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Abstract: The further development of autonomous driving requires the increased use of innovative and intelligent 
algorithms. In order to develop these effectively and efficiently, suitable development methods and tools are 
required. Therefore, this paper presents the development of a simulation environment for automated model 
configuration for the design and validation of AI-based driving functions. Based on the current state of the 
art, the conception including requirement definition and realization of the simulation environment are 
described in detail. In addition, the simulation environment is validated in an application for automated vehicle 
guidance with Artificial Neural Networks. 

1 INTRODUCTION 

The innovation alliance autoMoVe (Dynamically 
Configurable Vehicle Concepts for Use-Specific 
Autonomous Driving), funded by the European 
Regional Development Fund (ERDF), aims to 
develop an autonomous, modular and electric vehicle 
concept. By exchanging application specific modules 
during runtime, a wide range of applications from 
internal freight transport to passenger conveyance in 
road traffic shall be realized autonomously. Within 
the scope of this research project, the Ostfalia 
subproject autoEVM (Holistic Electronic Vehicle 
Management for Autonomous Electric Vehicles) 
focuses on the model-based development of 
innovative intelligent algorithms and functions for 
autonomous driving. 

Higher automation of driving operations is 
accompanied by an increase in the requirements to be 
met by the vehicle or the automated driving functions. 
Current functions and algorithms based on methods 
of control theory or classical information processing 
can no longer fully meet these (Milz and Schrepfer, 
2020). Therefore, artificial intelligence (AI) 
represents a key technology in this project or for 
many domains involved in the development and use 
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of intelligent, automated vehicles (Fayjie et. al., 
2018). 

Regardless of the type of information processing, 
modern vehicles and driving functions are complex 
mechatronic systems with a high degree of internal 
and external interconnection. In order to handle this 
complexity in the development and validation 
process, a design methodology that is well established 
in mechatronics research is used. This consistent and 
verification oriented methodology is based on digital 
models and simulations to make the design and 
validation process of complex mechatronic systems 
in a crosslinked environment easier, faster and safer. 
(Liu-Henke et. al., 2016) 

The development and simulation environments 
currently available for intelligent vehicle functions 
are very extensive in general, but they concentrate 
largely on conventional algorithms for information 
processing. The use of AI functions in development 
and validation is either not possible or only possible 
with a great amount of effort. Conversely, current 
development environments for AI algorithms do not 
offer the advantages or the functional scope of tools 
that are specifically designed for automated driving 
functions. (Stančin and Jović, 2019) 

This current incompatibility of the two worlds for 
automated driving functions and AI is therefore now 
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inhibiting the research and development progress of 
automated and autonomous driving. Consequently, in 
order to realize the mobility transformation 
envisioned in the projects and society, new methods 
and tools are needed that can unite both worlds. 
Therefore, this paper presents the development of a 
simulation environment for automated model 
configuration for the design and validation of AI-
based driving functions. On the one hand, this 
simulation environment's scope of functions is geared 
towards the development of automated driving 
functions and, on the other hand, it offers the 
possibility to use not only conventional but also AI 
algorithms. 

2 METHODOLOGY 

The complexity of modern vehicles is constantly 
increasing due to the higher degree of internal and 
external networking and the growing number of 
intelligent and efficient hardware and software 
components. In order to handle the system 
complexity and to avoid errors at an early stage in the 
design of the information processing, a holistic design 
methodology is indispensable. Therefore, the 
continuous, verification-oriented, model-based 
design methodology based on Rapid Control 
Prototyping (RCP) and Model-in-the-Loop (MiL), 
Software-in-the-Loop (SiL) and Hardware-in-the-
Loop (HiL) simulations has been established. (Liu-
Henke et. al., 2016) 

The methodology is based on function-oriented 
physical models of a controlled system. The control 
function is then simulated depending on the system 
behavior and validated in MiL simulations at an early 
stage. To avoid manual programming, the model and 
control function are developed in block diagram-
based programming languages. The subsequent 
automatically generated function code is again tested 
against the control system model in SiL simulations. 
HiL simulations are used for further validation and 
optimization of the information processing with real-
time capable simulation models and real 
subcomponents of the system to be controlled. 

