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Abstract: Ethereum is a popular public blockchain platform and currently the most significant featuring smart contract
functionality. Smart contracts are small programs that are executed on the blockchain nodes, which can be used
to implement complex transaction logic. Several high-level programming languages are available for writing
Ethereum smart contracts, the most used being Solidity. The high-level code is further translated into a byte-
code executed by a dedicated runtime environment, the Ethereum Virtual Machine (EVM). A few operations
are, however, externalized as precompiled contracts, and run by the native implementation of the Ethereum
node. These are typically computationally intensive operations such as cryptographic hash functions. Various
smart contract patterns require hash computations. In such contexts, the current hash functions supported by
Ethereum have a direct impact in both the performance and cost inflicted on the blockchain users. In this pa-
per we investigate the available options for hashing in smart contracts, we discuss the implications regarding
some patterns and we evaluate possible improvements. In particular we focus on the recent Blake family of
cryptographic hash functions, which show promising performance results, but has yet limited support in the
Ethereum platform.

1 INTRODUCTION

Blockchain networks are a type of distributed archi-
tectures, widely used during the last decade in pro-
viding a variety of decentralized services. The essen-
tial role of the nodes in a blockchain network is to
maintain a replicated data structure: the blockchain
ledger. Clients of the network submit transactions,
which are grouped in blocks, cryptographically linked
and added to the ledger. The nodes mutually agree on
new blocks using mechanisms that vary depending on
the blockchain architecture, a common set of guar-
antees including immutability and integrity of con-
firmed transactions. The transactions can be for in-
stance simple payments in a virtual currency. Some
blockchain platforms also permit clients to execute
more complex transactions in the form of operations
over a state maintained as part of the blockchain repli-
cated data. Such operations are grouped in smart
contracts, essentially small programs executed on the
blockchain nodes.

Ethereum (Wood, 2021) is currently the main
public blockchain platform that offers support for
execution of smart contracts. Smart contracts for
Ethereum can be written in several specific high-
level languages. The most used in practice is So-
lidity (Sol, 2021), which provides an object oriented,
Turing complete specification. In essence, a transac-

tion corresponds to calling a function in Solidity that
modifies the state of the blockchain data. Network
clients must pay a fee that depends on the execution
and storage cost of the called function. The denomi-
nation used for measuring this cost are gas units and
the gas cost calculation is based on the executed func-
tion code. The price to be paid per gas unit is set in
the Ethereum native currency and varies depending on
the blockchain network usage. This mechanism reg-
ulates the processing load on the nodes executing the
functions and prevents Denial of Service attacks.

The Solidity language provides a relatively com-
prehensive API, which can be used in programming
complex logic for transaction functions. The smart
contract code is compiled into a low-level byte-
code, which is run by the Ethereum Virtual Ma-
chine (EVM), the core part of an Ethereum node im-
plementation. The EVM essentially operates as a
stack machine executing opcodes resulted from the
compilation and charging their fees according to gas
cost specifications fixed in the Ethereum Yellow Pa-
per (Wood, 2021). However, this does not apply
for all operations. Some, which are typically com-
putationally intensive, such as cryptographic hashes,
are provided as separate precompiled contracts in the
Ethereum node implementations. This makes their
execution more efficient, but also their defined cost
evaluation more debatable.
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Besides their typical use in programming, crypto-
graphic hashes have an important role also in some
specific smart contract patterns (e.g., commit-reveal).
This and the specific context of Ethereum where each
full node executes all confirmed transactions to verify
these makes performance a critical factor. Ethereum
node implementations currently support four types
of hashes: Keccak-256 (Bertoni et al., 2011), SHA-
256 (NIST, 2002), RIPEMD-160 (Dobbertin et al.,
1996) and Blake2b-512 (Aumasson et al., 2013)1.
The first three are directly callable from Solidity
in a smart contract implementation, although only
Keccak-256 has a corresponding EVM opcode and
associated cost. SHA-256 and RIPEMD-160 are im-
plemented as precompiled contracts, their cost being
defined in the Ethereum Yellow Paper.

