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Abstract: Visual navigation is becoming the primary approach to the way unmanned vehicles such as mobile robots and
drones navigate in their operational environment. A novel type of visual sensor named dynamic visual sensor
or event-based camera has significant advantages over conventional digital colour or grey-scale cameras. It
is an asynchronous sensor with high temporal resolution and high dynamic range. Thus, it is particularly
promising for the visual navigation of mobile robots and drones. Due to the novelty of this sensor, publicly
available datasets are scarce. In this paper, a total of nine datasets aimed at event-based visual navigation
are reviewed and their most important properties and features are pointed out. Major aspects for choosing an
appropriate dataset for visual navigation tasks are also discussed.

1 INTRODUCTION

The essential functionality of mobile robots is their
ability to navigate in an operating environment. The
classic way to navigate a mobile robot in its environ-
ment is to count wheel turns and then estimate a mo-
tion path. It is called wheel odometry. An alterna-
tive to wheel odometry is inertial odometry, which
utilises an inertial measurement unit (IMU), which
can measure angular velocity, linear acceleration, and
the magnetic field.

Visual navigation, which started to be used in mo-
bile robots and drones quite recently, uses visual sen-
sors (digital cameras) as its main source of data and
is a more accurate approach. Visual navigation can be
divided into two areas of research (Scaramuzza and
Fraundorfer, 2011): visual odometry and visual si-
multaneous localization and mapping (visual SLAM).
The former provides only relative pose estimation -
that is, only the local position of a vehicle on a map
- whereas the latter deals with the global position
of a vehicle on a map. Visual SLAM uses loop-
closures (previously seen parts of operational envi-
ronments) that allow to fully re-estimate the actual
position of the vehicle by using all the previously
seen data. Therefore, visual SLAM is a computa-
tionally expensive approach and has important limi-
tations when operating on real-time systems and mo-
bile robots or micro-drones. On the other hand, vi-
sual odometry is more efficient and requires signifi-
cantly fewer computational resources. However, vi-

sual navigation systems equipped with conventional
digital cameras also have limitations such as motion
blur effect, data redundancy, relatively low dynamic
range, power-consuming and computationally expen-
sive devices.

Event-based vision is a new generation of com-
puter vision. It involves a dynamic visual sensor
(DVS), also called an event-based camera (EBC) or
’silicon retina’ (Brandli et al., 2014), as the primary
sensor. The DVS is a biologically inspired alterna-
tive to conventional digital cameras designed to over-
come their limitations. The DVS imitates the oper-
ating principle of the retina. Instead of transmitting
all the pixels of a frame (as in the case of conven-
tional digital cameras) from the image sensor, the
DVS asynchronously transmits only the pixels that
undergo some threshold brightness intensity changes.
DVS cameras are power-efficient, have a high dy-
namic range and high temporal resolution. Thus, the
DVS is a particularly promising sensor for use in
mobile robots and drones as the main component of
event-based visual navigation.

Developing methods of visual navigation requires
a source of repeatable data. Thus, datasets are the
most exploited resource for different kinds of bench-
marks, evaluation of algorithms, models training,
and performance measurement. Publicly available
datasets are useful when real sensors are not physi-
cally available or when research is mainly concerned
with methods rather than data preparation. A dataset
is a volume of specific data stored in a structured way
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and documented for other users. Datasets are useful
when either real sensors are not available or when it is
necessary to use data prepared in a specific way. This
paper focuses on the datasets aimed at visual naviga-
tion tasks (e.g. structure from motion and particularly
for Visual Odometry (VO), reconstruction, segmenta-
tion, and visual SLAM) using a DVS camera. The
rest of the paper is organized as follows. Section 2
provides a brief description of the event-based vision.
Section 3 offers a concise survey of publicly available
event-based visual navigation datasets. Finally, Sec-
tion 4 discusses the reviewed datasets and provides
general conclusions.

2 EVENT-BASED VISION

Event-based vision is a new technology of visual data
generation by a visual sensor, as well as of the way
this new type of visual data is processed. Instead of
generating a sequence of image frames, a DVS sensor
produces a stream of events. Each event represents a
particular pixel’s intensity level change above a cer-
tain threshold value. An event is a tuple of x,y coordi-
nates of the pixel, with a timestamp measured in mi-
croseconds and polarity, which represents the direc-
tion of the intensity level change. The DVS produces
data only for scenes - views of operational environ-
ments from the sensor’s perspective - with movement
caused either by the sensor’s ego-motion or move-
ments in the scenes themselves, for example, see Fig-
ure 1.

