
Development and Performance Analysis of RESTful APIs in Core and
Node.js using MongoDB Database

Endrit Shkodra, Edmond Jajaga a and Mehmet Shala
Department of Computer Science and Engineering, Lagjja Kalabria, UBT Higher Education Institution, Prishtina, Kosovo

Keywords: Core, Node.js, MongoDB, Non-relational Database, Performance.

Abstract: The purpose of this paper is to present a comparative study of Core and Node.js for the development of
Representational state transfer (RESTful) Application Programming Interface (API) using MongoDB non-
relational database. The study includes Create, Read, Update and Delete (CRUD) functionality, authentication
and authorization using the JavaScript Object Notation (JSON) Web Token token as well as the easiness and
development time of the two competing technologies. Tests show that in general the performance between
the two technologies does not differ much. Different tests indicate that the performance of one technology is
better than the other and vice versa. However, Core outperforms Node.js in a test case with large loads.

1 INTRODUCTION

There are a number of technologies used to develop
ReST APIs and backend applications, content man-
agement systems (CMS), real-time service, differ-
ent tools and applications etc. Core and Node.js
are two popular technologies that can be used for
such applications. Both are open source and cross-
platform. The first version of Core was released in
2016 which resulted in an increase of the ASP.NET’s
popularity. Node.js by contract is more mature with
its first released appearing in 2009. Node.js Ex-
press or more specifically Express is a bookstore
which enables the development of RESTful services
in Node.js. Both Core and Express are recognized
for their speed and power and are highly scalable.
They posses corresponding advantages and disadvan-
tages and the choice of one over the other is driven
by different needs and requirements. A direct com-
parison study often offers crucial insights that may
help to choose one technology over the other. For
example, there are a number of studies that assess
the performance of Java EE with ASP.NET (Kronis
and Uhanova, 2018; Hamed and Kafri, 2009; Hamed,
2009). However, studies that compare the perfor-
mance of Core with Express are scarce and the au-
thors are not aware of any of them published in lit-
erature to date. Both technologies can operate on re-
lational and non-relational databases to store and re-

a https://orcid.org/0000-0003-1833-5856

trieve large numbers of records. Relational databases
have been around for a long time and are used for
structured data when ACID (Atomicity, Consistency,
Isolation, Durability) principles need to be enforced.
Non-relational databases or NoSQL are particularly
suitable in rapid development and when storing large
number of unstructured data. Data are easily scal-
able which makes it the preferred choice for cloud
storage and computing. To date, the most popular
NoSQL database is the MongoDB with the first ver-
sion appearing in 2009. There are a number of studies
that compare relational and non-relational databases.
A general comparison outline of relational databases
and MongoDB is given in (Krishnan et al., 2016). A
comparative study of MongoDB vs MySQL is under-
taken in (Gyorodi et al., 2015) and MongoDB vs SQL
in (Parker et al., 2013). The work presented in this pa-
per compares Core with Express using the MongoDB
database. The study is split into two parts: imple-
mentation and performance comparison. Implemen-
tation focuses on speed of development and library
utilisation as well as authentication and authoriza-
tion using JWT token. Development of Representa-
tional state transfer (RESTful) Application Program-
ming Interface (API) and the definition of the Mon-
goDB database are described. Performance is judged
by execution time using exactly the same test cases
with same parameters.

