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Abstract: This paper proposes a new approach to control system design through solving a Constraint Satisfaction 
Problem (CSP) using artificial intelligence, first using a genetic algorithm then using a Convolutional Neural 
Network (CNN). The genetic algorithm determines the feasible controller parameters by minimizing a cost 
function subject to inequality design constraints. The CNN-finds the parameters by designing a deep neural 
network. It is shown that the evolutionary optimization algorithm converges almost surely to the optimal 
solution. To demonstrate the methodologies, they are applied to the design of PID controllers for linear and 
nonlinear systems. Two examples are presented, an armature-controlled DC motor and Bouc-Wen nonlinear 
hysteresis model. Simulations results show that the proposed methods yield solutions that satisfy design 
specifications. 

1 INTRODUCTION 

Many problems in science and engineering can be 
posed as a constraint satisfaction problem with 
constraints that guarantee a desirable solution (Tsang, 
2014). The solution, or set of solutions, is a set of 
values that satisfy all the constraints and the region of 
acceptable solutions is known as the feasible region. 
Because of complex nature of CSPs, the solution 
requires a mixture of combinatorial and heuristics 
search. One of the fields that focuses on dealing with 
CSPs is constraint programming (CP) (Lecoutre, 
2009). Other fields of research that present solutions 
as CSPs are Mixed Integer Programming (Alfa et al., 
2016), Satisfiability Modulo Theories (Barret and 
Tinelli, 2018), Answer Set Programming (Lifschitz, 
2019), and Boolean Satisfiability Problem 
(Ohrimenko, 2007). 

CSP algorithms can be divided into three different 
classes: backtracking search (Wu & Van Beek, 2007); 
constraint propagation (Bessiere, 2007); and 
structure-driven algorithms (Dechter & Rossi, 2006). 
Algorithms that utilize different versions of 
backtracking search construct a solution by extending 
a partial instantiation, step by step. While applying 
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intelligent backtracking strategies these algorithms 
rely on different heuristics in order to avoid getting 
trapped in dead ends. Constraint propagation 
algorithms eliminate non-solution elements from the 
search space to reduce the solution space. This 
strategy can be used as a pre-process for the problem 
before using a search algorithm, or used within the 
search algorithm to boost its performance. Structure-
driven algorithms use the structure of the primal or 
dual graph of the problem at hand. Structure-based 
methods can also be coupled with other types of 
algorithms to solve CSPs (Ruttkay, 1998).  

Several decades ago, Zakian and Al-naib 
proposed a new approach to control system design by 
numerical solution of a set of inequalities (Zakian & 
Al-Naib, 1973; Zakian, 1979; Zakian, 1996; Zakian, 
2005). The inequalities provided constraints on 
standard performance criteria, such as percentage 
overshoot and settling time, and the solution of the 
CSP yielded good controller designs. As part of his 
methodology, Zakian introduced the principle of 
matching so as to select the design constraints that 
guarantee that the system will match its environment 
(Zakian, 1996; Zakian, 2005; Zakian 1991). Zakian’s 
approach, known as the method of inequalities or 
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Zakian’s framework (Bada, 1985), gained popularity 
because it provided good solutions to complex control 
problems. Khaisongkram et al. (Khaisongkram et al., 
2004) used Zakian’s framework to design a controller 
for a binary distillation column under disturbances. 
Hirapongsananurak et al. used it to design a controller 
for doubly-fed induction generator DFIG-based wind 
power generation (Chirapongsananurak et al., 2010). 
Interval constraint satisfaction was also used to 
design a robust fractional-order multivariable 
controller (Patil et al., 2017). Researchers extended 
Zakian’s approach to controller design with fuzzy 
constraints. Tuan et al. (Tyan et al., 1996) proposed a 
methodology of fuzzy constraint-based controller 
design via constraint-network processing. Guan et al. 
(Guan & Friedrich, 1993) used a fuzzy CSP in 
structural design. 