The main component of Blake2, the compression
part, is also provided as a precompiled contract, al-
though there is no default instruction available in
Solidity for executing the complete hash function.
Blake3 (O’Connor et al., 2020) is a novel iteration
of the Blake hashing algorithm, showing also promis-
ing performance results. However, to our knowl-
edge, there is no current support for using Blake3 in
Ethereum smart contracts. In this paper we provide
an early look over an extension for supporting the
complete Blake2 function and we consider also the
integration of Blake3 with Geth (Get, 2013), the most
popular Ethereum node implementation. We provide
a performance comparison between the Blake func-
tions and the other hashes. Our evaluation is per-
formed both in respect to raw CPU performance as
well as for gas costs as defined in the Ethereum spec-
ification, revealing also valuable information on the
correspondence between the two.

In Section 2 we provide background details and
more information about the implications of enhanc-
ing hashing performance in the context of smart con-
tracts. We briefly discuss some implementation de-
tails in Section 3. We present our evaluation results
in Section 4. Finally, we conclude in Section 5 dis-
cussing future steps related to hashing support for the
Ethereum platform.

1Keccak and Blake2 were both finalists of the SHA-3
NIST competition. Keccak was chosen as a winner due
to less similarity with SHA-2 algorithms although showing
weaker performance than Blake2.

2 BACKGROUND AND
IMPLICATIONS

The native support for Keccak-256 and inclusion of
the precompiled SHA-256 and RIPEMD-160 hashes
is present since early versions of Ethereum. Addi-
tion of the Blake2 hash was only later considered,
following the typical Ethereum standards adoption
methodology, in EIP-152 (Hess et al., 2016). The
addition was motivated by both the enhanced perfor-
mance of the hash and the interoperability in smart
contracts with Zcash (Zca, 2016), another blockchain
using Blake2. As mentioned in Section 1, only the
Blake2 main component, the compression function,
was introduced as a precompiled contract. To com-
plete a hash computation this function must be itera-
tively called for chunks of 128 bytes of the input fol-
lowed by a few other operations like padding. We
believe this part was left out of the addition for pro-
viding flexibility in the implementation depending on
need (e.g., offering optional keyed support). How-
ever, as we will discuss in Section 4, this can severely
impact the costs inflicted by adding the missing part.

Blake2 is also mentioned in another Ethereum
standard proposal, EIP-3102 (Ballet and Buterin,
2020), discussing improvements in the storage of the
blockchain which uses a Merkle-Patricia tree where
hashing is a frequent operation. The proposal consid-
ers Blake2 as the preferred choice for a hash function
to replace the currently used Keccak-256. It actually
mentions Blake3 as an even better potential candidate
in terms of performance, but reverts to Blake2 due
to lack of Blake3 Go implementations at the time of
the proposal. A precompiled contract is nothing more
than an implementation of a function integrated na-
tively in the language of the Ethereum node, i.e., Go
in the case of a Geth based node. Therefore, inte-
grating a complete Blake2 implementation or adding
Blake3 as precompiled contracts would permit the use
of the functions also in the various blockchain node
operations such as EIP-3102.

The main topic of our paper is, however, the use
of hashing in smart contracts, where the integration of
functions such as the Blake family can have an impact
both in generic programming and in established pat-
terns that require efficient hashing. For instance, we
can refer to the commit-reveal pattern, used to prevent
transaction order dependence attacks as referenced in
the Smart Contract Weakness (SWC) registry (SWC,
2020). An attacker that is able to monitor transac-
tions to a smart contract, can issue transactions of
its own, leveraging any advantage (e.g., higher pay-
ments, ownership of mining nodes) in attempt to over-
come the other transactions observed. A typical ex-
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ample is a smart contract offering a reward for solving
a problem. An attacker could try to steal an answer
seen in other transaction by issuing its own transac-
tion with the same answer, getting it approved before
the other, and being rewarded. Another example is
where an attacker can try to overcome transactions on
financial operations like changes in credits approvals
before these take effect. This is a known issue in
ERC-20 (Vladimirov and Khovratovich, 2017), the
most common token implementation (essentially used
for custom currencies implemented through Ethereum
smart contracts).

In essence, the commit-reveal pattern implies sub-
mitting first a transaction including the hashed version
of its content binding it to the sender identity. Only in
a second step the submitter would reveal the trans-
action content, by sending another transaction. This
would overcome the attack attempt. However, the
smart contract processing the transactions would need
to compute verification hashes very often. Therefore,
the hashing performance is essential in this pattern.

We believe that adding support for efficient cryp-
tographic hash functions in the Ethereum platform
can be of use both in smart contracts as described and
also for future blockchain node optimizations. For
this purpose we investigate the potential for a com-
plete integration of the Blake family of functions as
precompiled contracts, which we discuss in the fol-
lowing sections.