Shkodra, E., Jajaga, E. and Shala, M.
Development and Performance Analysis of RESTful APIs in Core and Node.js using MongoDB Database.
DOI: 10.5220/0010621200003058
In Proceedings of the 17th International Conference on Web Information Systems and Technologies (WEBIST 2021), pages 227-234
ISBN: 978-989-758-536-4; ISSN: 2184-3252
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

227



2 PROBLEM DEFINITION

Most of high-level programming languages such as
C#, Java, PHP, Node.js, Python, etc., contain the im-
plementation of RESTful web services. Given this
variety we cannot be sure which implementation is
better. Hence, each of them has its advantages and
disadvantages. The selection of certain technology
for the implementation of RESTful web services de-
pends on various factors based on our needs. In a par-
ticular case, a certain technology will perform better,
but in another case the performance will suffer. In
general, the selection of the choice of RESTful web
services is decided taking into account different cri-
teria, such as: (i) the deployment environment, (ii)
manner of implementation, (iii) security, which is a
very important factor, (iv) availability of developers
and their knowledge of working in certain technology,
and (v) performance. In this paper we will compare
the performance between .NET Core and Node.js Ex-
press’s implementation of RESTful web services us-
ing the MongoGB non-relational database. Thus, the
main hypothesis is: .NET Core, as a multi-threaded
implementation, outperforms single-threaded Node.js
for larger inputs. Hence, the study addresses the fol-
lowing research questions:

1. Which technology offers the best performance for
CRUD functionalities?

2. Which technology is more easily implemented?

3. How is security implemented using JWT token in
these technologies and how much does authenti-
cation and authorization affect the performance?

3 RELATED WORKS

The wide variety of available frameworks often makes
it difficult to decide which is more appropriate to be
used. This has led to extensive research on their
implementation, performance, safety, usability and
many other aspects. However, few research works
have addressed the comparison between Core and Ex-
press. A work presented in (Söderlund, 2017) evalu-
ates the performance of four different frameworks in-
cluding Core and Express. Various controlled tests
have been done indicating that Express has shown
a greater sensitivity for large loads. For example,
the update test of 1024 users took 189 milliseconds,
which is slightly higher. Core performed best from
the four tested frameworks. The delay increased by
just about 1-2 milliseconds, in cases with 256, 512
and 1024 users. The tests were performed against

Table 1: Users entity metadata.

Column Type Description
id string Unique identifier

name string Name
surname string Surname
email string Email
username string Username
password string Password
role string Role
salt string Encryption key

MySQL database backend, while in the present study
a non-relational database is used.

Regarding the advantages of using MongoDB ver-
sus MySQL, studies in (Krishnan et al., 2016) and
(Truică et al., 2015) show that MongoDB has a shorter
execution time compared to MySQL in all major op-
erations such as reading, writing, editing, and delet-
ing. A key feature of MongoDB is the update op-
eration because it is atomic; it is possible to update
a particular field as it is done in relational databases
(Truică et al., 2015). MongoDB also has more flexi-
ble structure that can be tailored to the user’s needs.
Thus, MongoDB achieves a good performance under
heavy read-load and when the application is read in-
tensive.

4 IMPLEMENTATION

In order to target the main hypothesis and research
questions, simple APIs for CRUD operations over
sample entities as well as authentication and au-
thorization operations using JWT tokens are imple-
mented. The building of the APIs architecture was
chosen to be as similar as possible to one another.
Then, different load-testing scenarios were executed
to analyze the cases in order to establish which tech-
nology performs better. The implementation details
are described in the following subsections.

4.1 Sample MongoDB Database

Both APIs use the same MongoDB database. A
database and a list or a collection similar to a table of
relational databases was created to store sample user
data as described in Table 1.

4.2 ASP.NET Core API

Table 2 lists the technologies that were used for the
development of API in Core. The architecture of the
API in Core is a basic and not too layered one. It
consists of the following layers:

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

228



Table 2: .NET MongoDB components’ versions.

Version .NET Core 2.2(Core)
Database MongoDB v.4.0.6

Other libraries
MongoDB.Driver v2.7.3
AutoMapper v.8.0.0
BCrypt-Core v.2.0.0

• Entities: Defines MongoDB lists or collections as
an entity in the Core application layer.

• Services: This layer defines the interface for
CRUD operations over the database as well as
some other helper functions.

• Models: Sets the data model for the API including
data constraints mapping a class with a database
entity.