The verification oriented and iterative approach 
of this methodology also supports the development 
process in the challenging task of validation. The 
methodology addresses the weaknesses of classical 
validation based on physical prototypes, such as a 
high expenditure of resources or safety risks for 
humans, machines and the environment. Due to their 
virtual character, MiL, SiL and HiL simulations save 
time and costs (Yarom et. al., 2020a). They enable 

feasible and reproducible tests at any time without 
direct dependence on physical prototypes, times of 
day or human experts. Thus, simulation cycles, for 
different functional variants or scenarios, can be 
automated. This makes this methodology particularly 
suitable for training AI algorithms. This is because, 
with rare exceptions, machine learning is always 
iterative. 

Virtual design methods like these form the basis 
for many intelligent systems, such as highly 
automated vehicles. With prototype-based testing, the 
hundreds of thousands of test kilometers required 
would not be achievable in a reasonable amount of 
time and at a reasonable cost. (Yarom et. al., 2020a) 

3 STATE OF THE ART 

3.1 Intelligent Driving Functions 

In automated driving, individual driving tasks are 
taken over from the human driver by so called 
advanced driver assistance systems (ADAS). Such 
ADAS, e.g. for speed control or lane keeping 
assistance, have been available in series production 
for some time (Kukkala et. al., 2018). ADAS process 
the data collected by vehicle and environment sensors 
and thus calculate driving commands, which are then 
implemented by means of controlled actuators. With 
an increasing number and interconnection of ADAS, 
the human driver successively delegates driving tasks 
to the vehicle until he finally becomes a passenger in 
autonomous driving. Then we no longer speak of 
ADAS, but of (automated) driving functions. 

Increasing automation of the driving process 
means an extreme increase in the requirements for the 
driving functions. Not only more but also different 
sensors are needed for environment perception, 
whose inhomogeneous raw data must be processed 
and implemented repeatedly, intensively and with the 
highest real-time requirements. If information from 
internal bus or external vehicle-to-everything (V2X) 
communication is added, the complexity increases 
even further. This pushes conventional algorithms for 
control and data processing to their limits. (Milz and 
Schrepfer, 2020) For this reason, AI algorithms are 
already being used today for automated driving 
functions. Artificial neural networks (ANNs) in 
combination with machine learning (ML) are 
particularly promising. Prominent applications are 
image-based semantic segmentation of the driving 
environment (Lyu et. al., 2019) or automated vehicle 
guidance (Huang et. al., 2019). AI algorithms are 
promising for the further development of autonomous 
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vehicles due to their performance, robustness and 
adaptability (Kuutti et. al., 2021). There is also 
potential for intelligent vehicle functions outside of 
automated vehicle guidance, e.g., for battery 
management (Alaoui, 2019). On the other hand, 
conventional approaches are often still used at lower 
levels of information processing, e.g. local control of 
actuators (Milz and Schrepfer, 2020). 

3.2 Fundamentals of Artificial Neural 
Networks and Machine Learning 

The term AI covers a variety of different methods and 
algorithms that deal with the autonomous and 
automated solving of problems (Togelius et. al., 
2018). ANNs and ML form a subfield of AI that has 
been shown to be suitable in numerous problems in a 
wide variety of domains, including autonomous 
driving. Therefore, this paper focuses on this subfield. 
The numerous positive properties of ANNs and ML, 
such as adaptability, error resistance, versatility, and 
above all learning ability, can be traced back to their 
similarity to the structure and functioning of the 
human brain. 

Analogous to biology, (artificial) neurons are 
processing units that accumulate input stimuli via 
weighted connections and compute an output using an 
activation function. The interconnection of several 
neurons in at least two layers makes up the ANN. 
Combinations of up to several hundreds of neurons in 
up to more than one hundred layers are common. Not 
only arbitrary forward but also time-feedback 
connections are possible in the ANN. (Skansi, 2018) 
The optimal architecture of an ANN cannot be 
determined analytically so far (Tirumala, 2020). 
Therefore, experience and test series are necessary to 
find a suitable architecture in the trade-off between 
computational effort and performance. The number, 
interconnection and weighting of connections 
characterizes the "intelligence" of an ANN. Generally 
speaking, more neurons and connections mean a 
higher performance of the ANN, while at the same 
time the computational effort increases. 

