
A Model-Driven Engineering: From Relational Database to
Document-oriented Database in Big Data Context

Fatima Zahra Belkadi and Redouane Esbai
Department of Computing, Mohammed First University, University Complex, Post Box 658, Oujda, Morocco

Keywords: Big Data, MDA, Meta-Model, QVT, NoSQL, Document-oriented, Acceleo, JSON.

Abstract: In today’s world multiple players in digital technology produce infinite amounts of data. Sensors, social
networks or e-Commerce, they all generate information that is incremented in real time according to
Gartner's 5V: in Volume, Velocity, Variety, Value, and Veracity. The digital transformation of companies
leads an evolution of databases towards Big Data whose power has become increasingly strategic. The
exploitation of the data is a key to a better understanding and management of the company and its markets.
This obviously imposes an ability to generate data, to store it, to give it meaning and then to exploit it. At
the same time, the modernization of the Big Data platform is essential to automate this process. In this
paper, we explain how to design and apply transformation rules to transfer from an SQL relational database
to a Big Data solution within NoSQL. For this, we use the Model Driven Architecture and the
transformation languages as MOF 2.0 QVT (Meta-Object Facility 2.0 Query-View-Transformation) and
Acceleo for describing the meta-models for the development of transformation model. The transformation
rules defined in this work can generate, from the class diagram, a JSON files for creation document-oriented
NoSQL database.

1 INTRODUCTION

Nowadays, artificial intelligence, mobiles, social
media and internet of things are producing a huge
amount of data whose size or type is beyond the
ability of the traditional relational databases to
capture, manage and process the data with low-
latency, high volume, high velocity, and high
variety. Big data bring many attractive opportunities
to knowledge management (C. Fredriksson,
November 2015).

Simultaneously, to extract knowledge from Big
data, we have to face a lot of challenges, mainly
related to Big data storage and process.(F.
Abdelhedi, A. Ait Brahim, F. Atigui and G. Zurfluh,
November, 2016) Using relational databases proves
to be inadequate for all applications; particularly
ones involving large volumes of data (A. Abello,
2015). As a result, a new type of databases has
appeared, known as “NoSQL” data stores, that are
able to handle Big data with high performance (A.
Angadi, Ak. Angadi and Karuna. Gull, june 2013).
On the other hand, a central problem facing the
enterprise’s developers is the building and storage of
big data that are more complex than before.

Many organizations have begun to consider
MDA as an approach to design and implement
enterprise applications. In this context the Model
Driven Engineering provides abstraction through
high level models and allows the use of modeling
languages to automate the generations of
applications from the model. The interest for the
Model Driven Engineering (MDE) was increased
towards the end of the last century, when the Object
Management Group had made public its initiative
Model Driven Architecture (MDA) like as
restriction of the MDE (J.Miller and J.Mukerji,
2003).

Therefore, Abdelhedi et al. (F. Abdelhedi, A. Ait
Brahim, F. Atigui, G. Zurfluh, November, 2016),
generate respectively datasets of size 1GB, 10GB
and 100GB. The experimental setup created; show
how they can instantiate OLAP systems with
column-oriented and document-oriented databases
respectively with HBase and MongoDB. This
method includes data transformation, data loading
and aggregate computation. The entire process
allows to compare the different approaches with
each other.

This paper aims to rethink the work presented in
(M. Chevalier, M. El Malki, A. Kopliku, O. Teste

Belkadi, F. and Esbai, R.
A Model-Driven Engineering: From Relational Database to Document-oriented Database in Big Data Context.
DOI: 10.5220/0010604906530659
In Proceedings of the 16th International Conference on Software Technologies (ICSOFT 2021), pages 653-659
ISBN: 978-989-758-523-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

653

and R. Tournier. 2015). However, we propose an
MDA approach for the development of NoSQL
document – oriented databases from relational
databases with implementation in MongoDB.

The rest of this article is ordered as follows.
Section 2 represents a state of art (related Works).
Section 3 states the objectives of this research paper
and its background. Section 4 gives a formal
representation of relational databases meta-model,
the NoSQL Meta-model and the elaboration of rules’
transformation that lead from the source model to
the target model. The final section concludes this
paper, and outlines future work.

2 RELATED WORKS

To the best of our knowledge, there are few
solutions that have presented approaches for
transforming the relational database into NoSQL
systems.

Li and Vajk (Li, C., 2010), (Vajk T., Feher P.,
Fekete K., Charaf H., 2013), have investigated the
process of transforming relational databases into a
NoSQL model document –oriented databases.

