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Abstract: In this paper we propose a Simulated Annealing (SA) based energy-efficient task scheduling algorithm for
multi-core processors, the Simulated Annealing Energy Efficient Task Scheduling Algorithm (SAEETSA), and
compare it with another algorithm, the Energy Efficient Task Scheduling Algorithm (EETSA). Our results show
that for dual-core processors the SAEETSA algorithm is taking up to 16.78% less energy as compared to the
EETSA algorithm, and for tri-core processors, the SAEETSA algorithm is taking up to 26.97% less energy as
compared to the EETSA algorithm.

1 INTRODUCTION

SA is a local search-based meta-heuristic method to
navigate across large search spaces in optimization
problems (Gaspero, 2003), (Kleinberg and Tardos,
2006). It uses a waning probability function to ex-
plore paths that are not locally optimum but may lead
to future global optimum solutions. Other approaches
like steepest hill-climbing, while moving between ad-
jacent points in the solution space, will only move if
the next point corresponds to a better solution. This
is disadvantageous, because possibly the global op-
timum or even a better optimum solution may be
missed. After all, it can be reached by a path in which
a worse solution lies in between the current point and
the better optimum. SA helps to solve this disad-
vantage by not going to a strictly better solution lo-
cally but, by a small probability moves to a slightly
worse solution. This probability depends on the cur-
rent ‘temperature’ which decreases with each itera-
tion by a factor of β. It also depends on the inverse
exponential way of “how much worse” a solution is
compared to the current optimum discovered so far.
Our objective in this paper is to show that SA can sig-
nificantly improve a simple randomized algorithm.

Multi-core processors have different cores which
can run at different speeds. With the increase in
core speeds, power consumption also increases. The
energy-efficient task scheduling problem is to com-
plete the tasks within a given deadline to minimize
energy consumption.

The rest of the paper is organized as follows: sec-
tion 2 gives an overview of some energy-efficient
task scheduling algorithms. Section 3 describes
the SAEETSA algorithm based on (Mishra and Tri-
pathi, 2014b). In sections 4 and 5, we compare the
SAEETSA algorithm with the EETSA algorithm for
dual-core and tri-core processors respectively. We
conclude in section 6.

2 LITERATURE OVERVIEW

Various task scheduling algorithms are proposed in
the literature for minimizing the parallel execution
time of tasks. (P. K. Mishra and Tripathi, 2012b)
compare various task scheduling algorithms. (Mishra
and Mishra, 2016) propose a local search-based task
scheduling algorithm that creates a hybrid of two
task scheduling algorithms and gives better paral-
lel execution time than the individual task schedul-
ing algorithms. (P. K. Mishra and Mishra, 2010)
have proposed a scheduling heuristic using computa-
tion time of tasks and the communication delay be-
tween dependent tasks. (P. K. Mishra and Mishra,
2011) have proposed a dynamic priority task schedul-
ing algorithm. (P. K. Mishra and Tripathi, 2012a)
have used randomization to improve the previous al-
gorithm (P. K. Mishra and Mishra, 2010). (Mishra
and Tripathi, 2011b), (Mishra and Tripathi, 2010)
have proposed a task scheduling algorithm that uses
cluster-dependent priority function and gives less par-
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allel execution time as compared to some well-known
task scheduling algorithms. (A. Mishra and Mishra,
2019) have done performance evaluation of SA-based
task scheduling algorithms by varying its various pa-
rameters.

Various task scheduling algorithms are proposed
in the literature for minimizing the energy consump-
tion of tasks. (Mishra and Tripathi, 2014a) have pro-
posed a pseudo-polynomial time energy-efficient task
scheduling algorithm for a given computation load
and a given deadline on a multi-core processor with
software-controlled dynamic voltage scaling (DVS).
(Mishra and Tripathi, 2014b) have proposed a Monte-
Carlo energy-efficient task scheduling algorithm for a
given set of independent tasks and a given common
deadline on a multi-core processor with software-
controlled DVS. (Mishra and Tripathi, 2011a) have
formulated a problem of energy efficient task schedul-
ing of send-receive task graphs on multiple multi-core
processors with software controlled DVS. (Mishra
and Trivedi, 2020) have done benchmark compar-
ison of the contention aware nature-inspired meta-
heuristic task scheduling algorithms. (S. K. Biswas
and Muhuri, 2018) have proposed energy-efficient
task scheduling algorithms in multiprocessor systems
using archived multi-objective SA. (Y. Yun and Kim,
2019) have proposed an adaptive genetic algorithm
for energy-efficient task scheduling on asymmetric
multiprocessor system-on-chip.

