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Abstract: As the need for new techniques to analyze obfuscated software has grown, recent work has shown the ability
to analyze programs via machine learning in order to perform automated metadata recovery. Often these tech-
niques really on disassembly or other means of direct code analysis. We showcase an approach combining
code visualization and image analysis via convolutional neural networks capable of statically classifying ob-
fuscation transformations. By first turning samples into gray scale images, we are able to analyze the structure
and side effects of transformations used in the software with no heavy code analysis or feature preparation.
With experimental results samples produced with the Tigress and OLLVM obfuscators, our models are ca-
pable of labeling transformations with F1-scores between 90% and 100% across all tests. We showcase our
approach via models designed as both a binary classification problem as well as a multi label and multi output
problem. We retain high performance even in the presence of multiple transformations in a file.

1 INTRODUCTION

Obfuscation involves the process of transforming a
given program into one that is syntactically differ-
ent but semantically equivalent (Collberg and Nagra,
2009). This new obfuscated program now has its in-
ner workings, code and/or data, changed so that they
are hidden and difficult to understand to attackers,
both human and machine. Obfuscation is an impor-
tant security tool for intellectural property protection,
but is also employed by malware authors. Deobfusca-
tion exists to remove transformations so that further
analysis can proceed . From a protection viewpoint,
an adversary could employ metadata recovery attacks
which reveals the type of obfuscation used (Salem
and Banescu, 2016). This information then fuels other
techniques, meaning speedy and effective metadata
recovery methods are of high importance (Coogan
et al., 2011).

When applied to a program, different transforma-
tions exhibit varying degrees of complexity (Tofighi-
Shirazi et al., 2019). By studying these side effects,
one can associate patterns with different transforma-
tions (Jones et al., 2018) (Banescu et al., 2016). By
profiling these unique side effects, it is possible to
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create a classifier using machine learning which can
identify what transformations were used (Tofighi-
Shirazi et al., 2019). This kind of analysis can be used
to expedite and enhance software analysis and meta-
data recovery attacks (Salem and Banescu, 2016).

It has been shown that a piece of software can
be transformed into a gray scale image (Nataraj
et al., 2011). Prior work using binary visualization
has mostly focused on determining if a given binary
is malware or not, with extended work on labeling
malware families. We extend this further by using
binary visualization and Convolutional Neural Net-
works (CNN) to label transformations implemented
in a binary to hinder reverse engineering and analy-
sis. Our work showcases not only a more fine-grained
analysis, but also can be used to label protections in
non-malware binaries (legitimate software). To the
best of our knowledge, no one has performed this kind
of analysis using binary visualization.

In this paper, we show how images of obfuscated
binary code can be analyzed by machine learning al-
gorithms to derive features based on spatial relation-
ships. Our tests frame this as both a binary problem
through the use of many individual models as well as
a multi-label problem via a single model. Both ap-
proaches are shown to be highly effective at classify-
ing a transformation in a program, even in the pres-
ence of layered transformations.

854
Parker, C., McDonald, J. and Damopoulos, D.
Machine Learning Classification of Obfuscation using Image Visualization.
DOI: 10.5220/0010607408540859
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 854-859
ISBN: 978-989-758-524-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Contributions. We make the following contribu-
tions:

• We show how visualization of binary code and the
use of CNN enable metadata recovery attacks on
obfuscated programs, with no reverse engineering
required.

• We show effectiveness of supervised learning
models trained on images of obfuscated programs
at classifying transformations, with F1-scores >
90% for both binary and multi-label classification
across a range of transformations.

• We demonstrate binary image analysis provides
higher granularity and F1-scores > 90% for sam-
ples with layers of obfuscating transformations.

• We show our image analysis technique is effective
against well known obfuscators such as Tigress 1

and OLLVM (Junod et al., 2015).

2 BACKGROUND

In this section we briefly discuss the basics of soft-
ware obfuscation and introduce the obfuscating trans-
formations used in our work. We then explain con-
cepts related to supervised machine learning and the
area of code visualization.

2.1 Obfuscating Transformations

Obfuscation transformations are traditionally divided
into three categories: 1) layout, focuses on mak-
ing source-code unreadable; 2) data, focuses on re-
placing data structures; and 3) control, manipulates
branch structures. It is possible for transformations
to be classified as dynamic, which implies that code
changes at run-time (Schrittwieser et al., 2016). Typ-
ical transformations (Collberg and Nagra, 2009) in-
clude:

• Virtualization: creates a process-level virtual en-
vironment by constructing an interpreter in the
form of a large switch statement with a unique in-
struction set.

