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Abstract: A control system of an Unmanned Aerial Vehicle (UAV) requires identification of the lateral and longitudinal 
dynamics. While data on the longitudinal dynamics can be accessed via precise navigation devices, the lateral 
dynamics is predicted using such control parameters as aileron, elevator, rudder, and throttle positions. 
Autoregressive neural networks (ARNN) usually demonstrate high performance when modeling dynamic 
systems. At the same time, the lateral dynamics identification problem is known as non-stationary because of 
constantly changing operating conditions and errors in control equipment buses. Thus, an optimizer for ARNN 
must be accurate enough and must adapt to the changes in the environment. In the study, we have proposed 
an evolutionary hyper-heuristic for training ARNN in the non-stationary environment. The approach is based 
on the combination of the algorithm portfolio and the population-level dynamic probabilities approach. The 
hyper-heuristic selects and controls online the interaction of five evolutionary metaheuristics for dealing with 
dynamic optimization problems. The experimental results have shown that the proposed approach 
outperforms the standard back-propagation algorithm and all single metaheuristics. 

1 INTRODUCTION 

Fully automatic UAVs have many advantages, in 
particular, reduced piloting costs, the ability to fly for 
a longer time, faster response, and the ability to 
control more external factors at the same time. When 
developing autonomous UAVs, one must design a 
control system, which would be sufficiently robust in 
the changing operating conditions (changes in 
direction and gusts of wind, changes in the density of 
the air environment, etc.) and in errors in control 
equipment buses (errors in measuring aerodynamic 
parameters, errors of executive bodies, etc.). The 
UAV control system must be able to identify the 
parameters, which are used for the UAV control 
(Handbook of Unmanned Aerial Vehicles, 2015). 

Any UAV can be modeled as a non-linear 
dynamic system. The system usually has 6 degrees of 
freedom and can be decomposed into two 
independent subsystems with 3 degrees of freedom 
for representing the lateral and longitudinal dynamics 
of the UAV (Chen & Billings, 1992). The 
longitudinal dynamics is used for solving trajectory 
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motion and navigation problems. Nowadays, these 
problems are efficiently solved by processing data 
from precise navigation devices. The lateral dynamics 
control is used for stabilizing the UAV on the flight 
path. In this study, we will focus on the problem of 
identifying the lateral dynamics parameters. 

One of the efficient approaches for modeling 
dynamic systems is autoregressive neural networks, 
which have demonstrated high performance in 
solving many real-world identification problems 
(Bianchini et al., 2013. Billings, 2013). The problem 
of training neural networks is an optimization 
problem, which usually is solved by gradient 
methods. At the same time, identification of the 
lateral dynamics is performed in the changing 
environment, thus, the optimization problem belongs 
to the class of non-stationary optimization. An 
optimization algorithm applied for training ARNN 
must be able to adapt to the changes in the 
environment. 

In the field of evolutionary computation, there 
exist approaches for dealing with non-stationary 
problems. When solving real-world optimization 
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problems, usually we have no a priori information on 
types of changes and moments when changes appear. 
Therefore, it is hard to select and tune an appropriate 
evolutionary algorithm (EA) for solving a particular 
problem. 

In the study, we have proposed an evolutionary 
hyper-heuristic for training ARNN in the non-
stationary environment. A hyper-heuristic is a 
metaheuristic for constructing, selecting, and 
operating low-level heuristics and metaheuristics. 
The proposed approach is based on the combination 
of the algorithm portfolio applied in the field of 
machine learning and the population-level dynamic 
probabilities approach applied in evolutionary 
computation. The proposed hyper-heuristic selects 
and controls online the interaction of five 
evolutionary metaheuristics for dynamic optimization 
problems. Every single metaheuristic has advantages 
within a certain type of changes in the environment. 

The proposed approach has been applied for 
solving a real-world problem of identifying the lateral 
dynamics of a fixed-wing UAV with remote control. 
We have compared the performance of the proposed 
approach with the standard back-propagation 
algorithm and all single metaheuristics. 

The rest of the paper is organized as follows. 
Section 2 describes related work. Section 3 describes 
the proposed approach and experimental setups. In 
Section 4, the experimental results are presented and 
discussed. In the conclusion, the results and further 
research are discussed. 