3 INTEGRATION OVERVIEW

In this section we briefly discuss some aspects regard-
ing the possibility of integrating complete support for
the Blake2 and Blake3 hash functions in Ethereum.
We consider Geth (Get, 2013), an Ethereum node im-
plementation written in Go which is currently used
by more than 80 percent of the operating nodes (Eth,
2021), as base for our proposed integration. The in-
tegration dependence on the node implementation is
due to the precompiled part of the hash. We further
provide evaluation on our integration status for these
two potential hash function candidates, showing their
efficiency in Section 4.

3.1 Blake2 Integration Details

As previously discussed, the main compression func-
tion used in the Blake2 hash has been supported in
Ethereum following the adoption of EIP-152 (Hess
et al., 2016) in the form of a precompiled contract.
However, the combining algorithm that iterates the
compression function over a larger input and calcu-

lates the final hash output was not provided in the EIP-
152 (Hess et al., 2016). The existing implementations
are scarce and obsolete (e.g., integrally implementing
Blake2 in Solidity and not making use of the newer
precompiled integration (Consensys, 2017)).

In order to obtain a complete hash implementation
of Blake2, one option is to include the rest of the func-
tion algorithm as part of its own smart contract that
can be invoked by other smart contracts. Being the
most straightforward approach, we have completed
the Blake2 implementation in this manner using So-
lidity and low level EVM assembly for performance
optimizations. Despite the latter, this approach im-
pacts negatively the cost towards the final user.

As mentioned in Section 1 a fee is charged by
summing up the predefined gas cost of all instructions
in a smart contract function. Completing the Blake2
implementation involves gas costly operations such as
iterating over the data that must be hashed. When is-
suing a function call corresponding to a transaction,
the user must pay a price per gas unit multiplied with
the total gas cost of the function. The caveat is that
calling a function that does not alter the blockchain
state, i.e., just for computing a hash value, is not
considered a transaction, and therefore, not charged.
However, if such a call is a subcall of an altering func-
tion, which is the most probable usage idiom, its cost
will be added to the transaction cost.

A second option for a complete Blake2 implemen-
tation is to provide this integrally as a precompiled
module, which could be called directly in a Solid-
ity smart contract via a single instruction, i.e., simi-
larly to the other supported hashes in Ethereum. This
would require, however, establishing a gas cost for the
call, as done for the other hashes. Setting this is not a
trivial matter, typically being part of a Ethereum stan-
dardization process. We discuss more over the gas
cost in Section 4, where we evaluate our implementa-
tion.

3.2 Blake3 Integration Details

Essentially, the mechanism of Blake3 (O’Connor
et al., 2020) splits the hash input in chunks of 1024
bytes, further separated in blocks of up to 64 bytes,
each block being compressed using a compression
function. Applying the compression function on a
block produces a block chaining value. These block
chaining values are further used when compressing
the other blocks in the chunk to obtain chunk chain-
ing values, which are finally combined using a tree
structure for calculating the hash output.

Similarly to the existing integration of Blake2
hash discussed in the previous section, we could con-
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sider as precompiled part only the compression func-
tion, the most computationally intensive in the Blake3
algorithm. However, adding the combining part in So-
lidity would lead to similar issues as discussed in the
case before, and would require heavy optimizations
for obtaining an acceptable gas cost.

Therefore, the option of integrating Blake3 inte-
grally as a precompiled module seems more appeal-
ing. Unfortunately, as mentioned also in Section 2,
in reference to (Ballet and Buterin, 2020) there are
not many implementations of Blake3 available in Go,
and none audited for security to our knowledge, at the
time of writing of this paper. This makes Blake3 in-
tegration with Geth rather problematic. We have con-
sidered, however, one of the versions available in the
open domain (Champine, 2020) as a potential candi-
date. A rationale for our chosen variant is that it is
currently the most popular Blake3 Go implementa-
tion on the Github platform, and that it foresees future
optimizations on using several Intel Advanced Vec-
tor Extensions (AVX) (Intel, 2015) sets for enhancing
performance. We include this implementation in our
initial evaluation discussed in the following section.

4 EVALUATION

The first criteria we consider in our evaluation is the
effective CPU time cost of computing the result of
the hash functions. Since typically transactions in
Ethereum do not carry large amounts of data, we fo-
cus in particular on small input sizes, up to at most
4096 bytes. We compare the cost of hashing by
evaluating the implementations currently available in
the Ethereum node implementation Geth (Get, 2013)
v1.9.25, for the Keccak-256, SHA-256, RIPEMD-
160 and Blake2b-512 hashes as well as an external
Blake3-2562.