• Control-flow Flattening: combines branch state-
ments into one large seemingly infinite loop con-
trolled by a dispatcher

• Just-in-Time Compilation: adds dynamic com-
pilation to the transformed program that replaces
target statements in the original program with
method calls unique to that statement.

1http://tigress.cs.arizona.edu/

• Encoding: obscures static values within a pro-
gram via parameterized functions instead of clear
text to help avoid pattern matching.

• Opaque Predicates: An if-then-else statement
that always evaluates to the same true or false con-
dition, crafted in order to confuse static analysis.

2.2 Supervised Machine Learning

Supervised Learning is the category of machine learn-
ing that deals with the analysis of labeled data, with
the goal of correctly labeling previously unseen sam-
ples (Sutskever and others., 2014). This is accom-
plished using a mapping function f (X) = Y where X
is an unlabeled input of the kind previously analyzed
and Y is the correct label for X (Murphy, 2012). The
function is found by using a machine learning algo-
rithm to train a model on the data. Proper learning
will approximate f to allow the correct labeling of
any new sample. When the labels being predicted
represent classes this task is known as classification.
The number of classes will further specify a task as
binary classification (classes = 2) or multi-class clas-
sification (classes > 2). It is also possible in certain
tasks for inputs to belong to more than one class, re-
sulting in multi-label classification (Bishop, 2006).
Machine learning classification of images involves
capturing spatial relationships of the pixels (Albawi
et al., 2017). While there are many ways to achieve
this, Convolutional Neural Networks (CNN) have be-
come a popular choice. CNNs were designed for im-
age analysis in mind and create information from im-
age pieces, called convolutional layers, in order to un-
derstand the whole (Sainath et al., 2013). CNN-based
image analysis has also been used widely for malware
detection (Kabanga and Kim, 2017) (Kalash et al.,
2018).

2.3 Code Visualization

Since the pixel of a gray-scale image is a value be-
tween 0 and 255, it is possible to translate a file into
an image by having the bytes of the file become the
pixels of the new image. From this newly formed
image, it is possible to visually see certain features,
patterns, and structures that are present in the source
file (Seok and Kim, 2016). For instance, when used
on a program such as a Windows binary, the sections
of the program (.text, .data. etc.) are distinct from
each other. Previous work has shown that code im-
ages can be used for malware classification (Vasan
et al., 2020). Fig. 1 is an example of what a typical
image made from an executable file will look like.
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Figure 1: A windows executable converted to gray-scale.

3 METHODOLOGY

In this section we will walk through the steps of our
methodology. To train and test our models, we first
create a data set of images produced from both clean
and obfuscated programs. The obfuscation of our
samples is accomplished with the Tigress and OL-
LVM obfuscators. We apply one or more transfor-
mations to each program, grouping the into samples
with a single transformation and those with two or
more. This is to allow us to perform multi-label clas-
sification. We have our own python code to then take
in the programs and produce the needed images. With
our two data sets created, we move to the design and
training of our CNN. Multiple version of our CNN
our trained to to be used in different experiments that
will be explained in Section 4.

3.1 Obfuscation Images

Using existing data sets of C programs, we use ob-
fuscators to apply various transformations in order
to create a large set of obfuscated programs. The
application of obfuscation is done in two sets. For
the first, we apply only single transformations to the
clean files. Every file is obfuscated with each trans-
formation to produce a number of variants equal to
the number of transformations. Then, for the sec-
ond set, we once again obfuscate the clean samples,
but this time performing multiple transformation lay-
ered on top of each other. This produces a number
of variants equal to the number of chosen permuta-
tions. Once all the obfuscated samples are produced,
we compile the samples and use a Python script in or-
der to create our obfuscation images. As mentioned
before, this process is done by reading in a file byte by
byte and creating a .png gray-scale image, whose pix-
els are formed from each consecutive byte.The size of
a generated image is based on the size of the binary
in question. Any pixels in an image that do not have

a corresponding byte in the binary will be left a black
pixel (a zero). For our images, the width of the image
is based on the data length of the input file, while the
height is obtained from the file size and width. Since
we tested and trained on small samples, this produced
images of a similar size. It would be possible to fix
one of these values, resulting in images of a constant
height or width. Our width ranges are based on the
ones given in (Seok and Kim, 2016). Once all images
have been created, we form two data sets. One con-
tains images with either none or only a single layer of
obfuscation. The second contains images with either
none or a permutation of obfuscations.

