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Abstract: This paper aims at applying optimal control to investigate different vaccination strategies against the epidemic
spread of viral diseases. Background of the study is the situation in the first half of 2021, when many countries
started their vaccination procedures against the COVID-19disease, but suffered from shortages of vaccines,
such that the efficient distribution of the available amountof vaccine turned out to be crucial to mitigate the
pandemic. The paper first suggests an extended version of a known model of virus spread in order include
the vaccination process. Based on this model, the formulation and solution of optimization problems is used
to determine how available vaccine should be distributed over different age-groups of the population to min-
imize virus spread. Effectiveness of the obtained strategies compared to standard ones is demonstrated in
simulations.

1 INTRODUCTION

In 2020, the outbreak and rapid spread of COVID-
19 affected the life of almost everyone on the planet.
Facing high infection and mortality rates, as well as
the absence of efficient treatment to patients, strict in-
tervention policies (such as lock-down of cities and
restricting social life) were deployed by the govern-
ments to control the spread of the virus. Effectiveness
of these policies, however, were barely satisfactory in
many countries for several months with respect to the
daily number of active cases and the number of fatal-
ities. The successful development of vaccines in the
beginning of 2021, led to the hope that life may re-
turn to normal rather quickly, but limited production
capacities of the vaccines led to the situation that only
a small shares of the population could be vaccinated
during the first half of 2021. Thus, the question of
how to control the vaccination process subject to the
given capacity constraints turned out to be crucial to
mitigate the pandemic – and this, of course, is a cen-
tral question to any future pandemic virus disease.

Before the outbreak of COVID-19, different vac-
cination strategies had been proposed in literature,
including the uniform strategy, see (Pastor-Satorras
et al., 2003), the targeted strategy, see (Liu et al.,
2003), the random strategy, see (Zanette and Kuper-
man, 2002), and the acquaintance strategy, see (Co-
hen et al., 2003). (Preciado et al., 2013) considered

optimal vaccination strategies by taking the vaccina-
tion cost into account, using a Susceptible-Infected-
Susceptible (SIS) epidemic model (see (Kermack and
McKendrick, 1932), (Ganesh et al., 2005)) for de-
scribing the virus spread. (Peng et al., 2010) followed
a similar pattern to develop an optimal vaccination
strategy, but considered additional constraints in op-
timization of the SIS model. (Wan et al., 2007) fo-
cused on the case that the vaccination resources are
limited, and they exploited the topological structure of
the network to eliminate the virus. The resulting vac-
cination strategy was then tested on a model for the
SARS transmission in 2003. The work by (Gourdin
et al., 2011) investigated how to efficiently distribute
available medicine to minimize the overall infection.
Unlike vaccines, which reduce the individual infec-
tion rate, the medicine in the latter work is assumed
to increase the individual curing rate.

Most of these strategies are based on the SIS
model, in which only two states of the individuals are
modelled, namely, to be susceptible for the virus or
being infected. Experiences from COVID-19 have
shown, however, that aspects like the questions of
whether an infected person has symptoms or not, or of
whether she/he can be tested in time (and is isolated
before infecting others) are decisive for the evolution
of the virus spread. Accordingly, the determination
of an optimal (or at least good) vaccination strategy
must also take these aspects into account. In addition,
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most of the work mentioned above also assumed that
the population can be modeled homogeneously in the
sense that the same rates of infections, courses of de-
veloping symptoms or being cured apply to anyone.
Observations for the first year of COVID-19 clearly
showed differences, however, with respect to senior
members of the population have significantly higher
mortality rates and lower curing rates than younger
generations.

To capture such characteristics, this paper first re-
views in Sec. 2 recent work on COVID-19 modeling,
and then extends the model proposed in (Giordano
et al., 2020) by including the vaccination process in
Sec. 2. Note that the selected model was proposed to
account for the course of the COVID-19 pandemic in
Italy and it includes already more states than the SIS-
model, but does not account for vaccination. Based
on the extended model, optimal control problems are
formulated and solved in order to determine optimal
vaccination strategies in Sec. 3. The solution takes
into account different age groups of the population
and heterogeneity with respect to infection and curing
rates, as well as different contact situations and limi-
tations of the amount of available vaccines. In Sec. 4,
the computed strategies are simulated exemplarily for
a mid-size city and compared to alternative strategies,
before Sec. 5 concludes the paper.

2 THE EPIDEMIC MODEL

Most literature on epidemic modeling uses the SIS
model to describe the spread of a virus. In this
rather simple model, only two states of any individ-
ual, susceptible and infected, are considered. After
the first outbreak of the COVID-19 pandemic, dif-
ferent groups have invested effort into adapting the
SIS model to the characteristics of this disease: The
work in (Della et al., 2020) considered the networked
structure of different regions in Italy and extended the
SIS model with four more states, i.e., quarantined,
hospitalized, recovered, and deceased. In the work
of (Ndaı̈rou et al., 2021), even more COVID-19 re-
lated states are included and the influence of super-
spreading individuals are studied. In (Chaturvedi
and Chakravarty, 2021), the authors applied the SIR
model (with R for recovered) to provide a predic-
tive analysis of when the pandemic can be ended
with the help of vaccination. Among these efforts,
the so-called SIDARTHE model, which was proposed
in (Giordano et al., 2020) and is shown by the part
marked in black in Fig. 1, has been widely adopted
in different work, see (Köhler et al., 2020; López and
Rodó, 2020).
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Figure 1: The states and transitions in black represent the
original SIDARTHE model, while the parts in red are newly
added to model the vaccination process, as well as are the
indicesi to model different groups of persons.