The reliance on numerical solutions of 
inequalities limited the applicability of the method of 
inequalities. The applicability of the approach can be 
extended by the use of new and powerful artificial 
intelligence methodologies. To our knowledge, there 
has been little work on the use of artificial intelligence 
to solve a CSP for control system design with crisp 
constraints. The solution of these problems for 
complex systems is quite difficult and warrants the 
use of intelligent methodologies such as deep learning 
and evolutionary algorithms. Deep learning 
algorithms provide an excellent tool for precisely 
tuning controllers due to their flexible representation 
of decision variables and performance evaluation, as 
well as their robustness to difficult search 
environments (Ding-gang et al., 2020). Applications 
of evolutionary algorithms include parameter and 
structure optimization for controller design and 
model identification (Haralampidis et al., 2005), fault 
detection (Omer et al., 2016), robustness analysis 
(Fleming & Purshouse, 2002). This paper proposes 
the use of Modified Black Hole algorithm (MBH) and 
Convolutional Neural Networks to design controllers 
solving a CSP. The constraints are selected to provide 
values for control design criteria that guarantee good 
controller performance.  

To demonstrate the CSP control design 
methodologies, two design examples are presented. 
The first is the design of a PID controller for an 
armature controlled DC motor. This simple example, 
while solvable by traditional approaches, serves to 
clearly explain the controller design steps. The 
second example is the well-known Bouc-Wen 
hysteresis model. Hysteretic behaviour occurs in a 
vast range of physical systems such as magnetism, 
piezo-electric materials, and mechanical vibration 
(Din et al., 2016). However, conventional controller 

design is difficult for the Bouc-Wen model because it 
is highly nonlinear and includes a large number of 
parameters, making its model identification a 
challenging problem (Charalampakis & Koumousis, 
2008). The second example includes comparison to 
two well known algorithms, particle swarm 
optimization (PSO) (Kennedy et al., 1995) and the 
firefly algorithm (Xin-She, 2008).  

The paper is organized as follows. Section 2 
reviews the constraint satisfaction problem and, 
Section 3 presents the penalty function method. 
Section 4 discusses the use of convolutional neural 
network to solve CSPs.  Section 5 presents two 
examples and their simulation results.  Section 6 is the 
conclusion. 

2 CONSTRAINT SATISFACTION 
PROBLEM (CSP) 

A CSP is defined in terms of a tuple (𝑋, 𝐷, 𝐶), where 𝑋 = {𝑥ଵ, … , 𝑥}  is a finite set of variables with 
domains {𝐷ଵ, … , 𝐷}, respectively, and 𝐶 is a ranked 
finite set of constraints. Each constraint in 𝐶 restricts 
the values that one can simultaneously assign to a 
subset of the variables. A constraint is defined as 𝑛-
ary if it contains 𝑛 variables. A binary constraint CSP 
is a CSP with unary and binary constraints only. The 
main goal of the CSP is to assign at least one value to 
each variable, while satisfying all the constraints in 𝐶. 
The following is a formal definition of the 
CSP(Popescu, 1997). 

Definition 1: Constraint Satisfaction Problem. 

Given a set of 𝑛 variables {𝑥ଵ, … , 𝑥} with domains {𝐷ଵ, … , 𝐷} , respectively and a set of constraints {𝐶ଵ, … , 𝐶} find at least one set of values {𝑣ଵ, . . . , 𝑣} 
that satisfy all the constraints.  

Example: Consider the CSP with  

(i) the set of variables:  𝑋 =  {𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ}, 
(ii) the domains:  𝐷௫ଵ  =  {0,1,2,3} ;  𝐷ଶ  =  {1,3}; 𝐷ଷ  =  {1,3,4,5};  
and (iii) the constraints:  𝐶 = {𝑥ଵ < 𝑥ଶ; 𝑥ଵ + 𝑥ଷ < 𝑥ଶ; 𝑥ଶ + 𝑥ଷ > 3; 𝑥ଵ +𝑥ଶ > 𝑥ଷ}, 

an admissible instantiation is 𝑥ଵ = 0, 𝑥ଶ = 3, 𝑥ଷ = 1. 
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3 MBH SOLUTION USING A 
PENALTY FUNCTION 

A constrained optimization problem can be converted 
into an unconstrained problem and solved using an 
evolutionary algorithm. The solution is obtained 
using penalty methods by adding (or multiplying) a 
violation term to the cost function that introduces a 
high cost for constraint violation. Consider the 
constrained optimization problem: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑓(𝑥): 𝑥 ∈ 𝐶} (1)

where 𝑓 is function on ℛ𝑛 and 𝐶 is a constraint set in ℛ𝑛, or 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑓(𝑥)},   𝑠. 𝑡.    𝑔(𝑥) ≥ 𝑔 (2)