Li (Daniel, G., Sunyé, G. and Cabot, J., 2016),
have proposed an approach for transforming a
relational database into HBase (column-oriented
system).

Vajk et al. (Vajk T., Feher P., Fekete K. and
Charaf H. 2013), defined a mapping from a
relational model to document-oriented model using
MongoDB.

Other studies have presented approaches to
implement UML conceptual model into NoSQL
systems.

Li et al. (Li Y., Gu P., Zhang C. 2014), propose
a MDA-based process to transform UML class
diagram into column-oriented model specific to
HBase. Starting from the UML class diagram and
HBase metamodels, authors have proposed mapping
rules between the conceptual level and the physical
one.

Gwendal et al. (Daniel, G., Sunyé, G. and Cabot,
J. 2016) describe the mapping between a UML
conceptual model and graph databases via an
intermediate graph meta-model. These rules are
specific to graph databases used as a framework for
storing, managing and querying complex data with
many connections. Generally, this kind of NoSQL
databases is used in social networks where data are
highly connected.

Chevalier et al (M. Chevalier, M. El Malki, A.
Kopliku, O. Teste and R. Tournier. 2015) defined a

set of rules to map a multidimensional model into
two NoSQL models: column-oriented and
document-oriented.

In other paper,of (F. Abdelhedi, A. Ait Brahim,
F. Atigui, G. Zurfluh, November, 2016), they show
how to store Big Data within NoSQL systems. For
this, they use the Model Driven Architecture (MDA)
that provides a framework for models’ automatic
transformation. Starting from a conceptual model
that describes a set of complex objects, they propose
transformation rules formalized with QVT to
generate a column-oriented NoSQL model.

The main purpose of our work is to define a
mapping from a relational model to NoSQL model:
document-oriented, to formalize it and to automate it
using QVT as a language of transformation. In Our
solution we propose UML to NoSQL approach that
offers the possibility to transform automatically a
UML conceptual model into a NoSQL physical
model. We define the transformations rules and we
develop using the standard MOF 2.0 QVTand
Acceleo aiming at the automated code generation
with the goal to accelerate and build the creation of
NoSQL databases in MongoDB platform.

3 MODEL DRIVEN
ARCHITECTURE (MDA)
APPROACH

To formalize and automate UML to NoSQL process,
we use the Model Driven Architecture (MDA). One
of the main aims of MDA is to separate the
functional specification of a system from the details
of its implementation in a specific platform
(Hutchionson J., Rouncefield M. and Whittle J.
2014). This architecture defines a hierarchy of
models from three points of view: Computation
Independent Model (CIM), Platform Independent
Model (PIM), and Platform Specific Model (PSM)
(Bézivin J. and Gerbé O. 2001).

The MDA identifies several transformations
during the development cycle (Sara Gotti, Samir
Mbarki (2019). It is possible to make tree different
type of transformations: CIM to PIM, PIM to PSM
and PSM to Code.

Currently, the models’ transformations can be
written according to three approaches: The approach
by Programming, the approach by Template and the
approach by Modeling.

In this paper we chose two types of
transformation, we start with the transformation PIM
to PSM using the approach by modeling. This type

ICSOFT 2021 - 16th International Conference on Software Technologies

654

of transformation will allow us to automatically
generate a document-oriented NoSQL model from
an RDBMS model. The second transformation is of
type PSM to Code using the approach by template
with Acceleo to develop the transformation rules
aiming at automatically generating the JSON code
for creating document-oriented NoSQL database.

4 DOCUMENT-ORIENTED
NoSQL DATABASE

NoSQL databases draw upon several concepts and
techniques to realize flexible data modeling and
associated query languages, and horizontal
scalability (Gudivada V. N., Rao D. and Raghavan,
V. V., 2014). There are four types of NoSQL
databases: Columnar Database, Graph Database,
Key-Value Database and Document Database. In
this paper, we choose to focus on Document
databases.

The Document databases have the Document as
a basic unity of data. Collections are groups of
documents. The id field is reserved for the primary
key.(Franca and Wilson Da Rocha, 2015)

Another important concept that will affect our
decisions when designing a document is atomicity. (
Franca and Wilson Da Rocha, 2015)

Now that we understood the method we can
write our documents, let’s take some examples of
reality problems, such as how to write a data model
that better describes the relationship between
entities. (Franca and Wilson Da Rocha, 2015)

4.1 One to One

Figure1 illustrates the example that map patron and
address relationships. To convert from the relational
model to the oriented document model we must
embed the address data in the patron data.