Address-Event Representation (AER) (Conradt
et al., 2009) is a standard for communication, pro-
cessing, and storage of event data, which was first
introduced in (Mahowald, 1992). Subsequently, the
jAER project was introduced by the event-based vi-
sion community in 2006. It provides API for work
with various versions of DVS, as well as many dif-
ferent methods for event data processing 1. Within
the jAER project, many groups of researchers pro-
vide their own methods of implementation (Mueg-
gler, 2017), (Brandli et al., 2016), (Katz et al., 2012),
(Rueckauer and Delbruck, 2016), (Liu and Delbruck,
2018), (Benosman et al., 2014). Another resource re-
lated to jAER is the C library2 named cAER, which is
an optimized jAER project for embedded computers
and is distributed as a standalone library. Since 2019,
Inivation AG has been developing a new software de-
velopment library3 for DVSs, with interfaces for C++,
Python and ROS.

1https://github.com/SensorsINI/jaer/
2https://github.com/inivation/libcaer
3https://inivation.com/dvp/

(a)

(b)
Figure 1: Example form the dataset (Zujevs et al., 2021):
(a) colour frame acquired by an RGB-D camera, (b) events
represented according to the colour frame scene and pro-
duced by the camera’s ego-motion, and then accumulated
over a short period of time; red markers are positive events
(pixels whose intensity increases) and blue markers are neg-
ative events (pixels whose intensity decreases). The events
are timestamped with microsecond resolution.

The field of event-based vision is growing fast. In
(Gallego et al., 2020), a survey of event-based vision
is presented.

3 RECENT DATASETS

The dataset4 presented in (Barranco et al., 2016) con-
tains data sequences from a DAVIS240 (events and
APS frames) and a Microsoft Kinect Sensor (RGB-D
sensor). The sensors are mounted on a Pan-Tilt Unit
(PTU-46-17P70T) on board a Pioneer 3DX Mobile
Robot. The PTU provides the pan and tilt angles and
angular velocities while the mobile robot provides the
direction of translation and speed. The dataset con-
tains real and synthetic data in a total of 40 static se-
quences for the indoor environment - an office with
or without people. The data sequences contain ob-

4https://github.com/fbarranco/eventVision-evbench
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jects of different sizes, textures and shapes, and the
sensors are rotated or translated to some degree. The
events are provided both in AERdat2.0 data format
and in matlab files while depth is provided in pgm
and matlab files. Also, the author includes the syn-
thetic data generated from conventional CV datasets.
The ground truth is provided by 3-D motion parame-
ters in textual data format for the 3-D translation and
3-D pose of the camera (respecting the DAVIS coor-
dinates). In addition, the dataset provides the ground
truth as 2-D image motion fields generated from the
depth and the 3D motion. Calibration of the DAVIS
and the RGB-D sensor is also provided in the dataset.

The dataset5 published in (Weikersdorfer et al.,
2014) contains 26 data sequences (each 20-60 sec-
onds long) from an eDVS and a PrimeSense sensor (a
colour camera equipped with a depth sensor). Ground
truth data are provided in the bvh data format from an
OptiTrack V100 motion capture system. Data from
other sensors are provided in the text data format.
Events are provided in both the eDVS’s pixel coordi-
nates and in the PriveSensor’s pixel coordinates with
depth values. The data sequences are mostly pro-
vided in 640x480 resolution at 30Hz. Each data se-
quence is accompanied by the estimated path of the
proposed SLAM method. The dataset contains data
of hand-held 6-DOF motion in static and dynamic
office scenes with and without people. Along with
the dataset, the authors propose a novel event-based
3D V-SLAM (EB-SLAM-3D) and eDVS calibration
method, which uses a checkerboard calibration target
and a blinking LED in the centre to estimate the pixel-
to-pixel correspondence between the eDVS and the
RGB-D sensors.

