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Abstract: Information Technology plays an increasingly important role in the provision of essential services. For these
systems and networks to be reliable and trustworthy, we must defend them from those who would seek to
compromise their Confidentiality, Integrity and Availability. Security intelligence tells us about the Tactics,
Techniques and Procedures used by threat actors for these very purposes. In this paper, we introduce a novel
method for learning malicious behaviours and then estimating how likely it is that a system has been com-
promised. One of the difficulties encountered when applying machine learning to cyber security, is the lack
of ground truth on which to train supervised techniques. This is often compounded by the volume, variety
and velocity of data which is far greater than can be processed using only human analyses. The technique,
known as LeWiS, includes data preparation and processing phases that learn and later predict the presence of
threat actors using a model of their behaviours. The method addresses the problems of scale and veracity, by
learning Indicators of Attack via feature extraction from security intelligence that has been obtained through
empirical methods. This approach shows promising classification performance for detecting learned malicious
behaviours, within synthesised systems’ event data.

1 INTRODUCTION

Information security is an enduring challenge and one
whose importance is underscored simply by reading
the popular media (BBC, 2021). The infection of
the UK’s National Health Service (NHS) by the Wan-
naCry ransomware in 2017 highlights the widespread,
real-world impact of sophisticated cyber attacks. It
also suggests lessons we can learn about preparedness
and the need for continuous evolution of our response
efforts (Smart, 2018). Today’s information systems
are complex - they combine legacy with emerging
technologies, are made-up of heterogeneous systems
and provide more varied services than ever before.
In parallel, we can see an upward trend in the fre-
quency of cyber attacks as well as a diversification of
the actors to whom they are attributed (DCMS, 2021).
As identified by (Kumar, 2016), these factors demon-
strate the need for creativity and novel approaches to
how we construct and apply defensive measures. Ma-
chine learning for advanced threat detection is one ex-
ample of innovation in the field.
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There are many ways in which to apply machine
learning to cyber security and a similar range of rea-
sons as to why one may wish to do so. Whilst
often portrayed as a single domain, security actu-
ally contains a far greater number of nested topics
and important challenges. These are as diverse as
software reverse engineering, Security Information
and Event Management (SIEM), generative signa-
ture techniques and policy-based management - all of
which require different methods, algorithms and pro-
cessing techniques (Shaukat et al., 2020). In this pa-
per we are concerned with the predictive power of
machine learning and the use of Cyber Threat In-
telligence (CTI) as a framework for knowledge rep-
resentation. The literature highlights the increasing
importance of CTI (Gupta, 2019), but research into
intelligence-specific learning methods remains lim-
ited. Techniques such as those described by (Al-
ghamdi, 2020) and (Amit et al., 2018) demonstrate
applications using host- and network-sourced teleme-
try. However, they also highlight the risks of over-
fitting and the failure to generalise beyond a small
number systems. In-line with (Shaukat et al., 2020),
they also illustrate the impact that the lack of labelled
data has on broadening the utility (and appeal) of

Chase, L., Mohasseb, A. and Aziz, B.
The LeWiS Method: Target Variable Estimation using Cyber Security Intelligence.
DOI: 10.5220/0010645000003058
In Proceedings of the 17th International Conference on Web Information Systems and Technologies (WEBIST 2021), pages 15-26
ISBN: 978-989-758-536-4; ISSN: 2184-3252
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

15



learning schemes within this domain. These are crit-
ical issues and form the principal motivation for this
work.

By way of a novel approach, we introduce a
new technique named ”Learning With the Structured
Threat Information Expression language” (LeWiS).
It is a method for estimating target variables within
structured security event data, based on supervised
machine learning. It involves training on intelligence
material to learn the semantics for Indicators of At-
tack (IoAs), then construction of a behavioural model
used to predict whether systems’ event data indi-
cates a compromise and if so, by whom. To repre-
sent CTI information during training and prediction,
the Structured Threat Information Expression (STIX)
language is used. STIX is an open-source standard
maintained by the Organization for the Advancement
of Structured Information Standards (OASIS, 2021b).
The LeWiS method is designed to address the prob-
lems associated with (an absence of) labelled data and
the tendency to over-fit. Experimentation using the
MITRE ATT&CK framework (MITRE, 2021) (for
training) and synthetic system events as estimation
targets, indicates LeWiS achieves promising classifi-
cation performance when provided with sufficient in-
formation about an attacker’s Tactics, Techniques and
Procedures (TTPs).