SA is successfully applied to solve scheduling
problems. A recent example of SA based scheduling
algorithm is provided by (K. Haridass and McDon-
ald, 2014). They solve the problem of scheduling a
log transport system using SA.

3 THE SAEETSA ALGORITHM

Before describing the SAEETSA algorithm, first we
describe the Energy Efficient Task Scheduling Prob-
lem (EETSP) and the EETSA algorithm (Mishra and
Tripathi, 2014b). We use the same notation of
(Mishra and Tripathi, 2014b). t independent tasks
are given. The task set is {Tj | j ∈ [1. . t]}. Task Tj
has computation requirement of c j ( j ∈ [1. . t],c j ∈
N), given by the set C = {c j | j ∈ [1. . t]}. A com-
mon deadline of D is given (D ∈ N). The task set
{Tj | j ∈ [1. . t]} has to be scheduled on a multi-core
processor with p cores and q possible discrete speeds
given by the set Q = {si | i ∈ [1. .q],si ∈ N}. We de-
fine the speed profile of the processor, F = ( fi)

q
i=1, to

be the vector such that fi is the number of time slots
in [0,D] in which the cores are running at the speed
of si. We define the sleep profile of the processor,

H = (hki)(k,i)∈[1..p]×[1..q], to be the matrix such that hki
is the number of time slots for si on the k’th core that
are sleeping. We define the binary partition matrix of
the task set, G = (Gk j)(k, j)∈[1..p]×[1..t], to be the ma-
trix such that gk j = 1 if and only if the the task Tj
is allocated on the k’th core (otherwise it is 0). The
multi-core processor has software controlled per-chip
DVS. By per-chip DVS we mean that we can only
change the speed of all cores simultaneously (not in-
dividually). If the speed of the multi-core processor
is si, then either a core will run at the speed of si, or
it will be in a sleep state (speed = 0). Power con-
sumption of a core running at a speed of s is given by
P(s) = αs3, where α is a constant. Energy consump-
tion by a core running at a speed of s during τ units
of time is given by E(s,τ) = P(s)τ. A core running at
a speed of s can perform a maximum of c = sτ units
of computation during τ units of time. We assume
that the DVS software can change the speed of the
multi-core processor at periodic checkpoints given by
δτ = 1 (at the start of each unit time interval). The
EETSP problem is to find an allocation of tasks to the
cores, speed of the multi-core processor at each unit
of time in [0,D], and for each core the unit time in-
tervals in which it is sleeping, so that the energy con-
sumption of the tasks is minimized, and also each task
is finished within the given deadline of D. (Mishra
and Tripathi, 2014b) have formulated an integer lin-
ear program (ILP) for the EETSP problem (equations
(6)− (8), and (11)− (16) in (Mishra and Tripathi,
2014b)).

Now we describe the EETSA algorithm for solv-
ing the EETSP problem as given in (Mishra and Tri-
pathi, 2014b). The EETSA algorithm is a Monte-
Carlo algorithm. It takes as input (m,n, t,C,Q,D),
where m and n are integer parameters. The EETSA
algorithm is divided into three parts. The first part
is lined 01 to 27 in (Mishra and Tripathi, 2014b) in
which we make m attempts using randomization to
find a feasible solution of the ILP. The second part
is lined 28 to 44 in (Mishra and Tripathi, 2014b) in
which we make n attempts using randomization to re-
duce the energy consumption for the case when the
first part of the algorithm succeeds in finding a feasi-
ble solution of the ILP (otherwise we return “NO SO-
LUTION” which may be a wrong output). This en-
ergy reduction assumes that no core is sleeping. The
third part is lined 45 to 50 in (Mishra and Tripathi,
2014b) in which we further try to reduce the energy
consumption by assuming that some cores can sleep.

Similar to the EETSA algorithm, SAEETSA al-
gorithm also takes (m,n, t,C,Q,D) as input param-
eters, and it is also divided into three parts. First
part of the SAEETSA algorithm is lines 1 to 4. It
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Algorithm 1: The SIMULATED-ANNEALING-ENERGY-
EFFICIENT-TASK-SCHEDULING-ALGORITHM.
1: procedure SAEETSA(m, n, t, C, Q, D)
2: Use part 1 of the EETSA algorithm (lines 01 to

25 of the EETSA algorithm in (Mishra and Tripathi,
2014b)) to find a feasible solution (F,G,H) of the
ILP by making m randomization steps.