• Controllers: HTTP controllers define methods
such as GET, POST, PUT and DELETE to support
users URL access to retrieve or send data through
the API.

Every MongoDB list or collection, which should
be processed from within the application layer, should
be defined as entity i.e. C# class, with the neces-
sary attributes (or annotations) and configurations.
A sample person entity User was created with
standard fields including: Id, name, surname,
email, username, password and role. The at-
tributes that are used for MongoDB lists or collec-
tions include: BsonId, BsonRepresentation with
BsonType and BsonElement. In our case we used
BsonId to specify Id field as unique identifier,
BsonRepresentation with BsonType for the data
types and BsonElement for indicating which class
field is associated with which field in the MongoDB
database.

The model is used for enforcing data constraints
and validation rules. For example, name, surname
and password were set as required, password length
was set with minimum length of six characters, etc.

In the controllers layer, two controllers were de-
fined: UsersController, supporting CRUD features
over Users entity, and AuthController, responsible
for authentication features of the API. The controllers
hold only HTTP methods such as GET, POST, PUT
and DELETE. The business logic related to com-
munication with the database and the generation of
JWT token are located in the layer of services i.e.
UserService and AuthService. UserService con-
tains the services that have to deal with the User,
while AuthService is responsible JWT token gen-
eration for authentication.

A sample API method Create of UserService
that stores User data into the database and encrypts
the password is described as follows:

Table 3: Node.js MongoDB components’ versions.

Version Node.js v.10.14.2
Database MongoDB v.4.0.6

Other libraries

express v.4.16.4
mongoose v.5.4.19
joi v.14.3.1
config v.3.1.0
bcrypt v.3.0.4
jsonwebtoken v.8.5.1

public UserModel Create(UserModel userModel)
{
User user =
Mapper.Map<UserModel,User>(userModel);
string salt =
Bcrypt.BcryptHelper.GenerateSalt(10);
string passwordHashed =
Bcrypt.BcryptHelper.
HashPassword(userModel.Password, salt);
user.Salt = salt;
user.Password = passwordHashed;
_users.InsertOne(user);
return Mapper.Map<User, UserModel>(user);
}

Incoming user data are firstly mapped with the
UserModel model. Then, a key (salt string) is gen-
erated, which is used to encrypt the password using
the Bcrypt library. The user data together with the
encrypted password is stored into the database and
the user model object is returned to the user. This
method is called from the UsersController, which
firstly checks whether the user already exists in the
database.

Core does not need any additional library for sup-
porting JWT authentication and authorization. It
requires setting up some configuration parameters.
Hence, each route containing the Authorize anno-
tation will enforce authenticated access. JWT token
is generated using a unique key. It also contains other
attributes through which the user’s identity is verified.

4.3 Node.js Express API

The Express platform versions used in this paper are
depicted in Table 3. The API architecture in Express
is also as simple as that of the Core. Unlikely, it is a
bit more separate because the difference lies in some
configurations, but the basic logic is similar. The ar-
chitecture consists of the following layers:

• Models: Defines a scheme similar to the one of
the MongoDB database, including a function val-
idating data sent by the API user.

• Controllers: Similar to Core Services, this layer
defines the interface for CRUD operations over

Development and Performance Analysis of RESTful APIs in Core and Node.js using MongoDB Database

229



the database as well as some other helper func-
tions.

• Config: Set global API variables.

• Middleware: Used for setting functions that are
intended to authenticate and authorize user re-
quests, but also other configurations for requests
such as Cross-Origin Resource Sharing (CORS).

• Router: Similar to Core Controllers, this layer de-
fines the HTTP methods to support users to access
through the defined URLs.
Like in Core, the definition of entity in NodeJS

Express requires setting up attributes and configura-
tions. The entity is built using the model and Schema
functions of the mongoose library. These functions
are used for specifying data fields and data types. In
Express we do not define any extra model for data
restriction and validation. Instead, we used a func-
tion to validate textual or numerical fields, restrict-
ing minimum and maximum length and specifying re-
quired/optional fields.