Section 2 of this paper discusses related work.
Section 3 describes the LeWiS technique in detail and
includes some worked-examples using real CTI. This
section also provides some background on STIX, in-
sofar that it is relevant to the main discussion. Sec-
tion 4 provides the results of experiments conducted
to validate and verify the technique during develop-
ment. The final section (5) includes conclusions and
a short discussion on further work.

2 RELATED WORK

Specialised research into learning the semantics of
hostile actor TTPs remains limited. Much of the
prior art focuses on the application of probabilistic, or
more recently ”deep learning” methods to problems
such as anomaly detection, network event classifica-
tion and behavioural analysis. These efforts include
a very broad range of disciplines - examples include
two-level Bayesian Networks and Markov models
for use in unbalanced reporting environments (Zhou
et al., 2018), clustering and classification within In-
ternet Protocol (IP) packet analysis (Das and Mor-
ris, 2017) and the use of Random Forests in gener-
alised network anomaly detection use-cases (Elmra-
bit et al., 2020). Within the wider literature we see

the various parallels between general machine learn-
ing challenges (Scheau et al., 2018) and those more
specific to cyber security (Shaukat et al., 2020). Out-
side of academic research, techniques are being used
within commercial products by technology providers
- such as Darktrace (Darktrace, 2017), Vectra (Vec-
tra.ai, 2021) and Expanse (PaloAlto, 2021). Commer-
cial implementations tend to focus more on methods
that prioritise data for human analysts, underpinned
by attempts to find similar and dissimilar behaviours
within computer networks. More targeted examples
consider the role of machine learning within spe-
cialised sub-domains, such as Software Defined Net-
working (Zhou et al., 2020). Contemporary research
also includes an attacker’s perspective on Artificial In-
telligence (AI) - such as the potential for its misuse
(KALOUDI and JINGYUE, 2020) and the evasion of
defensive measures based upon it (Xu et al., 2020).

The importance of both using and sharing CTI is
reflected in government thinking. This is evidenced
by Special Publication 800-150 from the National In-
stitute for Standards and Technology, which identi-
fies shared situational awareness, improved security
posture, knowledge maturation and greater defensive
agility as the principal benefits of sharing (Johnson,
2019). The UK’s Cyber Security Information Shar-
ing Partnership established by the National Cyber Se-
curity Centre, actively promotes government-industry
sharing of threat intelligence materials for mutual
benefit (NCSC, 2021). (Fransen et al., 2015) dis-
cusses the advantaged of using CTI when attempting
to improve our understanding of malicious TTPs in
enterprise environments. (Riesco et al., 2020) notes
some of the difficulties associated with CTI-sharing
communities - viz. the tendency to consume more
than one provides - and introduces an innovative shar-
ing mechanism using a smart contract-type structure,
underpinned by Blockchain technology. The Authors
do not explicitly cover machine learning, but the top-
ics on modelling tactics and the need for ontology are
familiar to this work. Prior art by two of the same au-
thors introduces the idea of semantic inference using
CTI - making explicit reference to the STIX standard,
as well as to the Web Ontology Language (Riesco and
Villagrá, 2019). Authors in (Jungsoo et al., 2020) out-
line a technique to automatically generate Malware
Attribute Enumeration and Characterisation (MAEC)
records using STIX-formatted CTI. This idea focuses
more on automation and parsing within an intelli-
gence ’workflow’, but has clear parallels with the su-
pervised estimation techniques introduced herein.