Figure 1: Simplified example mapping patron and address
relationship.

4.2 One to Many

Figure 2 illustrates the example that maps publisher
and books relationships. To avoid repetition of the
publisher data in each document of books, we must

use references and keep the publisher information in
a separate collection from the book collection.

When using references, the growth of the
relationships determines where to store the
reference. If the number of books per publisher is
small with limited augmentation, storing the book
reference inside the publisher document may
sometimes be useful. Otherwise, if the number of
books per publisher is uncontrolled, this data model
would lead to growing arrays.

To avoid growing arrays, stock the publisher
reference inside the book document.

Figure 2: Simplified example mapping publisher and book
relationship.

4.3 Many to Many

Figure 3 illustrates the example that maps user and
group relationships.

A many-to-many relationship is not something
trivial, even in a relational universe. In the relational
world, this kind of relationship is often represented
as a join table. While, in the non-relational one, it
can be represented in many different ways.

The solution for this relationship is to store the
reference in both documents.

Figure 3: Simplified example mapping user and group
relationship.

5 SOURCE AND TARGET
META-MODELS

In our MDA approach, we opted for the modeling
and template approach to generate the document-
oriented NoSQL database. As mentioned above,
these approaches require a source meta-model and a
target meta-model. We present in this section, the
various meta-classes forming the relational database
source meta-model and the document-oriented
NoSQL target meta-model.

A Model-Driven Engineering: From Relational Database to Document-oriented Database in Big Data Context

655

5.1 Relational Database Source
Meta-model

Figure 4 illustrates our source meta-model, this
meta-model represents a version of the schemas of
relational databases.

Figure 4: Relational database source meta-model.

We present here the different meta-classes to express
the concept of tables of a relational database:

 Schema;
 Table;
 Column;
 Row;
 Primary Key;
 Foreign Key.

The work (A.Srai, F. Guerouate, N.Berbiche and
H. Drissi, 2017) contains more details related to this
section topic.

5.2 Document-oriented Target
Meta-model

Figure 5 illustrates our target meta-model, this meta-
model represents a version of the Document-
Oriented databases.

To fully understand the data model used by
Cassandra, it is important to define a number of
concepts used:

 Data_Base: Appears as a namespace, this is
usually the name given to the application;

Figure 5: Document-Oriented target meta-model.

 Document: represent a hierarchy of elements
which may be either atomic values or
documents. In the NoSQL approach, the
schema of documents is not recognized
previously;

 Collection: is a group of documents;
 Couple: Document is defined by a set of

couples, attribute = value
 Value: The value is atomic. It is itself

composed by a nested document that is
defined as e new set of couple (attribute,
value). We can distinguish simple attributes
whose values are atomic from compound
attributes whose values are documents called
nested documents.

6 THE PROCESS OF
TRANSFORMING RDBMS
MODEL TO
DOCUMENT-ORIENTED
TARGET CODE

We initial developed ECORE models corresponding
to our source and target meta-models. The
development of the many meta-models needs
multiple model transformations. From these
developed meta-models, M2M (Model to Model)
and M2T (Model to Text) transformations are
required, to generate the code required to create the
document-oriented database. We have implemented
the M2M transformation algorithm (refer to section
6.1) using the QVT Operational Mappings language
(Franca, Wilson Da Rocha,2015), then the second
M2T transformation is done with the Acceleo
language (Acceleo) (refer to section 6.2).

ICSOFT 2021 - 16th International Conference on Software Technologies

656

Each paper must have at least one keyword. If
more than one is specified, please use a comma as a
separator. Keywords should appear justified, with a
linespace exactly of 11-point, a hanging indent of 2-
centimeters, spacing before of 48-point, no spacing
after and font size of 9-point. The sentence must end
with a period.

6.1 The Transformation Rules M2M

This transformation uses, within the entry, a model
of the RDBMS type, and in output a model of the
document-oriented database. The primary
transformation rule establishes the correspondence
between all parts of the schema of the relational
database and therefore the element of the document-
oriented database. The aim of the second rule is to
transform each Table and his rows into a collection
of documents by creating the documents and
references for every collection. It’s a matter of
transforming every column of those tables in a
couple of values, (Figure 6).

Figure 6: Rules of transformation from the RDBMS to
NoSQL (Document).