2 RELATED WORK 

2.1 Artificial Neural Networks for 
Identification of UAV Parameters 

The target parameters for solving the identification of 
the lateral dynamics problem are pitch, roll, and yaw 
angles. The angles correspond to three Euler angles 
and determine the UAV's orientation in the normal 
coordinate system (Figure 1). Pitch angle (𝜃) is the 
angle between the longitudinal axis of UAV and the 
horizontal plane. Roll angle (𝛾)  is the angle of 
rotation of UAV around the longitudinal axis. And 
yaw angle (𝜓) is the angle of rotation of UAV in the 
horizontal plane relative to the vertical axis. 

The target parameters depend on the following 
values of control parameters: positions of aileron 
(∆𝑎), elevator (∆𝑒), rudder (∆𝑟), and throttle control 
lever (∆𝑡ℎ). Since UAV is a dynamic system, the 
current values of the target parameters also depend on 
the values in the past moments (Handbook of 

Unmanned Aerial Vehicles, 2015. Puttige & 
Anavatti, 2007). 

 
Figure 1: Angles of pitch, roll, and yaw. 

There exist various approaches for the 
identification of UAV parameters. One of the popular 
tools for identifying parameters is artificial neural 
networks (NNs). The advantage of NNs is their 
simple hardware implementation. NN training for the 
identification of parameters can be done offline after 
collecting data about the UAV operation or online 
during the flight. Online training allows the model to 
be adapted to changes in operating conditions during 
the flight, but usually, the identification accuracy is 
lower, because less training data is used for training 
(Bianchini et al., 2013. Billings, 2013. Puttige & 
Anavatti, 2007. Omkar et al., 2015). 

In this study, we will use a recurrent NN, namely 
nonlinear autoregressive with exogenous inputs 
model (NARX), which has proved its effectiveness in 
solving hard dynamic modeling and control problems 
(Billings, 2013). 

We denote the target parameters as (1) and the 
controlled parameters as (2): 

 𝑦(𝑡) = (𝜃(𝑡), 𝛾(𝑡), 𝜓(𝑡)), (1)𝑢(𝑡) = (∆𝑎(𝑡), ∆𝑒(𝑡), ∆𝑟(𝑡), ∆𝑡ℎ(𝑡)). (2)
Then the autoregressive model can be represented in 
the form of the dependence (3), which must be 
identified using a NN (Figure 2): 

 𝑦(𝑡) = 𝑓ே஺ோ௑(𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑇௨),  𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑇௬)൯, (3)
 

here 𝑇௨  and 𝑇௬  are the numbers of 𝑢  and 𝑦  values 
from the previous time instances (the lag). 

2.2 Evolutionary Non-stationary 
Optimization and Hyper-heuristics 

Optimization problems that change over time are 
called dynamic optimization problems (DOP) or 
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time-dependent problems (also called non-stationary 
optimization or optimization in changing (non-
stationary or dynamic) environment) (Yang, 2013. 
Branke, 2002). 

In non-stationary problems, the value and position 
of the global optimum can change over time, thus an 
optimization algorithm must be able to track changes 
and adapt to a new environment. The performance 
criteria of the algorithm are the accuracy and speed of 
adaptation to changes. Traditional “blind-search” 
approaches, including EA, do not have the necessary 
properties for performing adaptation to changes in the 
environment and they tend to converge to the best-
found solution, losing information about the search 
space accumulated at the previous stages of the 
search. 

 
Figure 2: ARNN architecture. 

Many heuristics for non-stationary optimization 
have been proposed: restarting the search procedure, 
local search to adapt to changes, memory 
mechanisms, mechanisms for maintaining diversity, 
multi-population approaches, adaptation and self-
adaptation, algorithms with overlapping generations, 
etc. At the same time, there exist many different types 
of changes in the environment, which can 
demonstrate different features, speeds, and strength 
of changes. Each of the heuristics mentioned above 
performs well with some types of changes and fails 
with others (Nguyen et al., 2012). Unfortunately, 
many real-world DOPs have unpredictable changes 
(Yang, 2013). 