On the subject of ontology, (Blackwell, 2010) de-
scribes an original approach to the formulation and
expression of security incident data. This is paired to
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a three-level architecture for planning and preparing
defensive measures. This work is especially notable
because it predates what are now common standards
in CTI data management. In (Ben-Asher et al., 2016)
the authors introduce semantics as a useful abstrac-
tion built upon base data elements - such as the di-
rection of flow, distribution of protocols, packets per
hour and related metrics within IP networks. This
includes a specific example on command and con-
trol channels that is especially relevant to the detec-
tion of malware. Importantly, the authors also intro-
duce the idea of granularity and the resolution with
which observations are made - showing some accor-
dance with how transferable the resulting ontology
is. Many works identify the problems associated with
constructing a meaningful abstraction to model the
behaviours of cyber actors - (Wali et al., 2013) sets
out the problems and proposes a novel boot-strapping
approach, that aims to reduce the burden placed on
designers and engineers. This technique combines an
existing ontology with a literal text book, demonstrat-
ing an approach that seeks to maintain the currency
and relevance of the knowledge that has been mod-
elled. Interestingly, this work is a contemporary of
the very early release of STIX in 2012-2013.

Most closely related to this paper is (Zheng et al.,
2018), within which the authors explicitly make the
link between STIX and machine learning. Crucially,
(Zheng et al., 2018) highlights the constrained na-
ture of how machine learning has been applied in the
prior art - namely that it uses limited, very specific
data for similarly bounded purposes. The authors’ ex-
perimentation combined Multi-layer Perceptron net-
works with Gradient Boosting Decision Trees, to ad-
dress different facets of the problem domain. Veri-
fication found very good classification performance
for certain types of attack against web services - as
high as 96.2% under some conditions. Finally, (Mit-
tal, 2017) describes the relevance of combining vec-
tor and graph-based representations to good effect.
The authors introduce a structure they call the Vector
Knowledge Graphs that seeks to blend the expressive
quality of knowledge graphs with the crispness and
functional nature of vectors.

The LeWiS method introduced in this paper of-
fers an alternative to previous approaches. This cen-
tres on a new semantic model that combines subjects
and object-predicates, with a supervised classifica-
tion scheme to detect and attribute known-malicious
TTPs. This is discussed in Section 3.

3 PROPOSED APPROACH

Modelling causation within cyber security data is dif-
ficult for a great many reasons, principal among them
are the problems of data consistency and complete-
ness (Mugan, 2013). LeWiS attempts to learn the
semantics of how malicious actors compromise their
targets. This information is articulated using STIX in-
trusion sets and the relationships they have to attack-
pattern, malware and tool objects. Machine learning
is applied via supervised techniques and trained using
TTP information provided by ground-truth data. Pre-
dictions classify the behaviours within system teleme-
try using the pre-trained model - this data is also rep-
resented as STIX. The method is inherently repeat-
able and designed with automation in mind - simi-
larly, it can be retrained whenever new or revised TTP
data becomes available. LeWiS comprises three inter-
nal steps: Pre-processing, Processing and Learning,
which are combined into a single ’pipeline’ of opera-
tions.

• Pre-processing - concerned with data acquisition,
normalization, feature extraction and constructing
the subject-(object-predicate) data structure

• Processing - concerned with the constructing the
vector representations using the subject-(object-
predicate) data

• Learning - performs the fitting functions and pre-
dictions by applying the models to observable
event data

These are discussed in Sub-sections 3.2, 3.3 and
3.4. They are also summarised in Figure 1.

3.1 Description of the Dataset

All input data (for training and prediction) are for-
matted as STIX (OASIS, 2021b). Formerly, this is a
“schema that defines a taxonomy of cyber threat intel-
ligence” (OASIS, 2021b) and employs a linked-data
structure whose information architecture describes
four main entities:

• STIX Domain Objects (SDOs);

• STIX Cyber Observable Objects (SCOs);

• STIX Relationship Objects (SROs); and

• STIX Meta Objects (SMOs).

Actor behaviours (TTPs) are articulated using the
intrusion-set SDO, which in turn has relationships
with other domain objects modelled using the SRO
entity. Each relationship has a dedicated SRO whose
source, target and type attributes describe the required
association. This is shown in Figure 2. SROs can be
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Figure 1: Steps of the LeWiS method.

used to link any of the other three STIX entities to-
gether. This paper focuses only on the relationships
from intrusion sets to attack-pattern, malware and tool
types.