3: if step 01 fails to find a feasible solution of ILP
then

4: return NO SOLUTION
5: else
6: b← dt/ne
7: E ′← α∑

p
k=1 ∑

q
i=1 s3

i ( fi−hki)
8: (A,F ′,G′,H ′)← (O1×p,F,G,H)
9: for j← 1, t do

10: for k← 1, p do
11: ak← ak + c jgk j
12: end for
13: end for
14: for r← 1,n do
15: F ′′← F
16: for v← 1,b do
17: RANDOM-SELECT (1,D,F)
18: M← ∑

q
i=1 si fi

19: r← RANDOM (0,1)
20: E← α∑

p
k=1 ∑

q
i=1 s3

i ( fi−hki)
21: if ∧p

k=1(ak ≤M) then
22: if (E ≤ E ′) ∨ (r ≤ e−(E−E ′)/T )

then . T is the SA temperature
23: (E ′,F ′,G′,H ′)← (E,F,G,H)
24: else
25: F ← F ′′
26: end if
27: end if
28: end for
29: T ← T β . β is the SA cooling schedule
30: end for
31: L← O1×q
32: for k← 1, p do
33: Ek← α∑

q
i=1 s3

i ( fi−hki)
34: end for
35: for all L ∈ {L | (L≥ O1×q)∧ (L≤ F)} do
36: for k← 1, p do
37: if ∑

q
i=1 si( fi− li)≥ ak then

38: E ′k← α∑
q
i=1 s3

i ( fi−hki)
39: if (E ′k ≤ Ek) then
40: (Ek,Hk)← (E ′k,L)
41: end if
42: end if
43: end for
44: end for
45: E ′← ∑

p
k=1 Ek

46: (F ′,G′)← (F,G)
47: H ′← (Hk)

p
k=1

48: return (E ′,F ′,G′,H ′)
49: end if
50: end procedure

is identical to the first part of the EETSA algorithm
(Mishra and Tripathi, 2014b). The difference between
the two algorithms is in the second part (steps 5 to
30) and the third part (steps 31 to 50). In the sec-
ond part of the SAEETSA algorithm (reducing the
energy consumption from feasible solution of the first
part assuming that no cores can sleep), steps 5 to 18
of the SAEETSA algorithm is identical to steps 28
to 39 of the EETSA algorithm (Mishra and Tripathi,
2014b). The difference between the two algorithms
is in steps 19 to 30 of the SAEETSA algorithm, and
steps 35 to 44 of the EETSA algorithm (Mishra and
Tripathi, 2014b). In steps 40 to 44 of the EETSA al-
gorithm (Mishra and Tripathi, 2014b), we follow the
greedy approach. We make n randomization steps
in which we modify F and try to get a feasible so-
lution. If the energy is minimized, then this F be-
comes the current F , and we repeat the same pro-
cess for total n number of times. In steps 14 to 30
of the SAEETSA algorithm, we make n attempts for
decreasing the energy consumption. In each attempt,
we modify F in step 17 in hope of finding a lower
energy value using local neighborhood search using
the function RANDOM-SELECT (1,D,F). The func-
tion RANDOM-SELECT (1,D,F) first randomly se-
lects two time slots in [1,D]. It then applies the neigh-
borhood function n(F) to the selected time slots. The
neighborhood n(F) of F is defined as follows: n(F)=
{F ′ | ∃( j,k), such that ∀i 6= k, j, fi = f ′i and f j + fk =
f ′j + f ′k}. For example, (1,2,3,4) ∈ n(1,2,4,3), but
(1,2,3,4) /∈ n(1,2,3,5). If the energy value is lower,
then the modified F becomes the current F (steps
22 and 23), and we repeat the process. However, if
we get a higher energy value, then with probability
e−(E−E ′)/T , the modified F becomes the current F
(steps 19, 22 and 23) in hope of finding better solu-
tion some time later (the SA approach). Here E is the
current energy consumption, and E ′ is the lowest en-
ergy consumption found so far. T is the temperature.
In each iteration we update the temperature by a con-
stant factor β (step 29 is the cooling schedule). We
may initialize T = 15 and β = 0.9 which experimen-
tally give the best results.

The third part of the SAEETSA algorithm (steps
31 to 49: further reducing the energy consumption by
assuming that some cores can independently sleep) is
an optimization of the third part of the EETSA algo-
rithm (steps 45 to 50 in (Mishra and Tripathi, 2014b)).
The third part of the EETSA algorithm has a for all
loop in step 45 in (Mishra and Tripathi, 2014b). It
involves energy evaluation corresponding to all possi-
ble values of a p×q matrix H, contributing a factor of
Dpq in the complexity expression. This is per-chip op-
timization. Equivalently, we have done per-core opti-
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mization in the third part of the SAEETSA algorithm
(the for all loop in step 35). This reduces the com-
plexity factor of Dpq down to pDq. We have used all
possible values of the per-core sleep matrix L in en-
ergy calculation (step 35). We have done energy op-
timization independently for each core (the for loop
of step 36). Now we will prove the optimality of the
third part of the SAEETSA algorithm. Let Ek be de-
fined as the energy consumed by core k (step 33). The
total energy consumed E is given by the equation in
step 45 (E = ∑

p
k=1 Ek).