In (Mueggler et al., 2017b) proposed dataset is
aimed at comparing event-based SLAM methods.
The dataset6 containing a total of 27 data sequences
from DAVIS240 and synthetic data sequences (each
2-133 seconds long) is presented. The sequences pro-
vide hand-held and slider motions. The dataset in-
cludes the following objects and scences: patterns,
wall poster, boxes, outdoors, dynamic, calibration, of-
fice, urban scenes, scenes with objects captured by a
motorized linear slider, 3 synthetic planes, and 3 syn-
thetic walls. The ground truth data are provided by a
motion capture system and by the DAVIS’s IMU, and,
for some data sequences, by the slider’s position. For
the data captured in outdoor environments, no ground
truth data are provided. Events and IMU data are pro-
vided in text files while images are available in png
files. The data sequences are also available in rosbag

5http://ebvds.neurocomputing.systems/EBSLAM3D/
index.html

6http://rpg.ifi.uzh.ch/davis data.html

data containers. The authors provide the first version
of a DVS simulator based on the BLENDER tool.

Paper (Binas et al., 2017) offers a dataset7 in-
tended to investigate event camera applications in au-
tomatic driver assistance systems (ADAS). A new up-
date of the dataset is presented in (Hu et al., 2020).
It was used for training a neural network to predict
the instantaneous steering angle using data from a
DAVIS346. For all the recordings, the camera was
mounted in a fixed position behind a windshield. A
polarisation filter was used in some recordings to re-
duce the windshield and hood glare. The dataset con-
sists of a total of over 12 hours of a car driving un-
der various weather, driving, road, and lighting con-
ditions for seven consecutive days with a total mileage
of 1000km, comprising different types of roads. The
data were stored in the HDF5 data format. A lot of
car parameters were read at 10Hz rate (e.g. steering
wheel angle, accelerator pedal position, engine speed
etc.). The typical duration of the data sequences is 1-
60 min. The data in the dataset tend to be unbalanced.
The authors also provide Python-based tools8 for data
visualization and export.

In (Zhu et al., 2018), the authors present the
first work9 where a synchronized stereo pair of
DAVIS346B was installed on a sensor rig and then
mounted on a hexacopter, on the roof of a car and a
motorcycle. Data were gathered in different environ-
ments and at different illumination levels. From each
DAVIS camera, the following streams of data were
recorded: grey-scale images, events and IMU data.
Additionally, a stereo camera (VI sensor from Sky-
botix) and a LIDAR (Velodyne VLP-16 PUCK LITE)
were used, and data were recorded from the LIDAR,
an indoor and outdoor motion capture system, and a
GPS sensor. A total of 14 data sequences are avail-
able. Ground truth is provided by the motion capture
system for indoor and outdoor scenes. For other data
sequences where the motion capture system was not
available, LIDAR odometry was used. GPS data ac-
company the ground truth data. The data sequences
are provided in rosbag and hdf5 data containers.

In (Scheerlinck et al., 2019), the first color-
event dataset10 recorded by the color version of
DAVIS346 is provided. This is a general-purpose
dataset without ground truth. Also, the updated ver-
sion of ESIM (Event-based Camera Simulator) (Re-
becq et al., 2018) for color events generation is pre-
sented. The dataset contains the following types of
scenes: simple objects, indoor/outdoor, people, and

7http://sensors.ini.uzh.ch/databases.html
8https://code.ini.uzh.ch/jbinas/ddd17-utils
9https://daniilidis-group.github.io/mvsec/

10http://rpg.ifi.uzh.ch/CED.html
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various lighting conditions (daylight, indoor light,
low light), as well as camera motions (linear, 6-DOF
motion) and dynamic motions.

Paper (Bryner et al., 2019) presented a method
that tracks the 6-DOF pose of an event-based cam-
era in an initially known environment described by
a photometric 3D map (intensity + Depth) created us-
ing the classical approach of dense 3D reconstruction.
The method uses direct event data without employing
features, and it was successfully evaluated on real and
synthetic data. The dataset11 was released for public
use. It includes the acquired images and the ground
truth of the camera’s trajectory. In this paper, the au-
thors are more focused on the localization on a given
map. Ground truth data for real data were provided by
a motion capture system. A total of 23 data sequences
are provided within rosbag data containers.

The first dataset (Zujevs et al., 2021) aimed at vi-
sual navigation tasks in different types of agricultural
environment for the autumn season is publicly avail-
able12. It provides a total of 21 data sequences in
12 scenarios. The data sequences were gathered by a
sensor bundle with the following elements onboard: a
DVS240, a Lidar (OS-1, 16 channel), an RGB-D (In-
tel RealSense i435) and environmental sensors. The
dataset is accompanied by sensors calibration results
and raw data used during the sensors calibration pro-
cedure. For each sequence, a video demonstrating its
content is provided. Ground truth is provided by three
LIDAR SLAM methods, where a Cartographer (Hess
et al., 2016) estimated the loop closure more accu-
rately than the other two methods.