Unlike Core, in Express HTTP methods are lo-
cated in the routing part, while the logic of database
communication and authentication is located on the
controller. In general, there are different architectural
forms of how API can be organized, but it was de-
cided to use a standard and very usable form by the
developers.

The following code illustrates the analogous coun-
terpart of the Core’s Create method:
addUser = async (request, response) => {
const { error } = validate(request.body);
if (error) return response.status(400)
.send(error.details[0].message);
let user = await User
.findOne({username:
request.body.username});
if (user) return response.status(400)
.send(’User already registered.’);
user = new User(request.body);
const salt = await bcrypt.genSalt(10);
user.salt = salt;
user.password = await
bcrypt.hash(user.password, salt);
await user.save();
response.send(user);

The logic of the addUser function is similar to the
Create method. Initially, there is a check whether
a user with the choosen username does already ex-
ist in the database. If so, a notification notification
is returned to the user, otherwise using the bcrypt li-
brary a key is generated, doing hash / encryption of
the password. Furthermore, this function is used by
the routing’s POST method as follows:
router.post(’/’, controller.addUser);

Implementation of authentication and authorization in
Express is done similarly to Core using only some

configurations. The only difference is that in Express
we need an additional library jsonwebtoken, which
enables authentication and authorization using JWT
token.

5 RESULTS

In order for the results to be as correct as possible,
both APIs are deployed on the same server. The plat-
form used for testing APIs has the following specifi-
cations: Intel CPU i7-8565U 4 Core 1.8 – 2.6 GHz,
16 GB DDR4 2400 MHz of RAM and 500 GB SSD
NVMe. The simulated server for testing purposes
uses Windows 10 Pro, while the application or web
server used to set up APIs is Internet Information Ser-
vices (IIS) version 10.

In the API testing, we used the Apache JMeter ap-
plication. Apache JMeter is an open source applica-
tion developed entirely in Java and designed to test
different APIs as needed. In our case, different load
tests were analyzed for both APIs. The tests were the
same or identical for both APIs. Four test scenarios
were designated, three of which test specific API fea-
tures, while the last one tests all the features offered
by the API. All test scenarios were executed by simu-
lating different numbers of users within a given time
interval. Each test was executed ten times in a row,
which means that all the results presented in the tables
represent the average of ten executions. The execu-
tion time of the requests is presented in milliseconds
[ms].

5.1 First Test Scenario

The first scenario tests the HTTP POST and DELETE
methods, where the main focus is the POST method,
which is used to record data in the database. The sce-
nario consists of a two step process; firstly inserting
sample data in the database and secondly deleting the
inserted data by its ID. The scenario was evaluated
with 10 and 100 users.

In the first case, simulated with 10 users where
each user made two calls to the API: one to regis-
ter a person in the database and another one to delete
the person previously registered. As depicted in Fig-
ure 1, results show that Core was 10 [ms] faster than
Node.js. On the other hand, Node.js’ average time for
POST request was 156 [ms]. Regarding the deletion
of the registered person, we had almost identical time
for both technologies with an average time of 3 [ms].

In the second case we simulated 100 users where
again each of them made two requests to the API. In
other words, 100 users made requests within 5 sec-

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

230



Figure 1: First test scenario – First case.

Figure 2: First test scenario – Second case.

onds or 20 users per second. As described in Figure 2,
in this case we see a change in results, where Node.js
performed better in terms of POST requests with an
average time of 58 [ms].

5.2 Second Test Scenario

The main purpose of this scenario is testing the func-
tionality of the authentication and identifying which
of the APIs supports faster authentication. Firstly, a
new person is registered in the database. Secondly,
with the credentials of the newly inserted person a
request is made for authentication. After successful
authentication the API returns the JWT token as re-
sponse and the person is deleted from the database.
Thus, we have two POST requests in the API and one
DELETE request. Similarly to the first scenario, this
scenario was evaluated within two cases: with 10 and
100 users.