Figure 2: Summary of intelligence relationships.

SDOs and SROs are used for training and SCOs
/ SDOs for variable estimation. Training was com-
pleted using the MITRE Enterprise ATT&CK dataset,
which was acquired from the organization’s official
TAXII (Trusted Automated Exchange of Intelligence
Information) server (MITRE, 2021). It was chosen
for its rich, real-world (not synthetic) intelligence on
threat actors’ TTPs. Given the MITRE Corporation’s
standing within the field, it is considered a trusted
source of ground-truth. The data used in this pa-
per is a ’snapshot’ whose contents reflect the latest
information available at the time it was downloaded
(May 2021). The ATT&CK data is packaged as a
single STIX Bundle (OASIS, 2021a), within which
each SDO has a unique identifier contained within
its id attribute. ATT&CK contains 10990 SROs that
model relationships between 1594 SDOs. The do-
main objects are distributed thus: 692 attack-patterns,
125 intrusion-sets, 424 malware types, 70 tools,

266 course-of-action records, 14 x-mitre-tactics, 1 x-
mitre-matrix, 1 identity; and 1 marking definition.
This is shown in Figure 3.

3.2 Pre-processing

Pre-processing is used to transform STIX data into a
format suitable for the Processing functions. All data
follow the same preparation techniques and the ap-
proach can be applied to any valid STIX-formatted
CTI. This allows generalisation beyond single (or a
small number of) systems. The source STIX datasets
are parsed into a map of Subject-(Object-Predicate)
(SOP) data structures, the design for which is origi-
nal to LeWiS. The SOP map’s keys are the intrusion-
set descriptors extracted from the SDOs. Their cor-
responding values are a nested map that contains the
relationship data. This is shown in Figure 4.

This structure offers a way to efficiently serialize
the data used to train the supervised learning model.
It is advantageous because it is simple yet enforces
a formal structure. In turn, this ensures TTP data
are expressed consistently and in a platform-agnostic
fashion. The SOP map is stored and processed in
JavaScript Object Notation (JSON) format:
”target-var”: {”object-predicates”: [{”predicate”:
string, ”object”: ”name”: string, ”index”: int, ”type”:
string}], ”vectors”: {”attack-pattern-vector”: [int],
”malware-vector”: [int], ”tool-vector”: [int], ”raw-ap-
vector”: [bool], ”raw-m-vector”: [bool], ”raw-t-vector”:
[bool], ”raw-sample-vector”: [bool] }, ”label-value”: int
}

We can consider a simple example using the
”APT29” intrusion-set. {”predicate”: ”uses”,
”object”: {”name”: ”Malicious Link”, ”index”: 189},
”type”: ”attack-pattern” } This indicates that this
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Figure 3: SROs use ID and type fields to relate SDOs.

Figure 4: Example of the SOP map structure.

actor ”uses” the ”Malicious Link” attack-pattern
and that this pattern can be found at offset 189 in
the set of all attack-patterns included in the STIX
bundle. For APT29, the training set contains 109
Object-Predicate structures like this. These records
act as qualifiers for the behavioural associations of
the target intrusion-set – they are extracted during
Pre-processing and parsed into this format. The
Object-Predicates represent the qualities by which
we can distinguish the classification targets – viz.
they define the separability criteria that give the
entire process meaning. Ultimately, this is a ‘tem-
plate’ for learning features extracted from STIX
data sets and provides a scaffold for preparing and
fitting samples for classification. For later refer-
ence, the Subject (root key of the map) is what the

learning algorithms are attempting to classify -
this is discussed in Section 3.4.