The first dataset (Gehrig et al., 2021) aimed at
driving scenarios in challenging illumination condi-
tions, where data are recorded from two monochrome
high-resolution event-based cameras13, two RGB
cameras (FLIR Blackfly S USB3), a LIDAR (Velo-
dyne VLP-16), and GPS (GNSS receiver), is avail-
able in14. In total, it provides 53 sequences 12-2255
seconds long. All the involved sensors were intrinsi-
cally and extrinsically calibrated. Ground truth data
are provided by GPS and estimated depth from fus-
ing the LIDAR data with event and frame-based cam-
era data. The data are provided in the text, png and
hdf5 data formats. All the aforementioned datasets
are summarized in Table 1.

11http://rpg.ifi.uzh.ch/direct event camera tracking/
12https://ieee-dataport.org/open-access/agri-ebv-autumn
13Prophesee PPS3MVCD, 640x480 pixels.
14http://rpg.ifi.uzh.ch/dsec.html

4 DISCUSSIONS

In this section, the aspects of the dataset usage are
discussed. Obviously, the most important factor in
choosing an appropriate dataset is the visual task(s)
that has(ve) to be performed. Some of the common
visual navigation tasks are 2-D/3-D motion estima-
tion (Gallego et al., 2016), scene reconstruction(Kim
et al., 2016), visual SLAM(Vidal et al., 2018) and
image motion estimation (also called optical flow)
(Benosman et al., 2014). All the reviewed datasets
are appropriate for 2-D/3-D motion estimation, at
least when using only the data from a DVS sensor.
Other sensors can improve estimation results if a mo-
tion estimation method or a framework uses sensor
fusion. For the motion estimation task, good re-
sults are obtained by fusing DVS data with IMU and
colour or grey-scale image, as proposed in (Weikers-
dorfer et al., 2014), and (Zhu et al., 2017). How-
ever, an additional requirement arises - the need for
the ground truth motion path. All the datasets, except
for (Scheerlinck et al., 2019), provide ground truth
data (either via a motion capture system or estimated
using data from the other used sensors, for example,
LIDAR data).

The image motion estimation task requires depth
data, such data are available in (Barranco et al.,
2016), (Weikersdorfer et al., 2014), (Zhu et al., 2018),
(Gehrig et al., 2021), and (Zujevs et al., 2021) dataset.

Scene reconstruction allows to reconstruct a scene
- by using an event stream - as grey-scale images, all
the datasets are appropriate for this task.

The visual SLAM task allows estimating the
global position of a mobile robot or a drone on a
map. Visual SLAM requires loop closures in data se-
quences, and the following datasets contain loop clo-
sures: (Mueggler et al., 2017b), (Weikersdorfer et al.,
2014), (Zhu et al., 2018) and (Zujevs et al., 2021).
Ground truth is also an additional requirement for
SLAM method evaluation and comparison purposes.

The data format used in data sequences of a
dataset is the second important aspect that should be
taken into account. There are three common data for-
mats used in datasets: textual (data are stored in text
files), native binary (data are stored in native binary
files associated with the appropriate sensor), rosbag
(data containers used by ROS15). Usually, datasets
use mixed data types of data sequences. For example,
in the dataset (Barranco et al., 2016), textual, binary
and Matlab files are used to store data, and, in (Mueg-
gler et al., 2017b), textual, binary and rosbag files are
used.

15Robot Operating System
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Table 1: Summary of visual navigation datasets: 2014-2021.
Year 2014 2016 2016 2017 2018 2019 2019 2021 2021
Paper (Weikersdorfer et al., 2014) (Barranco et al., 2016) (Mueggler et al., 2017b) (Binas et al., 2017) (Zhu et al., 2018) (Scheerlinck et al., 2019) (Bryner et al., 2019) (Zujevs et al., 2021) (Gehrig et al., 2021)

Visual task
3-D motion estim. • • • • • • • • •
Visual-SLAM • • • • •

Sensors used
DAVIS • • • • • •
DVS • • •
RGB-D • • • • •
LIDAR • • •
Other • • • • •