A hyper-heuristic is a meta-approach, which 
creates, selects, or combines different basic 
operations, basic heuristics, or combinations of 
heuristics for solving a given problem or for 
increasing the performance of solving the problem. 
One of the applications of hyper-heuristic is the 
automated design and self-adaptation of EAs (Burke 

et al., 2013). A classification of hyper-heuristics is 
proposed in (Burke et al., 2018). Based on the 
classification, we need to design an online selective 
hyper-heuristic for solving non-stationary 
optimization problems using a predefined set of 
heuristics. 

3 PROPOSED APPROACH AND 
EXPERIMENTAL SETUPS 

3.1 Online Selective Hyper-heuristic 
for Non-stationary Optimization 

In the field of machine learning, there is a well-known 
approach called the algorithm portfolio, which was 
originally proposed for the selection of strategies in 
financial markets, and now is used to select 
algorithms for solving computationally complex 
problems (Baudiš & Pošík, 2014). The main idea of 
the portfolio of algorithms method is to assess the 
performance of algorithms depending on the input 
data of the problem being solved. The user of the 
method must define the performance criterion and the 
selection strategy. The choice of the algorithm can be 
done once (offline) or using a schedule in the process 
of solving the problem based on the current situation 
(online). In this work, we will use a modified offline 
error (Nguyen et al., 2012): 

The strategy for choosing a heuristic must provide 
an effective solution to the problem. For preventing 
the greedy (local) behavior of the hyper-heuristic, we 
will use a probabilistic choice. The probabilities of 
choosing a specific heuristic should adapt when 
changes in the environment appear. The probabilities 
of less effective heuristics should be decreased in 
favor of more efficient ones. A similar approach in 
EAs is called the Population-Level Dynamic 
Probabilities (PDP) adaptation method (Niehaus & 
Banzhaf, 2001). 

We denote the set of heuristics as 𝐻 = ሼℎ௜ሽ (𝑖 =1, |𝐻| . The set 𝐻  contains the following heuristics 
used in the field of non-stationary optimization: 
restarting, local adaptation to changes, implemented 
as a variable local search (VLS) (Vavak et al., 1998), 
an explicit memory mechanism (Branke, 1999), a 
mechanism for maintaining diversity based on the 
niche method (Ursem, 2000), and self-tuning EA with 
controlled mutation (Grefenstette, 1999). 

In the study, the probabilities of choosing 
heuristics are not specified explicitly but are 
presented by the distribution of the number of 
evaluations of the fitness function by each of the 
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heuristics. To do this, the whole population of size 𝑃𝑜𝑝𝑆𝑖𝑧𝑒  is divided into subpopulations of 
size 𝑠𝑢𝑏𝑃𝑜𝑝௜, 𝑖 = 1, |𝐻| , where 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 =∑ 𝑠𝑢𝑏𝑃𝑜𝑝௜|ு|௜ୀଵ . 

The size of a subpopulation is defined by 
evaluating the vectors of the parameters of global and 
local adaptation. 

The vector of global adaptation parameters 𝑣௚௟௢௕ 
(9) is used to estimate the probability of occurrence 
of changes of a particular type. The probabilities of 
using heuristics that have shown higher performance 
in the previous cycles should increase. The re-
evaluation of 𝑣௚௟௢௕ is based on the PDP model. 

The vector of local adaptation parameters 𝑣௟௢௖௔௟ 
(10) ranks heuristics in the local adaptation cycle until 
the next changes in the environment.  

The pool of redistributed resources is formed by 
subtracting random individuals from each 
subpopulation ∆௦௨௕௉௢௣ . The value of ∆௦௨௕௉௢௣  is a 
parameter of the hyper-heuristic.  Condition (4) must 
be satisfied for ensuring that even the least effective 
heuristic is involved in finding a solution. 

 ∆௦௨௕௉௢௣: 𝑠𝑢𝑏𝑃𝑜𝑝௜ − ∆௦௨௕௉௢௣≥ 𝑠𝑢𝑏𝑃𝑜𝑝௠௜௡, 𝑖 = 1, |𝐻|തതതതതതത , (4)
 

here ∆௦௨௕௉௢௣  is a parameter for the distribution of 
sizes of subpopulations 𝑠𝑢𝑏𝑃𝑜𝑝௜, 𝑖 =1, |𝐻|തതതതതതത ,  𝑠𝑢𝑏𝑃𝑜𝑝௠௜௡  is the minimal size of a 
subpopulation. 