3.3 Processing

Processing generates vector representations for use
in the Learning phase. Vectors are required because
classifiers expect array-like input with consistent
types - neither ’native’ STIX nor the SOP structure
conform to this. Processing has two inputs: SOP data
for training and SCO data for prediction. Outputs
are n-dimension vectors which are then passed to the
Learning phase. These are stored under the vectors
key in the SOP map data structure - meaning that
eventually both the semantic relations and the vectors
used to train the model are contained within a single
data structure - extending the principles outlined
by (Mittal, 2017). The intrusion-set relationship
attributes are stored in the Vectors key of the SOP
data structure. It contains another nested map within
which are the vector representations of the Object-
Predicates. LeWiS defines two types of vector: Index
Vectors and Raw Vectors. The former contains the
unique indices (integers) of all SDOs with which
the target variable has an outbound relationship. For
example, the APT29 has the following relationships
with tool SDOs (non-exhaustive):
{’predicate’: ’uses’, ’object’: {’name’: ’AdFind’, ’index’:
5}, ’type’: ’tool’},
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{’predicate’: ’uses’, ’object’: {’name’: ’Tor’, ’in-
dex’: 39}, ’type’: ’tool’},
{’predicate’: ’uses’, ’object’: {’name’: ’Mimikatz’,
’index’: 69}, ’type’: ’tool’}
For each intrusion-set, Index Vectors for the associ-
ated attack-pattern (Equation 1), malware (Equation
2) and tool (Equation 3) objects are created. For
APT29. The complete tool vector, for instance, is
(Equation 4).

apt29attack−pattern−vector (1)

apt29malware−vector (2)

apt29tool−vector (3)

apt29tool−vector = 〈5,56,59,64,62,27,37,39,69,65〉
(4)

Note (Equation 5) is the set of object-predicates in
the SOP map for this intrusion-set.

|apt29x−vector|= |opx| (5)

The Raw Vectors are a Boolean representation of
each intrusion set’s relationships - based on a simple
”has” or ”has not” evaluation. The total length of each
vector is equal to the cardinality of the corresponding
set of SDOs within the STIX bundle. Because the
ID of each SDO is unique, if a target variable has an
association with an SDO a 1 is stored in the vector
at the location defined by the index. Therefore, each
intrusion-set entry in the SOP map contains a Boolean
vector named “raw < xxx > vector”, where xxx is the
short name for the SDO type. Continuing the ex-
ample started above, there are 70 tool SDOs in the
ATT&CK data and “APT29” has an association with
10 of them. The apt29raw t vector for this intrusion-
set has 70 components of which only 10 take the
value 1 (at the indices specified in apt29tool−vector)
- all other values are 0. The same approach is taken
to populate the apt29raw ap vector (attack-patterns) and
apt29raw m vector (malware).

In reality, threat actors are not characterised by the
sum of all of their behaviours. Figure 2 shows APT29
is linked to the ”Steganography” attack-pattern, the
”CozyCar” malware and the ”ipconfig” tool. The
ATT&CK data contains 109 SROs for which the
source reference is the ID of the APT29 intrusion-set.
STIX-formatted intelligence does not includes occur-
rence information for TTPs (only for observations).
That is to say, it does not specify how frequently a
given intrusion-set uses any given attack-pattern, mal-
ware or tool. If only the entire feature vector for each
intrusion-set was used to train the supervised model,

then the learning algorithm could only make classifi-
cation decisions when all of the attack-pattern, mal-
ware and tool relationships were presented. In plain
terms, when all of the target threat actor’s TTPs were
contained in a single piece of telemetry! Instead,
LeWiS includes a technique referred to as ”α-β re-
sampling”, which creates additional vectors (Equa-
tion 6) whose components are subsets of the original
’full’ feature vector (Equation 7).

| f (vx,α,β)| (6)

f (vx,α,β)⊂ v : v = {x0,x1, ...,xn} (7)

Where

• f is the re-sampling function,

• vx is the intrusion-set vector

• x is the class label

• α is the re-sampling rate

• β is the re-sampling mask

• v is the set containing the original vector compo-
nents

The Processing phase summarises all of this infor-
mation in a single array-like structure. It contains the
attack-pattern, malware and tool vectors (Equation 8).

vx = 〈〈ap0,ap1, ...,apn〉,〈m0,m1, ...,mn〉,〈t0, t1, ..., tn〉〉
(8)

APT29 has relationships with 75 attack-pattern
SDOs, 24 malware SDOs and 10 tool SDOs. A naı̈ve
way to approach re-sampling is to simply create sets
from the feature vectors, then calculate the Power Set
(Equation 9) to create component vectors represent-
ing each combination of elements. This resolves to
Equation 10 or as the binomial Equation 11, which
does not scale well if the size of the feature vectors
(the value of n) becomes very large.