Just like a human brain, the ANN must first learn 
or train a task. These terms refer to the adaptation of 
the connection weights. In the environment of 
autonomous driving, supervised learning (SL) and 
reinforcement learning (RL) are relevant for this. In 
SL, the ANN is provided with input data and the 
corresponding output. The ANN iteratively learns the 
relationship between the two variables (Duriez, 
Brunton and Noack, 2017). This learning procedure 
is particularly suitable for image based object 
recognition, for example (Lyu et. al., 2019). In RL, 

the ANN successively learns the optimal strategy 
from the experience of past sequences in terms of a 
given reward function (Duriez, Brunton and Noack, 
2017). This procedure is used when no training data 
is available, e.g., in automated vehicle guidance 
(Huang et. al., 2019). SL and RL are head categories 
of learning procedures, with diverse concrete training 
algorithms. Just like the ANN architecture, the 
optimal training algorithms or their parameters 
cannot be determined analytically. Thus, experience 
and experimentation are required here as well. 

3.3 Development Environments for 
Intelligent Driving Functions 

For the model-based design of automated driving 
functions, several development and simulation 
environments exist, such as MATLAB/Simulink with 
toolboxes, dSPACE Automotive Simulation Models 
(ASM), and IPG CarMaker, to name just a few. They 
all differ in terms of their primary focus or their 
specific advantages and disadvantages. All of them 
offer extensive model libraries for traffic, vehicle 
dynamics, component, sensor or even driver models. 
They are specifically designed for the configuration 
and reproducible simulation of a wide range of 
driving scenarios and vehicle variabilities for the 
purpose of vehicle development or validation. The 
tools usually have integrated model configurators, 
visualization, experiment environments, and in some 
cases scenario and test managements. The tools listed 
are suitable for the design methodology described in 
section 2 using the RCP process. They enable not 
only MiL simulations, but also real-time SiL and HiL 
simulations through automatic code generation in 
conjunction with MATLAB/Simulink. (Deter et. al., 
2021) However, the tools do not offer the possibility 
to integrate ANNs into the respective simulation and 
configuration tools without further effort, let alone to 
train them. 

The only exception here is MATLAB's Deep 
Learning Toolbox (DLT). With this toolbox, any 
ANN architecture can be configured and trained with 
a large number of pre-implemented algorithms. The 
DLT is basically compatible with Simulink and 
automatic code generation. However, ANN 
configuration is quite complicated and is usually done 
manually for individual ANNs. As a result, it is not 
very suitable in its native form for carrying out test 
series with varying architectures, training parameters 
or even different driving functions. 

There are also specific development 
environments for ANN training. Most of them are 
based on the Python programming language. 
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Prominent tools are, among others, TensorFlow, 
PyTorch, Keras and Caffe. They all have comfortable 
and extensive functionalities regarding the creation 
and training of ANNs. However, there is only the 
possibility of scripted programming. A clearer block 
diagram-based programming suitable for the RCP 
process is not available. (Stančin and Jović, 2019) 
Therefore, it is difficult to design simulations with the 
same accuracy, computation time and comfort with 
the ANN-specific tools as with the tools for 
automated driving functions. The effort for this is so 
large that even computer games like Grand Theft 
Auto (Wang et. al., 2019) or TORCS (Zhang and Cho, 
2017) have been coupled for vehicle and traffic 
simulations in combination with the mentioned ANN 
tools. However, these approaches rather served the 
investigation of ANNs and ML and do not meet the 
requirements of accuracy, real-time capability, 
reproducibility and variation possibility of a real 
driving function development. 

4 CONCEPTION OF THE 
SIMULATION ENVIRONMENT 

4.1 Deriving the Problem Statement 

The findings from section 3 can be used to derive a 
problem statement for pursuing the project goals 
(section 2). The design of intelligent automated 
driving functions requires the use of AI algorithms. 
However, as described, these cannot easily be used in 
the usual development environments. ANNs and ML 
methods quickly become very complex and 
confusing. A manual programming of different ANN 
architectures with the associated calculation rules 
would not only be error-prone but would also take a 
lot of time. The same applies to the ML procedures, 
which would have to be parameterized and adapted 
for each ANN architecture. The fact that architecture 
design, training and test processes are always 
empirical and iterative requires many simulation 
cycles and further worsens the situation. 