Sensors mounting point
Hand-held • • • • •
Car • •
Mobile platform • • •
Drone •
Other •

Environment: outdoor
City and country • • • • •
Tunnels • • •
Highways • • • •
Agricultural env. •

Environment: indoor
Office with/without

people • • • • • •
Simple objects • • • •
Posters and HDR •
Agricultural env. •

Ground truth is provided by
Motion Capt.Syst. • • •
IMU • • • •

Other odometry RGB-D
Slider
pos. GPS

GPS
LIDAR

3-D
map LIDAR

GPS
LIDAR
Depth

Data and data format used
Number of seq. 26 40 27 - 14 84 23 21 53

Sequence length
20-

60sec
2-

133 sec 12hours
25ms-
28min

10-
45 sec

111-
337sec

12-
2255sec

Data format
text
bvh

AER
matlab
pgm

text
png

rosbag hdf5
rosbag
hdf5 rosgab rosbag

rosbag
text

AER
png
pcd

hdf5
text
png

Dataset location
URL link Link Link Link Link Link Link Link Link Link

Another two aspects that should be considered are
the availability of ground truth and the sensor coor-
dinate systems used. Ground truth allows to com-
pare methods in a quantitative way by applying dif-
ferent kinds of metrics. Each visual navigation task
has its own type of ground truth. Another aspect is
sensor coordinate system used as primary within data
sequences. There are two common approaches: (1)
the calibration parameters are provided to make your
own transformation between sensors coordinate sys-
tems (body frames), and (2) all the data are already
transformed into the main coordinate system of one
of the visual sensors.

In addition, another important factors that influ-
ence the choice of a particular dataset are the environ-
ment and the motion type of the camera. As shown in
Table 1, datasets are dedicated to indoor and outdoor
environments. The differences between these envi-
ronments include illumination conditions, the type of
a scene - static or dynamic (where objects in a scene
are moving)- types of objects and their shape and pat-
tern, camera mounting place (on a car, on a mobile
robot, on a hexacopter, and hand-held mounted). De-
pending on the visual navigation task and the require-
ments for the used methods, an appropriate dataset
should be used. In many situations, the availability
of ground truth is also a major requirement, which
allows to do a quantitative analysis, however, the ac-
curacy of the ground truth might be different. If a
motion capture system is used to generate the ground

truth, then the accuracy is high. Unfortunately, a mo-
tion capture system is not always available, especially
for outdoor scenes. Hence, the ground truth is esti-
mated from the data of the sensor used, for example,
LIDAR data.

Finally, there are no event-based datasets aimed
at event-based feature detection and tracking for vi-
sual navigation tasks. That is essential aspect for the
2-D/3-D motion estimation by using feature detect-
ing tracking methods, for example, Arc*(Alzugaray
and Chli, 2018), eHarris(Vasco et al., 2016), and
eFast(Mueggler et al., 2017a).

5 CONCLUSIONS

Datasets aimed at event-based visual navigation are
currently scarce because of the novel type of the dy-
namic vision sensor used. Event-based methods for
all the mentioned visual navigation tasks are also
scarce. Another difficulty is the rare availability of
event-based methods implementations in open source
resources. This fact complicates the evaluation and
application of the proposed methods in real robotic
systems.

The reviewed datasets are an important contribu-
tion to the development of event-based visual naviga-
tion methods. These datasets provide data sequences
for different types of environment from DVSs, depth
sensors, RGB-D, LIDAR, and their IMUs. In total,
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nine datasets were summarized, in different groups of
features. Each dataset is accompanied by a data lo-
cation link. All the mentioned datasets have ground
truth data, except for one dataset, which provides data
from a new colour version of the DVS camera. An-
other, currently unique, dataset is aimed at agricul-
tural environments, where data are recorded in such
settings as a forest, a meadow, a cattle farm, etc.

Choosing an appropriate dataset is an essential
task for successful evaluation and development of
new methods as well as for their quantitative and qual-
itative analysis. The type of environment and the
type of camera motion used (fast, slow, rotational,
and translational) within n-DOF are two major fac-
tors. While there is a sparse availability of event-
based visual navigation datasets, there are no datasets
that provide data for event-based feature detection and
tracking. This direction of event-based visual naviga-
tion is based on the classical approach to how motion
is estimated from frame-based data. Based on all of
the above, the design of new datasets is highly neces-
sary since it will lead to the development and better
availability of new methods.
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