P (vx) (9)

nCk =
n!

r!(n− r)!
(10)

(
N
k

)
(11)

In CTI it is practical to assume that the size of the
attack-pattern, malware and tool vectors will increase
over time. The α and β terms introduced above are
used to avoid the ”curse of dimensionality”(Bellman,
1957). The α value is array-like and contains integers
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used to define the maximum number of samples to be
taken from each sub-vector (example, Equation 12).

α = 〈maxa p,maxm,maxt〉 (12)

The β value is also array-like and contains three vec-
tors of integers (example, Equation 13). It is used to
mask values that are not of interest to the re-sampler.
The three component vectors represent the attack-
pattern, malware and tool SDOs thus allow users to
be selective over what is not used during re-sampling.
This is of particular use to those building models to
learn TTP patterns used against specific systems. For
instance, to ignore all malware and tool SDOs relating
only to Microsoft Windows operating systems where
the user is only concerned with Linux targets.

β = 〈〈12,34〉,〈7〉,〈28〉〉 (13)

System telemetry is noisy and the detection meth-
ods for actor TTPs must combine events that happen
over time. These events are parsed into SCOs contain-
ing the corresponding instance data (one per event),
which are then aggregated to populate an Observed
Data SDO.

3.4 Learning

LeWiS functions in a ’de-coupled’ fashion and does
not prescribe any particular learning methods. What
LeWiS is really providing is a semantic approach to
learning actor TTPs, using the SOP data structure.
This avoids the need to develop highly specialized
logic that applies only on a system-by-system basis.
The bulk of the work done by this technique is rep-
resentational - viz. building a domain model that is
consistent, platform-agnostic and can be used for both
training and prediction. LeWiS has been tested us-
ing Support Vector Machine (SVM), Decision Tree
Classifier (DTC) and Logistic Regression (Logit) al-
gorithms. The normalized confusion matrix was used
to measure classification performance. The results are
discussed in Section 4.

These techniques were chosen because they all
support large class registries, handle multiple data
types and are interpretable. We avoid the deep learn-
ing methods used by (Zheng et al., 2018) and (Wali
et al., 2013), to preserve transparency and ’explain-
ability’ within the Learning phase. Furthermore each
represents a different approach to classification and
offers a high-degree of configuration potential. As
with other aspects of the technique, the process for
choosing the ’best’ classifier is domain-specific and
not something that can specified without particular
uses in mind. All development, training, testing
and configuration activities were completed using the

Python ”sklearn” (Sci-kit Learn) module - these tech-
niques were not implemented from scratch. Currently,
the approach affords limited options for re-training
and does not include reinforcement techniques. The
ATT&CK data used to train with LeWiS was im-
ported into the local work space - it was not ’online’
in any sense and so the models reflect the ”as-was”
view of the data, according to when it was acquired.

4 RESULTS OF
EXPERIMENTATION

Whilst this is an exploratory technique, the ap-
proach has shown promising results when classify-
ing intrusion-set objects. Applying LeWiS to the lat-
est ATT&CK data (version 9, at the time of writing)
yields 125 unique class labels, which includes the
null-actor. The ATT&CK training data includes in-
telligence on 124 intrusion sets and 1186 objects of
types attack-pattern, malware and tool. Sparse ma-
trices within SOP structures were common simply
because ATT&CK contains intelligence on a broad
range of TTPs. This variety means intrusion-sets or
attack-patterns can make good discriminators. The
SOP generation counts are show in Figure 6.

