scope

Achievement

(Li et al.,
2017)

in-vivo
retinal
tissue
(long-
Evans)

460 -
630

5.5 comm-
ercial

retinal
oxygen
saturation
measurement

(Dey et al.,
2019)

ex vivo
retina tis-
sue

400 –
750

- fluore-
scence

autofluorescent
substances fea-
ture extraction

(Brouwer de
Koning
et al.,
2021)

OSCC

- - - deep resection
oral cancer
margin
assessment

3.2 Biology

One of the major applications of hyperspectral tech-
niques is within biology that has been found to be ef-
fective in matching between spectral signatures and
the nature or evolution on many different types of
cells. It is also a powerful tool in identification of
chemical compositions of complex samples such as
cell lysates or bio-fluids. In addition, microscopes are

Hyperspectral Methods in Microscopy Image Analysis: A Survey

115



essential for the analysis of small living organisms,
mapping of proteins and genes, or cellular interac-
tions and pathways. Therefore, using hyperspectral
imaging methods in combination with microscopy,
presents a great potential for biological samples anal-
ysis.

Table 5 summarizes recent research achievements
in this area.

Table 5: Summery of some biological applications of hy-
perspectral microscope imaging techniques.

Author,
Year

Data Spectral
Range

Spatial
RES

Micro-
scope

Achievement

(Annamdevula
et al., 2016)

-
-

420 -
724

- confocal 3D FRET
measurement

(Bradley
et al., 2016)

mouse
oocytes
& pre-
implant-
ation
embryos

> 900 0.1 confocal
quantitative im-
ages of
lipids in
live mouse
oocytes &
earlyembryos

(Cui et al.,
2016)

HeLa,
MCF7,
SKBR3
cells

300 -
700

5 - 10 dark
field

SE-cell optical
clearing
methodology

(Holzinger
et al., 2016)

Chloro-
phyta&
Charo-
phyta

400 -
900

- epifluo-
rescence

different genera
determination

(Misra et al.,
2016)

- 400 -
1000

- dark
field

prodrug-
passivated car-
bon
nanoparticle
synthesis

(Rebner et al.,
2016)

peri-
pheral
lympho-
cyte
cultures

400 -
1000

- dark
field

characterising
unstained
human
metaphase
chromosomes

(Bae et al.,
2019)

Staphy
lococcus
aureus

680 -
1300

0.3125
SRS interplay be-

tween
vancomycin &
biofilm
components dy-
namic
visualization

(Barnhart-
Dailey et al.,
2019)

cyano-
bacterial

500 -
800

- confocal tolyporphins &
unusual
tetrapyrroles
cellular
localization

(Fu et al.,
2019)

living
HeLa
cells

200 -
1100

- selfref-
lectance

living cel-
lular nano-
architecture
labelfree CT

(Wang et al.,
2020b)

E.coli in
LB

400 -
1000

2 - 6 confocal monitoring
Escherichia
coli biofilms
formation

Author,
Year

Data Spectral
Range

Spatial
RES

Micro-
scope

Achievement

(Nahmad-
Rohen
et al.,
2020)

DOPC,
SPH &
CHOL
Ternary
mixture

2700-
3100
(cm−1)

0.1 epifluo-
rescence

lipid
partitioning
in SE planar
membrane
bilayers
visualization

(Farr
et al.,
2021)

human
dermal
fibrob-
lasts

- - SEM
sterilization
effect
analysis on bio-
material
surfaces

4 CONCLUSIONS

HMI systems integrate the advantage of conventional
spectroscopy imaging and microscopy techniques to
provide relevant information of samples at the molec-
ular or cellular level by providing spatial and spectral
information simultaneously. Therefore, HMI tools
show great potential in nondestructive evaluation as
well as object identification or classification. How-
ever, microscopic image analysis is a laborious and
error-prone task that is too complex to be performed
manually.
Despite the above achievements, there are still many
challenges to be overcome in order to to utilize the
full potential of HMI in biomedical applications. Data
collection is one of the major challenges. In addi-
tion, models established based on a certain HMI sys-
tem cannot be easily adopted by another one. Finally,
HMI technology is more expensive than other conven-
tional equipments due to its high spatial and spectral
resolutions

The presented survey summarizes the key features
of HMIs systems and their applications in medical
and biology fields. The analysis of the research work
demonstrates that HMI has broad applications rang-
ing from laboratory tasks to clinical studies, yet the
future research is still needed to make this technology
more efficient and accessible.
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APPENDIX

Acronyms

AMD age-related macular degeneration

CC cholangiocarcinoma

CT computed tomography

CHOL cholesterol

E.coli escherichia coli

DOPC dioleoylphosphatidylcholine

FFPE formalin-fixed paraffin-embedded

FRET förster resonance energy transfer

H&E hematoxylin and eosin stain

HCC hepatocellular carcinoma

HeLa henrietta lacks

HMI hyperspectral microscope imaging

HSI hyperspectral imaging

LB luria-bertani

MCF7 Michigan cancer foundation-7

OCT optical coherence tomography

OSCC oral squamous cell carcinoma

PBMC peripheral blood mononuclear cells

P/N positive and negative

RES resolution

RPE retinal pigment epithelium

SEM scanning electron microscope

SE single

SRS stimulated raman scatering

SPH sphingomyelin

TP tolyporphins
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