After having designated F for an iteration of
EETSA, it is easy to prove that E is optimal (i.e. least)
across assignments of H (Mishra and Tripathi, 2014b)
if and only if Ek is optimal for each k. Note that Ek
can be optimized separately for each k since Ek and El
are independent, k 6= l, since they use different rows
of the sleep matrix H in their evaluation expression.

Consider the ‘only if’ part of the above claim: let’s
say to the contrary that E is least but Ek is not least
for some k. Since Ek can be replaced by optimal E ′k.
This corresponds to a change in some of the values of
row k of the sleep matrix H. Change in this row does
not affect other rows of H and hence other values of
El don’t change. This means that by the equation in
step 45, the new energy computed E ′ is less than E.
But this contradicts our assumption that E is optimal.
Hence we have proved that Ek is optimal for each 1≤
k ≤ p if E is optimal.

Next, we prove the ‘if’ part which is trivial: by the
equation in step 45, we have that E is least when Ek
is least for each 1≤ k ≤ p.

The above result helps us to reduce the complex-
ity of the SAEETSA algorithm by pruning the search
space of the sleep matrix optimization part. Note that
we don’t have to search through all values of H i.e.
Dpq values, we may simply find optimal for each core
wherein we have to search through all possible values
of a single row of H only (the L matrix). This reduces
the complexity factor down to pDq, which is a huge
help.

The loop at step 35 runs Dq times. The inner loop
(step 36) runs p times. Then the if part at step 37 re-
quires O(q) time. Lines 45 to 48 takes O(pq+ pt)
time. This gives the time complexity of the third
part of SAEETSA as O(p(q+ t +qDq)). Complexity
of the first and second parts of the SAEETSA algo-
rithm is identical to the complexity of the first and
second parts of the EETSA algorithm respectively
(Mishra and Tripathi, 2014b). Therefore, the over-
all time complexity of the SAEETSA comes out to be
O(t(mp+q+ log t)+ pn(t +q)+ p(q+ t +qDq)).

4 EXPERIMENTAL RESULTS
FOR DUAL-CORE
PROCESSORS

Figures 1 and 2 show the experimental results for
SAEETSA for p = 2 and q = 3,n = 10 with 5 node
task sets and 10 node task sets respectively. The
common deadline for the two cases was fixed at 30
and 50 respectively. SAEETSA algorithm is show-
ing 16.78% and 8.48% average energy optimization
as compared to the EETSA algorithm respectively.

5 EXPERIMENTAL RESULTS
FOR TRI-CORE PROCESSORS

Figures 3 and 4 show the results for SAEETSA for
p = 3 and q = 3,n = 10 with 5 node task sets and
10 node task sets respectively. The common dead-
line for the two cases was fixed at 30 and 50 respec-
tively. SAEETSA algorithm is showing 26.97% and
8.82% average energy optimization as compared to
the EETSA algorithm respectively.

6 CONCLUSION

The SAEETSA algorithm was an improvement of the
EETSA algorithm of (Mishra and Tripathi, 2014b) us-
ing SA with reduced time complexity. Our exper-
imental results are showing up to 26.97% improve-
ment over the EETSA algorithm. For future work, we
can try to formulate the energy-efficient task schedul-
ing problem of independent tasks with a common
deadline on multiple multi-core processors with task
migration overheads.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous re-
viewers for their constructive comments in improving
the quality of this paper.

ECTA 2021 - 13th International Conference on Evolutionary Computation Theory and Applications

84



Figure 1: Energy consumption for 5 node task sets on a dual-core processor. The SAEETSA algorithm is consuming 16.78%
less energy as compared to the EETSA algorithm.

Figure 2: Energy consumption for 10 node task sets on a dual-core processor. The SAEETSA algorithm is consuming 8.48%
less energy as compared to the EETSA algorithm.
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Figure 3: Energy consumption for 5 node task sets on a tri-core processor. The SAEETSA algorithm is consuming 26.97%
less energy as compared to the EETSA algorithm.

Figure 4: Energy consumption for 10 node task sets on a tri-core processor. The SAEETSA algorithm is consuming 8.82%
less energy as compared to the EETSA algorithm.
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