As depicted in Figure 3, Node.js again performs
better for the case when 10 users made person’s reg-
istration simultaneously, while we have a change in
the results of the authentication feature where in this
case Core has performed better with an average speed
of 19 [ms] faster than Node.js. As for deleting the per-
son from the database, the results are almost the same
with an average time difference of only 1 [ms]. In the
second case 100 users made requests within 5 seconds

Figure 3: Second test scenario – First case.

Figure 4: Second test scenario – Second case.

or 20 users per second. Results described in Figure 4
indicate that Node.js performed better in both person
insertion and authentication features, while the dele-
tion feature was the same for both technologies.

5.3 Third Test Scenario

The third scenario is similar to the first test scenario
only that in this test the main focus is on the HTTP
PUT method i.e. updating the data in the database.
Again, in this case each user makes three requests to
the API: the user inserts a new person, updates some
of its attributes i.e. name and surname, and then the
updated person is deleted from the database. HTTP
methods that are used and tested include POST, PUT
and DELETE.

In the first case, when 10 users made requests si-
multaneously in the API, Node.js performed faster in
inserting i.e. running a POST method. Namely, as
described in Figure 5, it resulted with 7 [ms] faster in
average time. Regarding the PUT request, i.e. exe-
cuting the update query, which is the main focus of
this scenario, the results show that we do not have a
big difference where Core in average time was only 1
[ms] better.

In the second case we simulated 100 users, where
again each made three requests to the API resulting in
100 users making simultanous requests within 5 sec-
onds or 20 users per second. As shown in Figure 6,
results continue to be in favor of Node.js with POST

Development and Performance Analysis of RESTful APIs in Core and Node.js using MongoDB Database

231



Figure 5: Third test scenario – First case.

Figure 6: Third test scenario – Second case.

requests executed faster with a difference of 19 [ms]
on average time. The results of updating and deleting
a user are similar with an average time of 2 [ms] per
request.

5.4 Fourth Test Scenario

The fourth test scenario includes all the key function-
alities that APIs offer. This test was done for four dif-
ferent cases where the only difference is the number
of simulated users and the time interval within which
the simulated users make requests to the API.

In the first case, the first test consist of 10 users
making 8 different requests each, while in the second
test 100 records were retrieved from the database. As
can be seen from Figure 7 for some methods one tech-
nology performs better and for others the other one.
However, from the clients point of view the differ-
ences are insignificant.In the third test where a spe-
cific person data were retreived based on his ID from
the database, Express performed better with a differ-
ence of only 8 [ms]. However, the generation of the
JWT web token has been faster on Core with a dif-
ference of 15 [ms] or 122 [ms] total average time. In
the other two tests where the records were taken from
the database, which required authentication and au-
thorization, Core has shown better performance in the
first case for 42 [ms] faster while in the second for 8
[ms].

In the second case, described in Figure 8, 100

Figure 7: Fourth test scenario – First case.

Figure 8: Fourth test scenario – Second case.

users have made eight requests to the API in a time
interval of 5 seconds. The results are almost simi-
lar with Core slightly faster (only 3 [ms]). As for
the POST method Express has come out better with
a similar difference as to the first case i.e. 27 [ms].
The authentication process in the second case was
performed faster by Express with a difference of 27
[ms] than the authentication in Core. In other two
tests, obtaining data from the database requiring au-
thentication and authorization Core performed faster
with a difference of 31 [ms] and 6 [ms], resepectively.

In the third case, described in Figure 9, we dealt
with 500 users or clients who accessed the APIs in a
time interval of 20 seconds and made 8 requests each.
Previously, in the test of taking 100 people from the
database we had a change, now Express again has per-
formed faster in average for all users. As a bottom
line, we can say that in the third case Express has out-
performed Core in all tests.