The penalty function method replaces problem (2) 
with an unconstrained approximation of the form: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ൝𝑓(𝑥) +  𝑤𝑉 ൡ (3)

where 𝑤𝑔𝑖  is the 𝑖𝑡ℎ  weight and 𝑉𝑔𝑖  is a penalty 
function on ℛ𝑛.Alternatively, the penalty function is 
implemented as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑓(𝑥) ൭1 +  𝑤𝑉 ൱} (4)

The penalty function 𝑉 is defined as: 

𝑉{𝑔(𝑥) ≥ 𝑔} = ቐ 0, 𝑔(𝑥) ≥ 𝑔1 − 𝑔(𝑥)𝑔 , 𝑔(𝑥) < 𝑔  (5)

or 

𝑉{𝑔(𝑥) ≤ 𝑔} = ቐ 0, 𝑔(𝑥) ≤ 𝑔𝑔(𝑥)𝑔 − 1, 𝑔(𝑥) > 𝑔 (6)

The modified black hole algorithm, which is 
discussed in the next section, is used to minimize the 
penalty value (5). 

3.1 Modified Black Hole Algorithm 

The Black Hole (BH) algorithm is an optimization 
technique inspired by the engulfing behavior of black 
holes(Gan & Zhang, 2019). The method was shown 
to improve the convergence rate and efficiency of the 
particle swarm optimization (PSO) algorithm (Gan & 

Zhang, 2019). A modified version of the black hole 
algorithm (MBH) overcomes drawbacks of the BH 
algorithm, such as getting trapped in local minima, 
and can solve both high and low dimensional 
problems (Yaghoobi & Mojallali, 2016). 

Like other population-based evolutionary 
algorithms, the MBH generates a random population 
and calculates the cost function values for all the 
particles. The particle with the lowest cost is 
designated as the black hole and all other particles are 
designated as stars. At this step, stars begin to 
gravitate towards the black hole and their movement 
can be formulated as: 𝑥𝑠𝑡𝑎𝑟𝑖+1 = 𝑥𝑠𝑡𝑎𝑟𝑖 + 𝐶 × 𝑑 (7)

where 𝑥𝑠𝑡𝑎𝑟𝑖+1  and 𝑥𝑠𝑡𝑎𝑟𝑖  are the star locations in their 
respective generations. 𝐶 is a matrix whose elements 
are uniformly distributed random numbers, ranging 
between 0 and 2, and 𝑑 is the vector of connectivity 
between each particle and the black hole. Fig. 1 shows 
how a star moves towards the black hole. 

After each iteration, each star becomes closer to 
the black hole and its cost is recalculated. If the cost 
of a particle becomes lower than that of the black 
hole, they exchange locations, as shown in Fig. 2. If a 
particle approaches the minimum distance from the 
black hole while providing a higher cost, it is 
removed and a new particle is generated randomly in 
the search space. The distance is defined as: 

𝑟 = ൭ 𝑓∑ 𝑓ேୀଵ ൱ଶ
 (8)

where 𝑓𝑐 stands for the cost of black hole, 𝑁𝑝𝑜𝑝 is the 
number of members in each iteration, and 𝑓𝑛 is the 𝑛𝑡ℎ  particle cost. At the end of every generation, the 
black hole will always occupy the location that 
provides the lowest cost and the stars are propelled 
towards the best search space. 

 
Figure 1: Moving particles (stars) towards the black hole. 

Star’s position 

Star’s new position 

Black Hole 
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Figure 2: Exchanging position of a star and black hole. 

3.2 Convergence Analysis of MBH 

A critical issue with metaheuristic algorithms is their 
convergence to an optimal, or at least satisfactory, 
solution. Powerful hybrids that combine 
metaheuristic techniques with well-established 
methods from mathematical programming give the 
convergence issue a new relevance (Gutjahr, 2009). 
Every evolutionary optimization algorithm such as 
MBH includes the following steps: 
1. Find 𝑥 ∈ 𝑆 and set 𝑡 = 0. 
2. Generate a vector 𝑉௧ ∈ ℛ  using a probability 

measure 𝜇௧. 
3. Set 𝑥௧ାଵ = 𝐷(𝑥௧, 𝑉௧), choose 𝜇௧ାଵ, set 𝑡 = 𝑡 + 1 

and return to Step 2. 

where D is a mapping that combines the new velocity 
vector, Vt, with the current solution, xt. 