The use of ANN-specific development 
environments is also ruled out. If the automated 
driving functions are to be designed under realistic 
conditions, the depth of modeling must be sufficiently 
precise. In the classical way of analytical physical 
modeling, the mathematical equations and their 
numerical solution methods would have to be 
programmed independently in a script language. If 
one now considers the number of subsystems of a 
vehicle, further driving functions or other road users 

that are to be simulated, a highly complex simulation 
system results. In addition, there are different 
variants, configurations, scenarios and, if necessary, 
real-time requirements. Although the implementation 
of such a project would be possible in principle, it 
would be very error-prone and not very effective. 
Finally, there are already resource-optimal simulation 
environments for this purpose. 

In summary, none of the currently available 
simulation environments is suitable for the design and 
validation of AI-based driving functions according to 
the development methodology from section 2. The 
conclusion is therefore that a separate simulation 
environment must be developed for this design 
methodology. 

4.2 Definition of Requirements 

To address the aforementioned challenges, the 
requirements for the new simulation environment for 
automated model configuration for the design and 
validation of AI-based driving functions are defined 
below: 
R1 Usable for various driving functions 
R2 Operation with Simulink and compatibility 

with corresponding blocks and models 
R3 Use of various existing or creation of own 

models and functions with any modeling depth 
R4 Easy creation and calculation of ANNs 
R5 Automatic integration of ANNs into the 

Simulink models 
R6 Variation of model configuration 
R7 Automatic model configuration 
R8 Automated execution of simulation series 
R9 Training by means of different ML methods 
R10 Use for generation of training data for ML 
R11 Visualization in 2D and 3D 
R12 Operation with user interface or scripts 
R13 High-performance computing times for large 

simulation series and later real-time 
applications 

R14 Compatibility with dSPACE ASM for later 
development of the simulation environment 

R15 Possibility of automatic code generation 

4.3 Concept Formation 

The first step to fulfill the previously defined 
requirements, is the realization of the simulation 
environment in MATLAB and Simulink (R2). This 
ensures compatibility with standard blocks and 
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existing models available in Simulink (R3). 
Furthermore, any other models and automated driving 
functions can be created (R1). In principle, toolboxes 
can also be used for this purpose. It is only important 
to ensure that these support automatic code 
generation (R15). In this case, compatibility with 
dSPACE ASM is also guaranteed (R14). 

For the configuration and creation of ANNs, the 
DLT is used. For this purpose, an additional ANN 
generator is designed, which creates arbitrary ANNs 
architectures automatically by simple user input via a 
graphical user interface (GUI) or a script (R4) and 
generates them directly into the simulation model 
(R5). By using the DLT, several ML algorithms are 
automatically available (R9). Several algorithms are 
already usable for SL, given that one has generated 
training data (R10). RL algorithms are available in the 
RL toolbox of MATLAB. Alternatively, it is possible 
to implement custom training algorithms for both SL 
and RL, since the DTL provides convenient access to 
the connection weights. 

With a scenario generator, different simulation 
scenarios can be configured with respect to the route 
and the road participants (R6). This configuration is 
then automatically transferred to the simulation 
model. In order to better interpret the events in the 
scenario during and after the simulation, an additional 
rudimentary visualization is implemented. The 2D 
and 3D visualization is based on the Bird's-Eye Scope 
and the plot function of MATLAB (R11). 

The configuration and creation of the scenario is 
also done by a GUI or a script (R12). With the 
possibility of script-based scenario and ANN 
generation, simulation sequences can be automated 
(R8). The corresponding model parameters are 
automatically configured and updated (R7). Just as 
with the developed driving functions and models, a 
lean and computationally optimized programming 
must also be taken into account for the realization of 
the scenario and ANN generator as well as the 
automation mechanisms (R13). 