The fourth case is a test that simulates 1000 users
or clients who simultaneously in the interval of 30
seconds make requests to the API. In this case the re-
sults are shown in seconds in order to be more read-
able. In this case the difference in the results obtained
during the test is much greater. Based on Figure 10,
it is clear that Core has outperformed Express in all
tests. In the case of receiving 100 people (rows) from
the database, in Core took approximately 0.7 seconds
faster. The POST request of a new person in the
database in this case had better results in Core by a

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

232



Figure 9: Fourth test scenario – Third case.

Figure 10: Fourth test scenario – Fourth case.

margin of approximately one second faster. Obtaining
a specific person data from the database based on his
ID on Core was 0.8 seconds faster than Express. The
authentication process which in the first three cases
was faster in Node.js, in this case appeared faster in
Core with a difference of approximately 1.2 seconds.
In the tests for obtaining data which require authen-
tication and authorization Core has performed faster
with a very noticeable difference of approximately
1.4 seconds and 1.5 seconds, respectively. Data up-
date and delete in previous cases did not differ too
much and in one case were even the same. In this
case the difference was quite noticeable for the up-
date resulting in 1.1 seconds versus 2.4 seconds for
Core and Node.js, respectively. Similarly, the time
of deleting records has pretty noticeable difference of
about 1 second in favor of Core.

6 DISCUSSION

In terms of development and implementation of APIs
in Core and Express, the differences are not notice-
able. Node.js uses JavaScript as a programming lan-
guage, which when combined with Node.js enables
faster development. Frontend developers can also do
backend development without any major problems.
On the other hand, Core is preferred for large projects
because it offers almost ready-made architecture. Al-
though multi-threaded Core is a more advanced pro-

gramming language, single-threaded Node.js is not
far behind.

6.1 Core

Although Core is a new technology that came into use
in 2016 by Microsoft it has shown good results during
testing. Depending on the increase in the level of test-
ing the changes have been constant with an increase
in the number of users and at certain time intervals. In
the case with 1000 users the Core shows much better
and stable performance compared to Express. From
the results presented earlier we note that Core shows
better performance in the case when we had smaller
time intervals even though the number of users was
the same as in Express.

6.2 Node.js Express

Express or more specifically Express, a bookstore
which enables the development of RESTful services
in Node.js, is older technology than Core. If we look
at the results obtained we notice that in the case of the
large loads Express was more sensitive giving several
times unsatisfactory results compared to Core. De-
pending on the tests in some cases Express turned out
to be better especially in the case of 500 users in a
time interval of 20 seconds where in all tests it was
faster, but this changed drastically in test case with
1000 users in the interval within 30 seconds. The big
difference is attributed to ”single-threaded” Node.js.
We also see that the HTTP POST method in many
cases shows better performance in the case of regis-
tration and authentication.

6.3 Answers to Research Questions

1. Which of the technologies offers better perfor-
mance for CRUD functionalities? The whole
logic of an API is almost built on the CRUD or
Create (POST), Read (GET), Update (PUT) func-
tionality. Looking at the test results in terms of
each method separately depending on the type of
test we see that performance changes in favor of
one technology to the other. The most obvious
is the POST method which in most cases per-
forms better in Express but performance shifts in
favor of Core only in the case with large loads.
The methods for update or PUT and deletion or
DELETE in most of the time have had almost the
same speed, a change which is negligible from the
user’s point of view. The GET method had better
performance in Core overall but there were times
when it performed worse compared to Express.