Any metaheuristic optimization algorithm will at 
least converge to a local minimum if the algorithm 
satisfies the algorithm condition and the convergence 
condition (Van den Berg & Engelbrecht, 2010). The 
two conditions are: 

Condition I (Algorithm Condition): The mapping 𝐷: 𝑆 × ℛ → 𝑆 must satisfy 𝑓(𝐷(𝑥௧, 𝑉௧)) ≤ 𝑓(𝑥௧). 
This condition simply says that the solution generated 
by mapping 𝐷 in iteration 𝑡 + 1 is no worse than the 
solution in iteration 𝑡. 

Condition II (Convergence Condition): For any 
subset 𝐴 ⊆  𝑆 with 𝑐(𝐴) > 0, we have that: ෑൣ1 − 𝜇𝑡(𝐴)൧ = 0∞

𝑡=0  (9)

Condition II means that for any measurable 𝐴 ⊆ 𝑆 
with non-negative measure 𝑐 , the probability of 
repeatedly missing the set 𝐴 , must be zero. 
Conditions I and II lead to the following theorem. 

Theorem 1 (Solis & Wets, 1981): Suppose that 𝑓 is 
a measurable function, 𝑆  is a measurable subset of ℛ and Condition I and Condition II are satisfied. Let {𝑥௧}௧ୀஶ  be a sequence generated by a random search 

algorithm. Then 𝑥௧  converges almost surely to the 
optimality region 𝑅ఢ lim௧ → ஶ 𝑃[𝑥௧ ∈ 𝑅ఢ] = 1 (10)

where 𝑃[𝑥௧ ∈ 𝑅ఢ] is the probability that the point 𝑥௧ 
generated by the algorithm at time 𝑡 is in 𝑅ఢ. 

Proof: Considering Condition I, if 𝑥௧ ∈ 𝑅ఢ then 𝑥௧ᇲ ∈𝑅ఢ for all 𝑡ᇱ ≥ 𝑡 + 1. Thus, the probabilities satisfy 

𝑃[𝑥௧ ∈ 𝑅ఢ] = 1 − 𝑃[𝑥௧ ∈ 𝑆\𝑅ఢ] ≥ 1 − ෑ[1 − 𝜇(𝑅ఢ)]௧
ୀ (11)

Combining (11) and Condition II gives 

1 ≥ lim௧→ஶ 𝑃[𝑥௧ ∈ 𝑅ఢ] ≥ 1 − lim௧→ஶ ෑ[1 − 𝜇(𝑅ఢ)]௧ିଵ
ୀ = 1 (12)

Corollary I: The MBH converges almost surely to 
the optimality region 𝑅ఢ. 

Proof: It was shown in (Yaghoobi & Mojallali, 2016) 
that the position of the black hole does not change 
until a better solution is found. Hence, the MBH 
satisfies Condition I. Since MBH omits the stars that 
reach the minimum distance defined by equation (11) 
and new stars are generated randomly in the search 
space, the sample space from which any new star is 
drawn has the support 𝑀௧ = 𝑆 . This implies that 𝑐[𝑀௧] = 𝑐[𝑆] , which implies that Condition II is 
satisfied. It follows from Theorem 1 that the MBH 
converges almost surely to the optimality region. 
Corollary I establishes that the MBH is a global 
search algorithm. 

4 CONVOLUTIONAL NEURAL 
NETWORK FOR SOLVING CSP 

 With the expansion of interest in artificial 
intelligence (AI) applications, their usage in solving 
mathematical problems has grown exponentially. 
There have been many attempts to apply these AI 
techniques to constraint satisfaction problems. Here a 
constraint logic program (CLP) is treated as a 
network of constraints to solve the constraint 
satisfaction problem. Each computation in a CLP can 
be shown as a sequence of linear steps, since the 
check satisfiability of the system of constraints is 
applied at each resolution step, which is linear in the 
size of the current constraint problem. The constraint 
propagation information is performed at each step 
during any CLP derivation. To our knowledge, none 
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of the recent advances in deep learning have been 
exploited to solve this important problem. We can 
represent a CSP with an artificial neural network 
where the variables of the problem are represented by 
a finite number of neurons divided into multiple 
layers. The ANN model of a CSP is shown in Fig. 3, 
where the ANN is a mapping of a set of input patterns 𝐼  to a corresponding set of output patterns 𝑂ାଵ, . 
The training data is a set of ordered pairs 𝐻 = ൛𝐼, 𝑂ାଵ,ൟ  that is used to train the network. The 
training process consists in the computation of the set 
of values {𝑣ଵ, . . . , 𝑣}  that satisfies the constraints {𝐶ଵ, … , 𝐶}. 