5 REALIZATION OF THE 
SIMULATION ENVIRONMENT 

Figure 1 shows the setup and structure of the 
simulation environment. It mainly consists of the 
simulation model itself and the control of the 
simulation environment. In the simulation model, the 
modeling and the calculation of the simulation take 
place. It contains the models, parameters and 
functions of the entire ego vehicle in the desired  
 

 
Figure 1: Setup and structure of the simulation environment 
for automated model configuration for the design and 
validation of AI-based driving functions. 

modeling depth as well as the environment simulation 
defined in the scenario. The ego vehicle is the "own" 
vehicle for which the automated driving functions are 
developed. The ego vehicle is usually modeled in a 
very detailed way (in contrast to the other third-party 
vehicles) and contains several components in the 
desired modeling depth, depending on the 
application. These include, for example, the driving 
functions to be developed (AI-based or otherwise), 
sensors, vehicle dynamics, communication or 
component models. These individual model 
components of the ego vehicle communicate with 
each other as well as with scenario model components 
via defined interfaces. The scenario model includes 
the various components of the driving environment, 
such as route models with infrastructure, third-party 
vehicles, other traffic participants including their 
behavior or information from V2X communication. 

Before any simulation can take place, the 
simulations must first be configured. Thus, the 
control of the simulation environment is divided into 
the configuration of the simulation cycles on the one 
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hand, and the simulation control and monitoring on 
the other hand. The configuration of the simulation 
cycles is basically the input interface of the user. With 
the scenario generator it is possible to select how 
exactly each simulation should look and run 
according to the function specification. For example, 
the route, the type, number and movement of other 
road users, etc. can be set. Of course, the composition 
and modeling depth of the ego vehicle must also be 
defined.  

As mentioned, this simulation environment can 
be used to design not only AI-based functions, but 
also functions based on conventional methods. 
However, since this paper focuses on the use of ANN, 
the connection of the simulation to their training will 
now be described. After the general setting of the 
simulations has been determined, it is important to 
first configure the ANN architectures to be used. The 
ANN generator allows a convenient configuration of 
these ANNs in order to insert them into the simulation 
as a model component (driving function). The 
training of the ANNs is always iterative and requires 
the execution of several simulations in the whole 
scenario in which the ANN is used with the respective 
architecture and the associated weights. The goal of 
the training or the simulations is the successive 
improvement of the ANN performance with respect 
to the development requirements. The simulations run 
according to a specific scheme depending on the 
training algorithm and training parameters. The 
configuration of the training in the ML Configuration 
allows the simulations (also ML cycles) to be 
automatically adapted and executed according to this 
scheme. In summary, the information from the user 
input is used as execution control for the “Control and 
Monitoring of the Simulation” (Figure 1). 

Thus, an internal flowchart is generated to 
automate the simulation cycles. In it, for example, 
several ML cycles are started first in one scenario and 
then in another. Before each cycle, the corresponding 
parameters of the active configuration are loaded and 
transferred to the simulation model via the MATLAB 
workspace. In this way, the model is automatically 
updated. The workspace serves as an interface 
between the simulation control and the simulation 
model. It enables the recording and storage of 
simulation data for visualization and later evaluation. 
Furthermore, it transmits selected variables for model 
monitoring. In case of previously defined, 
inadmissible conditions, the simulation is 
automatically aborted. 

6 SIMULATION AND 
EVALUATION 

6.1 Description of the Use Case and 
Modeling 

To demonstrate this, a driving function for automated 
lateral guidance at constant speeds on arbitrary, one-
lane routes without other road users is to be designed 
in this use case. The example is consciously chosen 
in a compressed way to show the simulation and time 
effort. This is to illustrate the benefit of the automated 
model configuration. 

Since the ego vehicle’s speed is constant in this 
application, a linear single-track model is used to 
represent the vehicle dynamics. Automatically 
generated routes according to the guidelines of the 
German Federal Highway Research Institute with a 
constant width of 3.5 m form the environment. The 
sensor model consists of eleven lines, which detect 
the distance to the lane boundaries in an angular range 
of ±40 ° and a radius of 8 m. Figure 2 a) and b) 
illustrate the use case with the visualization function 
of the simulation environment. Other vehicle 
components and communication systems of the ego 
vehicle are not considered. The automated lateral 
guidance is executed by an ANN in the simulation. 
The eleven sensor values are the inputs, a 
corresponding steering angle is the output. 