The performance of heuristics in one local cycle 
is estimated using a modified offline error (5), which 
is minimized. 

 𝑚𝑂𝐸௚௟௢௕(ℎ௜) =  = ଵ்೎ ∑ 𝑓(𝑥௕௘௦௧ி௢௨௡ௗ(ℎ௜), 𝑡)೎்௧ୀଵ  , (5)
 

here 𝑚𝑂𝐸௚௟௢௕  is the performance of ℎ௜ , 𝑇௖  is the 
number of generations between two changes in the 
environments, 𝑐  is the counter for local cycles  
( 𝑐 = 1,2, … ), 𝑓  is the fitness function value for  
the best-found individual 𝑥௕௘௦௧ி௢௨௡ௗ(ℎ௜) by ℎ௜ at the 
moment 𝑡. 

To calculate the parameters of global 𝑣௚௟௢௕(𝑡, 𝑐) 
and local 𝑣௟௢௖௔௟(𝑡) adaptations, heuristics are ranked 
by the values 𝑚𝑂𝐸௚௟௢௕ and by 𝑓(𝑥௕௘௦௧ி௢௨௡ௗ(ℎ௜), 𝑡), 
respectively: 

 𝑟𝑎𝑛𝑘௜௚௟௢௕ ≤ 𝑟𝑎𝑛𝑘௝௚௟௢௕, 
if 𝑚𝑂𝐸௚௟௢௕(ℎ௜) ≤ 𝑚𝑂𝐸௚௟௢௕൫ℎ௝൯, 

(6)𝑟𝑎𝑛𝑘௜௟௢௖௔௟ ≤ 𝑟𝑎𝑛𝑘௝௟௢௖௔௟, 
if 𝑓(𝑥௕௘௦௧ி௢௨௡ௗ(ℎ௜), 𝑡) ≤𝑓(𝑥௕௘௦௧ி௢௨௡ௗ(ℎ௝), 𝑡), (7)

here 𝑟𝑎𝑛𝑘௜௚௟௢௕, 𝑟𝑎𝑛𝑘௜௟௢௖௔௟ ∈ [1, |𝐻|], 𝑖 = 1, |𝐻|തതതതതതത. 
At the initialization stage, the global adaptation 

parameter and the distribution of the sizes of 
subpopulations are filled with equal values (8) and 
(11). At the next local adaptation cycle, the global 
parameter is recalculated as a linear combination of 
the previous and new values, where the new value is 
calculated using the distribution proportional to the 
global adaptation ranks (9). 

 𝑣௜௚௟௢௕(0,0) = ଵ|ு| , 𝑖 = 1, |𝐻|തതതതതതത, (8)𝑣௜௚௟௢௕(𝑡, 𝑐 + 1) = (1 − η) ∙ 𝑣௜௚௟௢௕(𝑡, 𝑐) + +η ∙ ଶ∙ቀ|ு|ି௥௔௡௞೔೒೗೚್ାଵቁ|ு|∙(|ு|ାଵ)  , (9)

𝑣௜௟௢௖௔௟(𝑡) = 𝑟𝑎𝑛𝑘௜௟௢௖௔௟, (10)
 

here η ∈ [0,1]  is the global learning rate (default 
value is η = 0.5). 

When calculating new values of the sizes of 
subpopulations, ∆௦௨௕௉௢௣  of random individuals is 
subtracted from each subpopulation. The whole pool 
of individuals is distributed taking into account the 
value of the local adaptation parameters for 
encouraging effective heuristics within the current 
state of the environment and taking into account the 
value of the global parameters for encouraging 
heuristics to predict new changes in the environment 
(12). 