 

Figure 3: The ANN model of a CSP. 

5 DESIGN EXAMPLES 

We apply the design methodologies to two systems, 
an armature-controlled DC motor and a nonlinear 
Bouc-Wen system. The first example is intended to 
show the steps of the design methodologies while the 
second demonstrates the ability of the methodologies 
to handle difficult controller design problems. We 
design PID controller for each of the two systems. 
The controller generates a control signal using the 
error signal, its integral and its derivative: 

𝑢(𝑡) =  𝐾𝑒(𝑡) +  𝐾 න 𝑒(𝜏)𝑑𝜏௧
 + 𝐾ௗ 𝑑𝑑𝑡 𝑒(𝑡) (13)

where 𝑢(𝑡)  is the control signal, 𝑒(𝑡)  is the error 
signal defined as 𝑒(𝑡) =  𝑅(𝑡)– 𝑦(𝑡),  the difference 
between the reference signal 𝑅(𝑡)  and the output 
signal 𝑦(𝑡). The controller parameter, 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑, 
denote the proportional gain, the integral gain, and the 
derivative gain, respectively.  

 
Figure 4: Unit Step response comparison between MBH 
and CNN. 

Example 1. Linear System (DC Motor). 

Consider an armature-controlled DC motor whose 
transfer function with armature voltage as input and 
angular position as output is: 𝐺(𝑠) = 1𝑆ଷ + 9𝑆ଶ + 22𝑠 + 15 (14)

The controller is designed to satisfy the following 
design constraints: 

Table 1: Step response evaluation criteria for the DC motor. 

 Violation Cost Settling 
Time 

Peak 
Value 

Final 
Value

Max. 0.0138 1.8555 1.8549 1.0638 1.0013 

Min. 0 0.9996 0.9996 1.0135 0.9999 

Mean 6.9416×10-4 1.2041 1.1967 1.0231 1.00006 

Std. 0.0031 0.2503 0.2539 0.0124 3.1102×10-40.9 < 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 < 1.1 (15)𝑆𝑡𝑒𝑎𝑑𝑦 − 𝑠𝑡𝑎𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 < േ5% (16)

The cost function for MBH algorithm is the integral 
of the error over time. Twenty runs of MBH 
algorithm and deep neural network with a weight 
vector 𝑤𝑔 = [1 1000 100] , yield controllers 
that provide step responses that satisfy the design 
constraints, as shown in Fig. 2. The best run provided 
the controller parameter values 𝐾𝑝 = 38. 2401, 𝐾𝑖 =28.52 and 𝐾ௗ = 10 for the CNN method and 𝐾𝑝 =37. 9147, 𝐾𝑖 = 28.7847 and 𝐾𝑑 = 10 for the MBH 
method. Table 1 shows the values of the design 
criteria for the selected parameter values. The 
simulation results clearly show that the proposed 
approach provides a good design for the DC motor 
with a fast response, small overshoot and negligible 
steady-state error. Fig. 4 shows the step response 
comparison between two different proposed methods. 
As it is clear from the figure, The MBH-Based 
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method has a faster response with a small and almost 
negligible overshoot. 

Example 2. Nonlinear Bouc-Wen System. 

The Bouc–Wen model was originally applied for 
nonlinear vibrational mechanics (Xin-She, 2008). 
The model represents hysteresis as the superposition 
of a linear component 𝑋(𝑡)  and a hysteretic 
component ℎ(𝑡). The classical hysteretic Bouc–Wen 
model is described as follows: 𝑦(𝑡) = 𝑋(𝑡) + ℎ(𝑡) = 𝑘. 𝑢(𝑡) + ℎ(𝑡) (17)ℎሶ (𝑡) =  𝛼𝑢ሶ (𝑡) − 𝛽𝑢ሶ (𝑡)|ℎ(𝑡)|− 𝛾|𝑢ሶ (𝑡)||ℎ(𝑡)|ିଵℎ(𝑡) (18)

where 𝑢(𝑡)  is the input, 𝑦(𝑡)  is the output, and 𝑘, 𝛼, 𝛽, 𝛾  and 𝑛  are the model parameters that 
determine the shape of the hysteresis curves. The 
parameter 𝑛  is often equal to unity to simplify the 
model and the hysteresis component then becomes: ℎሶ(𝑡) =  𝛼𝑢ሶ (𝑡) − 𝛽𝑢ሶ(𝑡)|ℎ(𝑡)| − 𝛾|𝑢ሶ(𝑡)|ℎ(𝑡) (19)