3.2 Convolutional Neural Network

For our supervised learning model, we choose to use a
CNN, as high accuracy has been observed from CNN
when classifying images made from malware samples
(Nataraj et al., 2011). For our model architecture, we
choose to use a small model consisting of two con-
volutional layers which feed into two dense layers.
This is because models with this architecture and oth-
ers similar to it have been shown to be proficient at
classifying the Malimg (Bensaoud et al., 2020; Mal-
let, 2020) data set without requiring high degree of
resources. The specifics of our model can be seen in
Fig. 2.

Figure 2: Architecture of our CNN.

Our input layer is shaped to take in the pixel values of
our images as opposed to extracting some feature or
aspect of the whole image. This is to see how much
information can be obtained without a high degree of
preproccesing or prior analysis. Since images from
various binaries can vary in size, all images are re-
sized to 64*64 before being given into the model.
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3.3 Multi-label Classification

We frame our classification problem multiple ways
using the types described in Section 2. We do this
to show the overall robustness of code image analy-
sis, as well as to see which method achieves the best
results

Binary-classification. Classification of obfuscating
transforms becomes a binary problem by having a
classifier only detect a specific transformation. This
requires a unique classifier for each transform, but al-
lows the potential for the model to better learn specific
features of the transformation without requiring large
amounts of data or a larger network. This enhanced
understanding could result in high accuracy even on
multi-layered samples. Our CNN can become a bi-
nary classifier by reducing the number of nodes in the
output layer to 2. Then, by grouping the data sets by
type, our binary CNN can be used across both data
sets (Tofighi-Shirazi et al., 2019).

Multi-class and Multi-label. Both Multi-Class and
Multi-label classification is accomplished via training
one model to detect multiple classes of transforma-
tions (Tsoumakas and Katakis, 2009). The difference
lies in the number of transformations present on the
input files. If samples are only obfuscated with one
transform, then the model would only have to label
the one transform. This is a Multi-Class model. How-
ever, when given the Multi-Layered samples which
each have more than one transformation, the model
must now identify all transformations in use. This is
a Multi-Label problem (Murphy, 2012). Multi-Class
CNN can be easily used for Multi-Label problems by
making use of the sigmoid activation function in the
output layer (Sutskever and others., 2014). This al-
lows us to test our model on both the single and multi
layer data sets.

4 EXPERIMENTS

To evaluate the effectiveness of image analysis for ob-
fuscation detection, we perform a number of experi-
ments on both our single and multi layer data sets.
These experiments are:

1. Binary classification of obfuscating transforms on
single and multi layer samples.

2. Multi class classification of obfuscating trans-
forms on single layer samples.

3. Multi label classification of transforms on multi
layer samples.

For training and evaluating the models in our exper-
iments, we make use of traditional k-fold cross vali-
dation with 10 folds as well as the functionality-based
validation approach from in Salem et al. related work.
Models were evaluated using the F1-Score to take into
account false positives and negatives produced by the
models.

4.1 Data Sets and Environment

The C programs used to create our obfuscated variants
are the same as the ones used in (Banescu et al., 2017)
and consist of:

1. A set of 48 programs with few lines of code con-
structed by varying code characteristics such as:
symbolic inputs, depth of control flow, amount of
loops, etc.

2. Programs automatically generated by the Ran-
domFuns transformation of the Tigress C Diver-
sifier/Obfuscator.

3. Non-cryptographic hash functions

4. Algorithms taught in Bachelor level computer sci-
ence and programming courses.

This brings us to a data set of 5,136 source c files. Af-
ter producing the obfuscated variants with Tigress and
OLLVM, our data set consists of over 100,000 images
split between both data sets. A list of the commands
for our obfuscators and the permutations used for the
multi layered samples will be made available, along
with the code used for our experiments. Transforma-
tions from both obfuscators have parameters which
when altered change how the transformation is ap-
plied. These were varied during sample generation
to ensure that there is variance for specific transfor-
mations within the data set.

All experiments were performed on a desktop
computer running Windows 10 with an AMD Ryzen 7
3700X processor and an Nvidia 2070 Super GPU. The
Keras python package with a Tensorflow back-end
was used for the creation and training of our CNN.
An Ubuntu VM was used for running Tigress.