The ANN is supposed to learn a natural steering 
behavior with a self-implemented RL method, so 
called Genetic Algorithms (GA). Natural steering 
behavior in this case means constantly keeping the 
center of the road and avoiding strong or high-
frequency oscillations to ensure safe and comfortable 
driving behavior. GAs are a group of algorithms that 
imitate the natural process of evolution in order  
to successively approach an optimal solution. A so 
 

 

 
Figure 2: Overview of the use case and modeling. 
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called population, which consists of several solution 
candidates (individuals), evolves generation by 
generation by selection, recombination and mutation. 
A population size of 50 means here that 50 different 
ANNs are simulated in one generation. The iterative 
character of the GA tends to result in relatively many 
simulations. 

Figure 2 c) shows an overview of the basic 
structure of the simulation model. In a simulation, the 
ego vehicle is placed on the track or scenario. There, 
in one simulation step, the sensor model implicitly 
captures the position and orientation of the ego 
vehicle on the track via the eleven sensor lines. The 
eleven sensor signals are passed to the ANN which 
calculates a steering angle. This is used in the vehicle 
dynamics model to calculate a new vehicle position 
on the track. This process is repeated until the ego 
vehicle reaches the destination or exceeds one of the 
road markings. The GA is actually located outside the 
simulation model. The associated reward function 
accesses simulation data to evaluate the behavior of 
individuals. The GA uses this information to update 
the connection weights of the ANN. For this purpose, 
several simulation runs are performed according to a 
certain scheme of the ML cycle (Section 6.2). 

6.2 Configuration of the Simulation 
Cycles 

As described in section 3, the determination of the 
ANN architecture and the parameters of the ML 
algorithm is always empirical. Furthermore, it is 
important to pay attention to the generalization 
capability when training ANNs. In this case, this 
means that the ANN must be able to perform the 
automated lateral guidance even on unknown routes. 
To consider this aspect directly during the training, 
several test runs are performed directly after every 
single training. Thus, it is necessary to configure 
several different simulations. 

In order to successively achieve an ideally 
designed driving function, multi-step tests must be 
implemented in the configuration of the simulation 
cycles. The simulation cycle always consists of 
several ML cycles. One ML cycle always includes a 
training of one ANN architecture with one GA 
parameter set on one route with one reward function, 
followed by four test runs on additional routes. While 
the training phase of the GA consists of many 
separate simulations for the individuals and 
generations, only the best individual from the training 
is tested in each of the test runs. Thus, the number of 
simulations 𝑆௜  to be performed per ML cycle 𝑖 is a 
function of the population size 𝑃௜ , the number of  
 

 
Figure 3: Sequence of the automatic simulation execution. 

generations 𝐺௜  and number of test runs 𝑇௜ . The 
number of simulations in the total cycle 𝑁ீ is the sum 
of all 𝑆௜ for the different ML cycles or configurations 𝐾ெ௅: 𝑁ீ = ෍ 𝑆௜௜ ∈ ௄ಾಽ = ෍ 𝑃௜ ∙ 𝐺௜ + 𝑇௜ ∈ ௄ಾಽ  (1)

Assuming a population size of 50 and a 
generation number of 25, 1254 simulations are 
consequently performed in one ML cycle. 

The first configuration involves the investigation 
of six variants of the GA parameter sets for training a 
base ANN (Figure 3 a)). The base ANN is a non-
optimized ANN that is assumed to be able to perform 
the function fundamentally. The same is true for the 
basic reward function. The resulting optimal GA 
parameter set is used to determine the best of twelve 
preconfigured ANN architectures, as shown in Figure 
3 (b). In the final step (Figure 3 c)), the actual 
optimization of the ANN behavior is performed by 
performing further ML cycles with nine different 
reward functions. According to equation (1), the total 
number of simulations 𝑁ீ  performed is in the high 
six-digit range. Without the automatic model 
configuration of the automated simulation 
environment, the required effort would have 
exceeded a reasonable level. 

a)       ML Cycles

Parameters Variants
ANN-Architecture* 1
Route 1…5
Reward Function 1
GA-Parameters 1…6

6

b)       ML Cycles

Parameters Variants
ANN-Architecture* 1…12
Route 1…5
Reward Function 1
GA-Parameters best (a)

12

c)       ML Cycles

Parameters Variants
ANN-Architecture* best (b)
Route 1…5
Reward Function 1…9
GA-Parameters best (a)
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Figure 4: Simulation results of the use case on a test track. 