We consider a Bouc-Wen model with parameter 
values 𝑘 = 0.2181, 𝛼 =  −0.1453, 𝛽 =  2.8847 
and 𝛾 = 3.4124 (Gan & Zhang, 2019), with the input 
signal 𝑢(𝑡) =  5 sin(2𝜋 × 40𝑡) + 5 . The model is 
used to generate the data using by the deep neural 
network to select the controller parameters. Fig. 5 
shows the Simulink implementation of the Bouc-Wen 
model. 

The controller must satisfy the following design 
constraints: 

I. Error Constraint: 𝐸𝑟𝑟𝑜𝑟 < 10 (20)

Table 2: Response characteristics for the Bouc-Wen 
system. 

 Error Slope 

MBH 9.4035 0.9993 

CNN 9.6452 0.9975 

PSO 27.6085 0.8694 

FA 32.6452 0.9108 

II. Input-output Constraint: 0.95 ≤  𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 ≤ 1.05 (21)

where 𝐸𝑟𝑟𝑜𝑟 is defined as the integral square error: 𝐸𝑟𝑟𝑜𝑟 =  න(𝑦(𝑡) − 𝑢(𝑡))ଶ𝑑𝑡 (22) 

The proposed CNN approach selected the PID 
controller parameter values 𝐾𝑝 = 92.8537, 𝐾𝑖 =

49.3467,  and 𝐾𝑑 = 7.1 , with an integral square error 
of 9.2457. The MBH penalty-based method selected 
the values 𝐾𝑝 = 99.4486, 𝐾𝑖 = 61.1953,  and 𝐾𝑑 =11.1 . The integral square error for this design is 
9.4035. Both methods provide a feasible integral 
square error that is lower than the upper bound of 10.  

The input-output plot of Fig. 5 shows that the 
controlled system follows the output in both the 
controlled and uncontrolled scenarios. The input-
output plot is linear with slope 0.993, which satisfies 
the desired criteria. The tracking performance 
improves with the MBH and CNN-tuned PID 
controllers. Table 2 is a comparison between our two 
controllers, PSO (Kennedy et al., 1995), and the Firefly 
Algorithm (Xin-She, 2008). Fig. 6 demonstrates the 
error evolution over time for the four approaches. The 
figure shows that the error of the proposed design is 
always significantly smaller than the other approaches. 
The error for proposed design drops much faster than 
other approaches then remains within a much smaller 
bounded range. The results show that the MBH and 
CNN-based approaches provide more accurate 
tracking than PSO and FA.  

 
(a) 

 
(b) 

Figure 5: Input-Output plot of (a) controlled and (b) 
uncontrolled systems with the input 𝑢(𝑡) = 5 sin(2𝜋 ∗40𝑡) + 5. 

y(
t)
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Figure 6: Error of four different studied designs over time. 

6 CONCLUSION 

This paper proposes intelligent control system design 
by solving a constraint satisfaction problem. The 
problem is solved using MBH optimization and using 
a deep neural network. To demonstrate the design 
methodology, two design and simulation examples 
are presented. The first example is PID control for an 
armature controlled DC motor and it demonstrates the 
simplicity of the design methodology. The second is 
PID control of Bouc-Wen hysteresis and it 
demonstrates the applicability of the methodology to 
challenging nonlinear systems. The performance of 
the Bouc-Wen controller obtained using the proposed 
method is compared to the results obtained using 
particle swarm optimization and the firefly algorithm. 
Simulation results show that the MBH and CNN 
solution provide better controller performance with 
faster and more accurate tracking that compares 
favorably with the particle swarm algorithm and the 
firefly algorithm. Future work will apply the 
methodology to nonlinear multivariable systems 
using input-output data without the benefit of a 
mathematical model. 
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