The component feature vectors are defined in
Equation 14, Equation 15 and Equation 16. The
resulting ’full’ feature vector is Equation 17. Re-
sampled vectors each have the same dimensions.
When applying LeWiS to the ATT&CK data, it gen-
erates 3138 SOP structures within the map that span
all intrusion-set SDOs.

|va p|= 692 (14)

|vm|= 424 (15)

|va p|= 70 (16)

|vx|= 1186 (17)

Testing was completed using SVM, DTC and
Logit learning algorithms. These were evaluated and
the best models chosen according to their average
classification accuracy. Specimen vectors where syn-
thesised to test the classifiers, however as these are not
created from live telemetry the output is considered
advisory. Initial exploration suggests the SVM, DTC
and Logit. techniques produce similar performance
- maximum average accuracy was 59.1%, minimum
was 43.7% using a common set of synthesized vec-
tors. A logical extension to this research is greater
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Figure 5: Telemetry processing using SCOs and SDOs.

Figure 6: SOP object counts by intrusion-set.

evaluation of how the re-sampling techniques can im-
prove overall performance. The technique proved pre-
dictably sensitive to ’hedging’ its classification deci-
sions where intrusion-sets exhibit common features
from across the attack-pattern, malware and tool ob-
jects. This offers some insight into the practical sepa-
rability of actor TTPs using these SDOs, but it also
suggests further analysis is required to understand
these sensitivities more fully. The α-β re-sampling
technique provides some mitigation by compensating
the ’reporting bias’ within the training data (where the
distribution of TTP information is unbalanced). Us-
ing the ATT&CK data, the depth of information on
attack-pattern and malware SDOs mean the classifi-
cation logic is typically biased towards these types.
As stated in the Sections 1 and 2, the abstraction and

knowledge representation layers built atop STIX are
a vital part of the technique’s portability and general-
isation. Performance across the three algorithms var-
ied by small degrees and the general trend confirms
that actors with more ranging TTP information yield
the highest classification performance. The training
set contained a notable imbalance in the number the
attack-pattern, malware and tool SDOs. The first two
are far more populous than the last, however the com-
bination of attack-pattern and malware relationships
appears to be more indicative of specific actors when
all three SDOs are present. Where tool types were
dominant these proved a positive discriminator. Inter-
estingly, this suggests the technique might be effec-
tive in detecting actors involved in ’living off the land’
attacks. Generally, in the case of actors for whom the
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training data was sparse, training performance was far
lower than is desirable. The performance scores are
shown in Figure 7.

Peak performance (not averaged) was produced
for the APT29, Dragonfly 2.0 and BRONZE BUT-
LER intrusion sets - reaching the 89th percentile under
optimum conditions. With little-or-no re-sampling
the overall classification performance was poor - giv-
ing a mean of 26.8%. This was caused by the sparse
data in evidence for certain intrusion sets or where
there was considerable duplication of TTPs between
actors. When suppressing sets that gave very poor
performance and performing basic re-sampling, the
mean performance rose to 59.1%, with 15 intrusion
sets performing well above this. Performance was
markedly worse for intrusion sets about which little
is known - this is as one might expect For these actors
the classifiers scored poorly because the lack of TTP
data meant there was little to discriminate these actors
from others. DragonOK and Taidoor classification
was especially poor - effectively yielding zero. This
could likely be addressed with weights that compen-
sate for these tendencies but this was not attempted by
this research. The lack of TTP data also meant α-β re-
sampling was impractical. The principle difficulty is
that when re-sampling is applied on actors for whom
a large amounts of TTP data was available, the re-
sampled vectors may contain the same information as
the full (raw) feature vector for these ’lesser known’
intrusion sets. This is problematic because if a mask
vector is provided for β when re-sampling vectors for
the ’greater known’ sets, it is possible that this may in-
advertently remove relationships that are statistically
significant to the classification decision. In practice,
there is no way to know this without relying on input
from expert users.