 𝑠𝑢𝑏𝑃𝑜𝑝௜(0) = ௉௢௣ௌ௜௭௘|ு|  , (11)𝑠𝑢𝑏𝑃𝑜𝑝௜(𝑡 + 1) =  𝑠𝑢𝑏𝑃𝑜𝑝௜(𝑡) − ∆௦௨௕௉௢௣ + ∆ೞೠ್ು೚೛∙|ு|ଶ ×  × ൤ଶ∙(|ு|ି௩೔೗೚೎ೌ೗(௧)ାଵ)|ு|∙(|ு|ାଵ) + 𝑣௜௚௟௢௕(𝑡)൨ . 

(12)

 

After determining the new sizes of subpopulations, 
we redistribute individuals using random migrations. 
The traditional “the best replaces the worst” approach 
is less effective because leads to premature 
convergence and the loss of population diversity. 

Control of changes in the environment in the 
proposed approach is performed by recalculating the 
fitness of the current best-found solution. 

The proposed hyper-heuristic is presented below 
using a pseudo-code: 

 
Input: a set of basic heuristics H, a 
detector for changes in the environment, 
the performance criterion for selecting 
heuristics (5). 
Initialization: the whole population is 
divided into |H| subpopulations of equal 
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size, each heuristic is assigned to its 
subpopulation. 
Do while the problem is solving (a cycle 
of global adaptation): 

Re-evaluate the global adaptation 
parameters vector (6)-(12). 
Do while the changes in the 
environment are not detected:  
Re-distribute sizes of subpopulations 
according to parameters of the global 
and local adaptation vectors. 

Do for the predefined number of 
generations (a cycle of local 
adaptation): 

Solve the optimization problem 
by evolving all subpopulations 
using their assigned heuristics. 
If the changes are detected, 
then stop the local adaptation 
cycle. 

Re-evaluate the local adaptation 
parameters vector (). 

Output: a set of the best-found 
solutions from all generations. 

3.2 The Lateral Dynamics 
Identification Problem 

The problem of identifying the parameters of lateral 
motion dynamics in real-time was solved for a UAV 
developed at the University of New South Wales in 
Australia (Puttige & Anavatti, 2007. Isaacs et al., 
2008). The UAV is a compact aircraft with a fixed 
wing (high-wing). The UAV equipment includes 
onboard equipment and a ground control station for 
remote control. Parameter identification data 
provided by the School of Engineering and 
Information Technology (University of New South 
Wales, Canberra, Australia). 

Training data are represented by 6 datasets 
obtained for different operating conditions of the 
UAV. All values of the measured parameters were 
recorded with a frequency of 0.02 sec. The datasets 
volumes (the number of records) are 17981, 11532, 
6774, 20112, 8681, and 15756. 

Because of the limitations of the UAV onboard 
equipment, the following settings of NN are used: the 
number of neurons in the hidden layer is up to 10 (in 
(Puttige & Anavatti, 2007) only 4 neurons are used), 
the maximum number of training epochs is 15, the 
size of the subsample (mini-batch) for training up to 
25 examples. In this study, we will use similar 
parameter requirements to compare the results with 
the previously obtained results. We have defined the 
following effective setting of NN hyper-parameters 
using the grid search: the number of neurons in the 
hidden layer is 5, the size of the subsample is 25,  

𝑇௨ = 𝑇௬ = 7 . Settings for the hyper-heuristic 
approach are presented in Table 1. 

Table 1: Settings for hyper-heuristic. 

Parameter Value
Population size, 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 100

The number of subpopulations, |𝐻| 5
The minimum size of a subpopulation, 𝑠𝑢𝑏𝑃𝑜𝑝௠௜௡ 5 

The dimensionality of the optimization problem 93
Chromosome encoding accuracy in genetic 

algorithm 1.0E-2 

The number of independent runs 40
The archive size for the explicit memory 

algorithm 5 

The niche size for the diversity maintenance 
mechanism 0.025 

 
We use the root mean square error (RMSE) for 

each target parameter as a performance measure. The 
results obtained by the proposed approach are 
compared with the results obtained by the 
conventional backpropagation method, by EAs using 
one of the basic heuristics of non-stationary 
optimization, by an estimation of a random choice of 
one of the basic heuristics, and with the results 
obtained earlier by UAV developers. 