The document is the basic unit of data. Collections
are groups of documents. Making an analogy, a
collection is similar to a table in a relational model
and a document is a record in these tables. And
finally, collections belong to a database.

Dissimilar to the relational model, where you
must declare a table structure, a collection doesn’t
make obligatory a certain structure for a document.
It is possible that a collection contains documents

with completely different structures (Franca, Wilson
Da Rocha,2015).

The principle part of the M2M transformation
with QVT language (RDBMS2OD.qvto):

modeltype RDBMS uses
"http://www.example.org/bdr2nosql";
modeltype OD uses
"http://www.example.org/oDTarget";

transformation RDBMS2OD(in
RDBModel:RDBMS, out ODModel:OD);

main() {
 RDBModel.objects()[Schema]->map
schema2DataBase();
}

mapping Schema::schema2DataBase () :
Data_Base {
 name:= self.name;
 collection :=
RDBModel.objects()[Table] -> map
tableToCollection();

}

mapping
Table::tableToCollection():_Collecti
on{

name:=self.name;
document:= self.row -> map
rowToDocument();

}

mapping
Row::rowToDocument():Document{

name:=self.id;

self.columns ->forEach(c) {
 if c.foreign_key->size()=0 then {
 Couple1+= c.map
columnToCouple();
 }else {
 documents+=c.foreign_key.map
foreignKey2Document(c.value);
 }
 endif;

 }
}
mapping
Foreign_key::foreignKey2Document(c:S
tring):Document{
 name:=self.table.name;
 Couple1:=self.primary_key.column.m
ap fkToCouple(c)
}

A Model-Driven Engineering: From Relational Database to Document-oriented Database in Big Data Context

657

mapping
Column::columnToCouple():Couple{
 Attribut:=self.name;
 valeur:=self.value;
}
mapping
Column::fkToCouple(c:String):Couple{
 Attribut:=self.name;
 valeur:=c;
}

6.2 The Transformation Rules M2T

The transformation M2T towards the creation code
of the document-oriented database in MongoDB is
complete with Acceleo transformation language, and
also the writing of the transformation rules itself
doesn't gift any issues in practice. It merely boils all
the way down to creating a text file wherever the
transformation rules are written.

The transformation rules with Acceleo to
generate a JSON file (generate.mtl):

[comment encoding = UTF-8 /]
[module
generate('http://www.example.org/oDT
arget')]

[template public generateElement(aDB
: Data_Base)]
[comment @main/]
[for (c : Collection |
aDB.collection)]

 [file
(aDB.name.concat('/').concat(c.name)
.concat('.JSON'), false, 'UTF-8')]
 [collection2Document(c)/]
 [/file]
[/for]

[/template]
[template public
collection2Document(c:Collection)]

[for (D : Document | c.document)]
{
[for (cp : Couple |
D.Couple1)separator (',')]
"[cp.Attribut/]": "[cp.valeur/]"
[/for]
[if (D.documents->size()>0)],
[for (dc : Document |
D.documents)separator (',')]
"[dc.name/]": ['[' /]
[document(dc)/] [']' /]
[/for]
[/if]
}
[/for]

[/template]
[template public
document(dc:Document)]
[for (cp : Couple | dc.Couple1)][for
(cp : Couple | dc.Couple1)separator
(',')]"[cp.valeur/]"[/for][/for]
[/template]

6.3 Results

For our transformation rules’ validation, we have a
tendency to conducted many tests

Figure 7: RDBMS source model: EMF model and
instance model.

For example, we considered the schema composed
by table Person and Car (see Figure.7).

Figure 8: Document-Orientd MongoDB PSM: Ressource
Set and their Properties.

ICSOFT 2021 - 16th International Conference on Software Technologies

658

Figure 9 illustrates the results of our M2T
transformation. Our application generates a JSON
code for a GestionDB database on MongoDB
platform.

Figure 9: The JSON Files generated.

7 CONCLUSIONS AND
PERSPERTIVES

In this article, we've projected an associate degree of
a MDA approach to migrate RDBMS model
representing a relational database to a document-
oriented database. The transformations rules were
developed using QVT to transform the relational
database into a document -oriented model and so the
automated code generation using Acceleo with the
goal to accelerate and build straightforward the
creation of NoSQL databases in MongoDB platform.
In the future, this work ought to be extended to
permit the generation of different NoSQL Solutions
like graph-oriented. Afterward, we are able to take
into account integration different huge data
platforms like HBase, Redis, Neo4j, and others.
(Redouane Esbai, Fouad Elotmani and Fatima Zahra
Belkadi, 2019).