4.2 Transformation Classification

We first focus on transformations from the Tigress ob-
fuscator, followed by OLLVM. We then evaluate the
ability of our models to classify all transformations
present in our data set. We begin each phase first
with samples containing a single transformation, be-
fore moving to multiple transforms. All models were
evaluated using our two approaches and can be seen
in the relevant tables. Kfold results are in black while
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the functional results are in red. Clean samples are
those with no obfuscations present

Table 1: F1-Scores for all Tigress transformations.

Tigress. A set of binary models and a multi-class
model were created and evaluated for this portion.
Both types of models performed comparably, with
both achieving f1-scores above 99% for all transfor-
mations. Both evaluation methods produced similar
results. Samples with multiple transforms were eval-
uated next, with both types of models again achiev-
ing similar scores. The added complexity of layered
transformations only slightly impacted classification,
with only some transformations seeing a 1 - 2% de-
crease to score. Table 1 contains the results for these
tests.

OLLVM. Similar to previous, our models were able
to classify the OLLVM transforms accurately across
single and multi layer samples and both evaluation
methods, with only marginal differences. The excep-
tion is ’sub’ transform, which achieved a low f1-score
in the multi layered samples due to a hugh number of
false positives. Table 2 shows the F1-scores for our
models.

All Transformations. Table 3 shows the results for
the final test. Training the models across all trans-
formations had very limited to no impact on the per-
formance of the models. We chose to combine the
Bcf and Fla transformations from OLLVM with the
Flattening and Opaque Predicate transforms from Ti-
gress to view the impact on classification. Both the bi-
nary and multi model performed extremely well, both
maintiaining high scores. This implies that, at least
for our data set, transformations can be classified ac-
curately even if the model is expected to identify a
broad range.

4.3 Limitations

We acknowledge limitations in the experiments per-
formed. Since we make use of the same data used in
other papers, we inherit the flaws of the data, namely
that it consists only of small programs and may not

Table 2: F1-Scores for all OLLVM transformations.

be a true reflection of the larger scope of software.
However, the features of these programs would be
present in larger samples, allowing our image anal-
ysis to still be applicable and accurate. Another po-
tential limitation is that as programs become larger,
so do the images created from them. Larger images
would become more computationally expensive to an-
alyze and train on. However, this can be compen-
sated for by extracting parts of the image for analy-
sis. Dynamic obfuscation methods could potentially
evade our method, however it is possible image anal-
ysis could be used to detect the portions of the sample
responsible for dynamically altering the code. This
has been shown to be possible via other methods.

5 RELATED WORK

(Salem and Banescu, 2016) demonstrated that an ML
model could be effectively trained to perform meta-
data recovery on an obfuscated program, instead of
using manual reverse engineering to identify transfor-
mations used. They proposed that since transforma-
tions leave uniquely identifiable side effects in pro-
grams, it would be possible to use ML to detect these
changes. (Tofighi-Shirazi et al., 2019) furthered meta-
data recovery to account for the layering of multi-
ple obfuscations in a single program, allowing de-
tection of multiple transformations types versus one.
Their fine-grained approach was achieved via seman-
tic analysis of code segments. Both of these ap-
proaches have the same end goal as our method of
image analysis; however, our method does not rely on
any direct analysis of the program.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we demonstrated effectiveness of a su-
pervised learning approach based on code visualiza-
tion for classifying obfuscating transformations. The
experiments performed in this work represent an ini-
tial study and proof of concept to determine if visual-
ization is viable for this extended analysis and to serve
as the basis for more in depth work. Even on samples
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Table 3: F1-Scores for all transformations.

with multiple transformations present, a CNN trained
on such data was able to properly label the transfor-
mations. Across all testing, in only one instance did
any of our models perform below a 90% F1-score and
most tests performed at > 95 F1-score. We conclude
that code visualization offers a potentially powerful
adversarial means for classifying program protection
types, without the need for reverse engineering or
symbolic execution. Use and expansion of this avenue
of analysis could greatly enhance applicability of the
technique to other avenues of metadata recovery at-
tacks and software analysis. In showing that image
analysis can be used to classify obfuscating transfor-
mations, we believe that there many directions that
this work can be taken in. One potential avenue is to
explore the granularity of our classification by test-
ing if image analysis can detect features of obfuscat-
ing transform deeper than simply the type. It is also
worth exploring if image analysis be used to label the
portions of the image that correspond to transformed
code. That capability would assist even further in re-
verse engineering and analysis. The perceived limi-
tation of file size could also be explored in this way,
as if sections of an image could be labeled as obfus-
cated instead of a whole image, this would allow the
use of sub image searching. This would allow large
programs to be broken into many smaller images, re-
quiring less intensive analysis.
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