We note that the Geth source code references the
official implementation for Blake2 provided as part
of the Go language packages, despite exposing only
the main compression function for use in smart con-
tracts. Therefore, we choose to evaluate the com-
plete hash. For Blake3, we consider the public do-
main implementation referenced in the previous sec-
tion (Champine, 2020) with minor adjustments. Be-
cause at the date of writing this Blake3 implemen-
tation lists some shortcomings that seem to result
specifically in no enhancement from Intel AVX as-
sembly extensions on small input sizes, we choose to

2The selected output bit size version is the most com-
mon for the considered hashes, where multiple options are
available, e.g., Blake2b-512 is the version used by the ex-
posed precompiled module.

disable these both in Blake3 as well as in Blake2, us-
ing, therefore, a pure Go implementation.

We perform our tests on a machine equipped with
an Intel Core i7-4771, 3.5 GHz CPU, 16 GB DDR3
800 Mhz, running Lubuntu 18.04.5 LTS as an operat-
ing system. We execute the hash functions over an in-
creasing size of the input, calculating the average hash
computation time cost over one million runs. The re-
sults are depicted in Figure 1.

We observe that both Blake functions perform bet-
ter than all other hashes exposed in the Ethereum
implementation via Solidity instructions. Interest-
ingly, the Blake2 module provided with the Geth
source code proved more efficient than our selected
Blake3 alternative, contrary to the results described
in (O’Connor et al., 2020). We assume the rea-
son for this resides mainly in the fact that the used
Blake2 package is a more mature implementation in-
cluding optimizations not present yet in our selected
Blake3 candidate package. It is also true that Blake3
is particularly fit for larger data sizes showing a con-
stant better hash rate over Blake2 starting from 16KiB
with AVX optimizations activated according to offi-
cial tests (O’Connor et al., 2020).

Another interesting observation is that for smaller
data inputs (128 and 256 bytes), which are of particu-
lar interest in our context, SHA-256 performs equally
well, or even slightly better than Keccak-256. This
does not correspond to the gas costs defined in the
Ethereum specifications, as we detail further below.
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Figure 1: Evaluation of hash computation time cost.

The second criteria we evaluate is the gas cost of
the hash functions. This has a direct impact in the
price paid by users, and should normally reflect the
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Figure 2: Evaluation of transactions gas cost for Ethereum
supported hashes.

same results as the CPU cost comparison. We test
this simulating a smart contract that executes simple
transactions that trigger the computation of the hash
functions.

We evaluate first the complete hashes supported
by Ethereum, by calling the provided Solidity in-
struction exposed for the Keccak-256, SHA-256 and
RIPEMD-160 functions for a similar increasing input
sequence as in the performance evaluation above. A
total transaction gas cost in Ethereum is composed of
the transaction submission cost and of its execution
cost. It is notoriously difficult to accurately estimate
the individual costs for different parts of an Ethereum
transaction, or even its total costs in absence of an ef-
fective execution. This is why we decided to perform
the evaluation of the total transaction cost on our pri-
vate Ethereum node setup running Geth, which would
effectively charge the transactions.

We first initialize our test contract with the hash
input data in order to obtain a more accurate gas cost
approximation in respect to the execution. Otherwise
our cost evaluation would be severely impacted by
the variable input size submitted with each transac-
tion. Another overhead, also constant, is resetting a
boolean flag at each function call to change the con-
tract state. Without this the calls to our contract would
not count as transactions and we will not be charged
with their gas cost. We observe the gas costs for our
transactions in Figure 2.

We note that the evaluated gas cost represents the
total cost, therefore including the transaction submis-
sion overhead mentioned above. In addition, possible
other internal operations in the contract execution are
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Figure 3: Comparison of transaction gas cost between
Keccak-256 and Blake2b-512.

counted. The charged gas cost mostly seems to re-
spect the expected trend and proportions, according
to the CPU costs measured above. The only disparity
is observed in the small input size area, where SHA-
256 is charged slightly more than Keccak-256. The
difference is more obvious if we consider only a syn-
thetically evaluation by counting exclusively just the
cost of invoking the hash operations as defined in the
Ethereum Yellow Paper (Wood, 2021), which we ex-
amine further below.