6.3 Simulation Results and Evaluation 

After the automatic execution of all configurations 
from Figure 3, a function for automated lateral 
guidance has been created. The ANN can safely and 
comfortably take over lateral guidance on any route 
in a speed range from 30 to 70 km/h. Corresponding 
simulation results are shown in Figure 4. There, the 
lateral deviation from the middle of the lane Δ𝑦 
(Figure 4 a)), the steering angle 𝛿 (Figure 4 b)) and 
the steering angle velocity 𝛿ሶ (Figure 4 c)) are shown 
for different fitness functions over the x-coordinate of 
a test track (Figure 4 d)). The figure thus illustrates a 
subsection of the ML cycle from Figure 3 c) for 
optimizing the behavior with the reward function. 
The best driving behavior in terms of comfort and 
safety was achieved with the 𝐹𝑖𝑡଼଴%  function 
(yellow) due to the lowest lateral deviation and 
oscillations. In this fitness function, the ego-vehicle 
or ANN was rewarded for moving forward on the 
track as well as for reaching the destination. It was 
penalized for deviations from the middle of the lane 
as well as for large steering angle changes. For more 
detailed descriptions of the design and validation of 
the driving function from this use case, please refer to 
the previous work (Yarom et. al., 2020a) and (Yarom, 
Jacobitz and Liu-Henke, 2020b).  

The focus of this paper is on the simulation 
environment. For its evaluation, a single automated 
ML cycle was hand-programmed in MATLAB and 
compared with the simulation environment in terms 
of runtime. In the hand-programmed version, all 
 

 
Figure 5: Comparison of simulation times in the use case. 

model components according to Figure 2 c) as well as 
the visualization were implemented. The comparison 
according to Figure 5 showed that a single ML cycle 
in the hand-programmed environment takes about 22 
h and 36 min. In the simulation environment for the 
automated model configuration, on the other hand, an 
ML cycle with identical configuration takes about 28 
min, which is only about 2% of this time. 
Furthermore, it is possible to switch off the 
visualization in the simulation environment. In this 
way, the time required for each ML cycle can be 
further reduced to a quarter. 

The simulation environment presented in this 
paper now makes it possible, on the one hand, to 
design automated vehicle functions based on ANN. 
On the other hand, all further requirements from 
section 4.2, e.g. optimized computing time, 
compatibility, usability and automation, have been 
implemented. Thus, it exactly fulfills the originally 
intended purpose of uniting the worlds of "modeling 
and design of automated vehicles" and "AI 
development" or their respective advantages. Thus, a 
tool has been created with which the development and 
validation of automated vehicles can be developed 
safely and efficiently according to the methodology 
presented in section 2. The result is a significant 
contribution to the progress of the project and 
autonomous driving.  

7 CONCLUSION AND OUTLOOK 

In this paper, a simulation environment for automated 
model configuration for the design and validation of 
AI-based driving functions was presented. Starting 
with an introduction and motivation, the design 
methodology and the state of the art were presented. 
From this, the necessity for the development of the 
presented simulation environment was derived and 
requirements for it were defined. The implementation 
of the requirements was described in the concept and 
the realization. The result is a simulation environment 
based on MATLAB and Simulink, which has a high 
degree of compatibility with existing development 
environments. In addition, it can automatically 
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execute and visualize large simulation series in a 
short time after a user-friendly configuration. This 
makes it ideally suited for use in the design 
methodology presented. Finally, the simulation 
environment was used in an example application, 
demonstrating its benefits and functionality. 
Individual results of the application as well as their 
relevance for the simulation environment were 
presented and critically discussed. Future work steps 
include extending the model and function library and 
integrating it with dSPACE ASM. 
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