REFERENCES

C. Fredriksson, (November 2015). “Knowledge
Management with Big Data Creating New Possibilities
for Organizations”, in The XXIVth Nordic Local
Government Research Conference (NORKOM), pp.15-
16.

F. Abdelhedi, A. Ait Brahim, F. Atigui, G. Zurfluh,
(November, 2016), “Big Data and Knowledge
Management: How to implement conceptual models in
NoSQL systems?”, in 8th International Conference on
Knowledge Discovery, Knowledge Engineering and
Knowledge Management (IC3K 2016), Porto, Portugal,
pp.235 -236.

A. Abello, (2015). “Big Data Design: Processings of the
ACM Eighteenth International Workshop on Data
Warehousing and OLAP”.

A. Angadi, Ak. Angadi, Karuna. Gull, (june 2013) “Growth
of New Databases & Analysis of NOSQL Datastores”.
International Journal of Advanced Research in

Computer Science and Software Engineering, vol3,
issue 6, p.1310.

J. Miller, J. Mukerji, (2003) “MDA Guide Version 1.0.1”,
OMG, pp.1-3.

Li, C. (2010): Transforming relational database into HBase:
A case study, In: ICSESS, pp.683-686.

Vajk T., Feher P., Fekete K., Charaf H. (2013),
“Denormalizing data into schema-free databases”,
CogInfoCom pp.748-756.

Li Y., Gu P., Zhang C. (2014), “Transforming UML class
diagrams into HBase based on meta-model.”, In:
ISEEE, pp.720-724.

Daniel, G., Sunyé, G., Cabot, J. (2016) : UMLtoGraphDB:
Mapping conceptual schemas to graph databases. In:
Comyn-Wattiau, I., Tanka, K., Song, I.-Y., Yamamoto,
S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, Springer,
Cham, pp. 430-444.

M. Chevalier, M. El Malki, A. Kopliku, O. Teste, R.
Tournier. (2015): "Implementing Multidimensional
Data Warehouses into NoSQL". ICEIS, Barcelona,
Spain.

Hutchionson J., Rouncefield M., Whittle J. (2014): “Model-
driven engineering practices in industry”. In: Science of
Computer Programing 89 , pp. 153-158.

Bézivin J., Gerbé O. (2001), “Towards a precise definition
of the OMG/MDA framework”. In: ASE, pp.274-278.

Sara Gotti, Samir Mbarki (2019). IFVM Bridge: A Model
Driven IFML Execution. International Journal of
Online and Biomedical Engineering (iJOE). Vol. 15 No.
4. pp 111-126.

Gudivada V. N., Rao D., Raghavan, V. V. (2014), “NoSQL
Systems for Big Data Management”, In: IEEE World
Congress on Services, p.191.

Franca, Wilson Da Rocha, packt publishing 2015:
MongoDB Data Modeling, ISBN : 978-1-78217-534-6,
pp.21-32.

A.Srai, F. Guerouate, N.Berbiche and H. Drissi (2017): An
MDA approach for the development of data warehouses
from Relational Databases Using ATL Transformation
Language. In: International Journal of Applied
Engineering Research ISSN 0973-4562 Volume 12, pp.
3532-3538.

OMG, Meta Object Facility (MOF) 2.0
Query/View/Transformation, V1.1, (2011).

Acceleo, [Online]. Available at:
http://www.eclipse.org/acceleo.

Redouane Esbai, Fouad Elotmani and Fatima Zahra
Belkadi, (2019): Model-Driven Transformations:
Toward Automatic Generation of Column-Oriented
NoSQL Databases in Big Data Context. International
Journal of Online and Biomedical Engineering (iJOE).–
Vol. 15, No. 9. , pp.11-16.

Oualid B., Saida F., Amine A., Mohamed B. (2018).
Applying a Model Driven Architecture Approach:
Transforming CIM to PIM Using UML. International
Journal of Online and Biomedical Engineering (iJOE).
Vol. 14, No. 9. pp 170-181.

Karim Arrhioui, Samir Mbarki, Mohammed Erramdani
(2018). Applying CIM-to-PIM Model Transformation
for Development of Emotional Intelligence Tests
Platform. International Journal of Online and Biome-
dical Engineering (iJOE). Vol. 14, No. 8. pp 160-168.

A Model-Driven Engineering: From Relational Database to Document-oriented Database in Big Data Context

659