5 CONCLUSION AND FURTHER
WORK

The overall classification performance is notable for
intrusion-sets on whom the training corpus contains a
suitable volume of information. Overall performance
is also by the re-sampling process applied to the SOP
map and so the more varied and voluminous the train-
ing data are, the more re-sampling can be effectively
performed to ’tune’ performance. The utility of this
approach is also demonstrated through the ability to
create specimen vectors for prediction against models
trained on real CTI data sets. This find broader appli-
cations in intrusion detection system and firewall test-
ing, or when simulating security incidents for the pur-
poses of personnel development. The multi-class im-

plementations for each of the classifiers tested set the
weights for each class to 1.0. This was done to avoid
introducing skew or bias that was not inferred within
the training data, but also because predictions were
made using only specimen vectors. Real-world sce-
narios would introduce greater context given by the
type of system being monitored and business-level in-
formation about the threats faced. Operators applying
LeWiS to actual systems may wish to bias the classi-
fication decision depending on factors, such as:

• ’Guilty knowledge’ held by a user that would in-
form proper classification decisions, but cannot be
(or is not) encoded within the learning methods;

• Trustworthiness or known-accuracy of the intelli-
gence on which the LeWiS model was trained;

• To reflect the quality, or some other attribute, of
the data provided by the system under scrutiny
that affects the classification results; and

• To use the classification to scale, or become a co-
efficient of, a value external to LeWiS process -
such as a calculated risk score.

Whilst the Boolean vectors bring relatively large
dimensionality, they are simple-valued and have com-
paratively low storage complexity. A more elegant so-
lution may be preferable in future iterations however,
since the vector sizes scale linearly with the growth
of intelligence material and they will likely become
unwieldy. Improvements can also be made to the
re-sampling function by applying masking operations
(such as exclusive-OR logic) to create the combina-
tions required. It is interesting to consider whether
additional semantics might improve overall perfor-
mance - for example, the introduction of second-order
logic and conditionals that do not treat all relation-
ships as equal. The ideas that underpin the SOP data
structure could be extended to include statefulness
with respect to the actor. This might further qualify
their presence within a network / system and may also
give some insight into what further actions they might
perform. This may be especially useful in real-world
scenarios, where an actor has already compromised
some part of a system and those charged with its de-
fence seek to understand how the threat could move
laterally or gain a toehold in other systems. This ini-
tial, exploratory version of LeWiS is attempting to
simply determine the presence of an actor - in real-
ity this resolves to a binary classification of the sys-
tem under review being in one of two states: compro-
mised or not-compromised. Further development of
LeWiS could see it applied in a more differentiated
fashion such that it can work within the ’degrees of
compromise’ that exist in the real world. In so do-
ing, it might offer insights into post-compromise de-
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Figure 7: SOP Classification Scores.

fensive techniques to isolate, mitigate and manage the
effect of hostile actors already operating within a net-
work or system.

Perhaps the most compelling extension to the
LeWiS method is generalising it to predict other target
variables. This would entail training models whose
classification targets are not only intrusion sets, but
broaden to include Infrastructure, Malware and Vul-
nerability SDOS. Infrastructure estimation is an ex-
ample of finding new TTPs through generalisation of
known data. Similarly for Malware SDOs, teleme-
try would be used to estimate the presence of a par-
ticular implant within a system (rather than whom
may be responsible for it). This may offer opportuni-
ties for detection outside of more more conventional
means (such as intrusion detection and endpoint se-
curity technologies). Estimating Vulnerability SDOs
could establish the presence of a specific vulnerabil-
ity, or set of vulnerabilities within the monitored in-
frastructure purely thought intelligence processing.

Finally, STIX does not include a mechanism to
state how common is any particular relationship be-
tween SDOs. This could be of real significance in
machine learning and be used to improve the resolu-
tion of the models; avoiding the need to train only
on binary relationships (i.e. one exists, or it does
not) and allowing a more comprehensive scheme to
be defined that uses the degree to which a relation-
ship is present. The re-sampling technique described
herein provides a partial solution to the problem, but
greater improvements could likely be made by adding

’strengths’ to the underlying data model. This is of
course, not a trivial undertaking and it is necessary to
remember that this additional attribute would require
greater empirical information that might otherwise be
used to construct attack sets. Furthermore, one has
to assume imperfect knowledge of the TTPs for any
threat actor and because the ’strength’ attribute is a
function of other observable data, it may be difficult
to manage bias when working in real-world settings.
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