We continue our evaluation by comparing with the
gas costs of our Blake2 complete implementation in
Solidity, which makes use of the available precom-
piled compression function. For clarity, we keep in
the comparison only the evaluation of Keccak-256
from the other functions, which is the most used in
practice, showing the difference in Figure 3. The dis-
crepancy with the CPU time cost evaluation is strik-
ing, despite optimizations done in the Solidity imple-
mentation via invoking low cost EVM assembly in-
structions when possible. A user would essentially be
charged three times or more for submitting a Blake2
transaction in comparison with a Keccak transaction,
despite the effective hash real lower cost in execution.
This situation could be avoided by integrating a com-
plete precompiled Blake2 implementation. As men-
tioned in Section 3 this would require standardizing a
fixed gas cost per hash invocation.

In order to observe what would be an appropri-
ate cost for a complete implementation of Blake2,
we perform a synthetically analysis of the current
costs set in the Ethereum Yellow Paper (Wood, 2021).
The Blake2 precompiled compression function has
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Figure 4: Synthetically comparison of hash gas costs ac-
cording to Ethereum Yellow Paper.

the cost fixed to the number of rounds necessary for
iterating the compression over one block of 128 bytes,
which by default is 12. This should be multiplied with
the number of blocks when applying the complete
hash over a larger input. We emphasize that this is not
the complete cost, not including the Solidity part for
completing the function, which we added in our eval-
uation above. The Keccak-256 function is charged at
30 gas base cost adding 6 gas per input word (32 bytes
in the EVM specification). The cost defined for the
SHA-256 function is two times the cost of Keccak-
256, and the cost of RIPEMD-160 is ten times the
cost of SHA-256. Figure 4 summarizes the current
hash costs as defined in the Ethereum Yellow Paper
(we leave out RIPEMD for clarity).

A first observation is that the standardized gas
costs charged exclusively for the hash computation
operation in case of Keccak-256 and SHA-256 seem
marginal to the total transaction costs depicted in Fig-
ure 2, representing less than one percent. This makes
the high costs inflicted by our Blake2 Solidity addi-
tion on top of the precompiled function observable in
Figure 3 even more artificial. We can observe an inter-
esting fact though: the cost charged for only the pre-
compiled part of the Blake2 function is mostly sim-
ilar with the complete Blake2 CPU cost observed in
Figure 1 if we consider its proportion of the Keccak
cost (our evaluation shows even an exact 47 percent of
the Keccak cost for both cases at 4096 bits). There-
fore, we can conclude that the cost currently set for
the precompiled Blake2 compression function could
be preserved unchanged for a precompiled form of a
complete Blake2 function implementation.

5 CONCLUSION AND FUTURE
WORK

We have discussed and evaluated the current sup-
ported hash functions in Ethereum smart contracts,
showing the difficulty of reducing inflicted artificial
costs to users when trying to provide new implemen-
tations via Solidity. We focused on the Blake fam-
ily of functions, and demonstrated their good perfor-
mance results in practice by comparing to the other
hash implementations supported by Ethereum. We
performed our evaluation on top of Geth (Get, 2013),
the most popular Ethereum blockchain node imple-
mentation, which strengthens the validity of our prac-
tical results in a general context. Our conclusion
is that currently the best route towards integrating a
new, more effcient hash to be used in Ethereum smart
contracts, is in a precompiled form with a standard-
ized gas cost. The complicated issue is a thorough
evaluation for establishing such a cost. Our experi-
ments helped us to provide a suggestion for a com-
plete implementation of Blake2, where the cost could
be kept similar to the one currently set just for the
compression part. Integrating such support for new
hashes permits to use these in smart contracts and can
also have a role in the internal functionality of the
blockchain platform.

As future work, we intend to explore more the po-
tential integration of Blake3 (O’Connor et al., 2020)
in the Ethereum blockchain, by checking also other
implementations as well as its potential use in op-
timizing internal storage operations (Ballet and Bu-
terin, 2020). There are other new promising hash
functions that can be investigated too for a possible
integration (Grassi et al., 2019). Finally, the EVM is
currently operating in a single threaded fashion for ex-
ecuting smart contracts. However, several approaches
and studies have been recently proposed over a possi-
ble concurrent execution (Saraph and Herlihy, 2019;
Buterin, 2017; Dor, 2018). According to its specifica-
tion Blake3 has shown a more promising performance
in a multithreaded environment, therefore we believe
this direction would be interesting to investigate.
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