4 EXPERIMENTAL RESULTS 
AND DISCUSSION 

The software implementation of algorithms for our 
experiments was performed in Python 3.7 using the 
Keras package for NNs. 

The results of solving the problem averaged over 
all datasets are shown in Table 2. The box-plot 
diagrams obtained from independent runs are shown 
in Figure 3. 

An example of the NN operations on an interval 
of 500 values (10 sec) is shown in Figure 4.  

Figure 5 shows the results of ranking the 
approaches averaged over all runs and target angles 
(the lower the better). Table 3 shows the results of 
testing the hypothesis about a statistically significant 
difference in the results of the experiments (Mann-
Whitney-Wilcoxon test, MWW). 

As can be seen from the results of experiments, 
EAs for non-stationary optimization significantly 
outperform the traditional method for training NN 
using the backpropagation of the error. The heuristic 
for restarting the search procedure has the largest 
variance of results, which may indicate that changes 
in the environment are not very intense and may be 
cyclic. 
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Table 2: The results of the UAV Lateral Dynamics Identification Problem Solving (RMSE). 

Approach Angles, degrees Mean Roll Pitch Yaw
The previous result 0.0068 0.0167 0.0010 0.0082
Backpropagation 0.0102 0.0534 0.0316 0.0318

The best single heuristic 0.0041 0.0123 0.0009 0.0058
Average for basic heuristics 0.0084 0.0184 0.0022 0.0097

Hyper-heuristic 0.0048 0.0108 0.0008 0.0054

 
Figure 3: Box-plots for the results. 

 
Figure 4: An example of the model-based prediction for 10 seconds using dataset 1. 
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Figure 5: The ranking of the approaches. 

Table 3: The results of the MWW test. 

The proposed 
approach is 

The 
previous 

result 

NN with the 
backpropagation 

algorithm 

EA with 
controlled 
mutation

Restarting 
optimization VLS Maintaining 

diversity 
Explicit 
memory Sum 

Roll angle
better 4 3 3 6 6 5 5 32
equal 1 0 2 0 0 1 1 5
worse 1 3 1 0 0 0 0 5

Pitch angle
better 4 6 4 6 3 5 4 32
equal 1 0 1 0 3 1 2 8
worse 1 0 1 0 0 0 0 2

Yaw angle
better 4 6 3 6 4 5 5 33
equal 0 0 3 0 2 1 1 7
worse 2 0 0 0 0 0 0 2

 
For the roll angle, the best results, averaged over 

all data sets, were obtained by the EA with controlled 
mutation. For pitch and yaw angles, the proposed 
approach outperforms the best results obtained with a 
single heuristic. The results obtained using the 
proposed approach also outperform the results 
previously obtained by UAV developers. 

As we can see, the proposed approach 
outperforms the performance of randomly selecting 
one of the heuristics for all target parameters, 
estimated as the performance averaged over all single 
heuristics. That means if we have no a priori 
information on the problem and cannot select an 
appropriate heuristic, training NN using the proposed 
hyper-heuristic is more preferable. 

5 CONCLUSIONS 

Non-stationary optimization is a challenging task for 

many optimization techniques. EAs propose many 
different heuristics for dealing with DOPs, but in real-
world problems, the choice of an appropriate 
algorithm is not obvious and difficult. The hyper-
heuristic conception proposed to design a high-level 
meta-approach for operating many low-level 
heuristics or algorithms that make it possible to 
automatically build the problem-specific approach 
online. 

In the study, we have proposed a new hyper-
heuristic for solving DOPs based on the combination 
of the algorithm portfolio and the population-level 
dynamic probabilities approach. The hyper-heuristic 
has been applied for solving the hard non-stationary 
real-world problem of identifying the lateral 
dynamics of a UAV using ARNN. The experimental 
results have shown that the proposed approach 
outperforms the standard backpropagation algorithm, 
which is not able to adapt to changes in the 
environment. The proposed hyper-heuristic also 
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outperforms single non-stationary heuristics, because 
it can select an effective combination of heuristics for 
an arbitrary situation in the environment. 

In our further work, we will investigate the 
proposed approach with different sets of heuristics 
and will attempt to introduce better feedback in the 
adaptation process. 
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