Development and Performance Analysis of RESTful APIs in Core and Node.js using MongoDB Database

233



2. Which of the technologies is most easily imple-
mented? If we look at the implementation or de-
velopment of RESTful services in both technolo-
gies from the developer’s point of view the logic
of implementation is similar but it is understood
that there are differences on both sides depending
on the support libraries which makes further de-
velopment easier. If the developer is more front-
end oriented then obviously the Express would
be the best choice because it is developed using
JavaScript which is widely used in front-end de-
velopment. However, if the developer is more
back-end oriented with experience in .NET or
even Java technologies then Core would be an eas-
ier solution due to similarities in the development
logic. Additional libraries were needed to enable
communication with non-relational databases. Li-
braries used in Express enabled faster develop-
ment with less code while the library used in Core
in some cases needed a little more complicated
logic so that the functions give the same result
compared to the libraries in Express.

3. How is security implemented using JWT token in
these technologies and how much does authenti-
cation and authorization affect performance? Im-
plementation of authentication and authorization
using JWT token in both technologies is done us-
ing the necessary libraries which enable this func-
tionality. The logic is almost the same in both
technologies where the JWT token must be con-
figured, where in the configurations it is also de-
termined which secret key will be used for se-
curity reasons and then as needed configure the
routes which need to have implemented authen-
tication and authorization. If we look at getting
100 users from the database without authentica-
tion and with authentication, we notice that we
have a slight increase in delay in some cases, in
most cases Core has had better performance in
calls which have required authentication and au-
thorization.

7 CONCLUSION

Choosing a technology to develop an application
or APIs requires consideration of many parameters
which affect both performance, security, extensibility,
usability, ease of development and implementation,
etc. The main purpose of this paper was to provide
developers with information on the implemnatation
and performance of technologies such as Core and
Node.js in conjunction with MongoDB non-relational
database. The implementation of a RESTful API in

these technologies included basic functions such as
Reading, Creating, Changing and Deleting as well as
implementing authentication and authorization using
JWT token.

If we dwell on the performance of the two tech-
nologies by looking at the results obtained we notice
that in general the difference in performance when
each test is analysed separately. A differing fac-
tor is the performance in the case with large loads
in a shorter time interval where Core outperforms
Node.js. In some other cases and especially in the
POST method or recording of database data Node.js
performs better than Core. There is no significant dif-
ference between the two technologies when changing
and deleting data or during Authentication and autho-
rization stage.

REFERENCES

Asp.net core. https://dotnet.microsoft.com/apps/aspnet.
Accessed: 2021-05-03.

Experience on working with asp.net (core) and nodejs.
https://guillaumejacquart.medium.com/experience-
on-working-with-asp-net-core-and-nodejs-
5e6c6351fc1f. Accessed: 2021-05-03.

Mongodb. https://www.mongodb.com/. Accessed: 2021-
05-03.

Node.js. https://nodejs.org/en/. Accessed: 2021-05-03.
Gyorodi, C., Gyorodi, R., Pecherle, G., and Olah, A.

(2015). A comparative study: Mongodb vs. mysql.
2015 13th International Conference on Engineering
of Modern Electric Systems (EMES), pages 1–6.

Hamed, O. (2009). Performance prediction of web based
application architectures case study: .net vs. java ee.
IJWA, 1:146–156.

Hamed, O. and Kafri, N. (2009). Performance testing for
web based application architectures (.net vs. java ee).

Krishnan, H., Elayidom, M., and Santhanakrishnan, T.
(2016). Mongodb – a comparison with nosql
databases. International Journal of Scientific and En-
gineering Research, 7:1035–1037.

Kronis, K. and Uhanova, M. (2018). Performance compar-
ison of java ee and asp.net core technologies for web
api development. Applied Computer Systems, 23:37–
44.

Parker, Z., Poe, S., and Vrbsky, S. (2013). Comparing nosql
mongodb to an sql db.

Söderlund, S. (2017). Performance of rest applications:
Performance of rest applications in four differ-
ent frameworks (dissertation). Retrieved from
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-
64841.

Truică, C.-O., Rădulescu, F., Boicea, A., and Bucur,
I. (2015). Performance evaluation for crud opera-
tions in asynchronously replicated document oriented
database.

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

234