The SIDARTHE model, distinguishes the follow-
ing health status: being susceptible (Si), infected (Ii),
diagnosed (Di), ailing (Ai), recognized (Ri), threat-
ened (Ti), healed (Hi), and extinct (Ei). The corre-
sponding states represent the percentage of persons
of a given population with the corresponding health
status, and the changes of these percentages is mod-
eled stochastically by a continuous-time Markov pro-
cess. The first extension of this model compared to
earlier papers is to refer to a set ofn groups of per-
sons, where the indexi ∈ N = {1, · · · ,n} refers to one
these groups. This extension will allow later to refer
to a certain age-group of the population. The sum of
the percentages over the discrete states of the Markov
process for a single groupi is always one.

Note that, although the SIDARTHE model can
well represent the development of the pandemic, it
was proposed in March 2020, when vaccines were
still not yet in sight. This can be noticed from the
black part in Fig. 1, since the health status cannot
transition directly fromSi to Hi without being in-
fected. Accordingly, the SIDARTHE model is ex-
tended in this paper also to contain the vaccination
process (see the red part in Fig. 1). This includes the
addition of one stateUi referring to the percentage of
people in groupi, for whom the vaccine is ineffective.
In addition, three new transitions are also assigned,
namely, fromSi to Hi , from Si to Ui , and fromUi to
Ii . In order to model the evolution of the probability
distribution over the discrete states for groupi ∈ N,
the following nonlinear dynamics is selected:

Ṡi(t) =−Si(t) ∑
j∈N

Wi j (αi I j(t)+βiD j(t)+ γiA j(t)

+ δiRj(t))− (χi(t)+ψi(t))Si(t) (1)
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U̇i(t) =−Ui(t) ∑
j∈N

Wi j (α̂i I j(t)+ β̂iD j(t)+ γ̂iA j(t)

+ δ̂iRj(t))+χi(t)Si(t) (2)

İi(t) = Si(t) ∑
j∈N

Wi j (αi I j(t)+βiD j(t)+ γiA j(t)

+ δiRj(t))− (εi + ζi +λi)Ii(t)+Ui(t) ∑
j∈N

Wi j (α̂i I j(t)

+ β̂iD j(t)+ γ̂iA j(t)+ δ̂iRj(t)) (3)

Ḋi(t) = εi Ii(t)− (ηi +ρi)Di(t) (4)

Ȧi(t) = ζi Ii(t)− (θi +µi +κi)Ai(t) (5)

Ṙi(t) = ηiDi(t)+θiAi(t)− (υi + ξi)Ri(t) (6)

Ṫi(t) = µiAi(t)+υiRi(t)− (σi + τi)Ti(t) (7)

Ḣi(t) = λi Ii(t)+ρiDi(t)+κiAi(t)+ ξiRi(t)+σiTi(t)

+ψi(t)Si(t) (8)

Ėi(t) = τiTi(t) (9)

For consistent initialization of the model in an initial
time t0, it is required for anyi ∈ N that the sum of
all states is one. Note that the model also satisfies
Ṡi(t) + U̇i(t) + İi(t) + Ḋi(t) + Ȧi(t) + Ṙi(t) + Ṫi(t) +
Ḣi(t)+ Ėi(t) = 0 at any timet for any choice of pa-
rameters. These are denoted byαi , βi , γi , δi , εi , ζi ,
λi , ηi , θi , υi , ξi , τi , ρi , σi , µi , and model the transi-
tion rates in between the pairs of corresponding states.
The different contagion parametersαi ,βi ,γi ,δi in the
transition fromSi to Ii are due to contacts between a
susceptible person and an infected, a diagnosed, an
ailing, or a recognized person according to the orig-
inal paper in (Giordano et al., 2020). These param-
eters together with other transitions rates in Fig. 1
are assumed to be known1, but differ among the dif-
ferent groupsi ∈ N. In detail and compared to the
original SIDARTHE model, the new model here cov-
ers the following effects in addition: 1.) a success-
ful vaccination step (transition fromSi to Hi) with
rateψi(t) ∈ R

≥0. The ratesψi(t) will be used as in-
puts determining the vaccination strategy to be opti-
mized in the coming section; 2.) an ineffective vac-
cination step (fromSi to Ui) with rate χi(t) ∈ R

≥0,
whereχi(t) is assumed to be proportional toψi(t),
i.e., χi(t) = q ·ψi(t), q ∈ R

>0; 3.) an infection step
(from Ui to Ii) with respective contagion parameters
α̂i , β̂i , γ̂i , andδ̂i . Note that the labeling of this tran-
sition with four rates refers to the shares that a per-
son in stateUi gets infected by contact with a person
in stateIi , Di , Ai or Ri respectively (the same princi-

1In practice, one can only estimate these parameters,
leading to model uncertainty. In order to consider e.g. pa-
rameter intervals, extensions to techniques of robust predic-
tive control could be employed, see (Campo and Morari,
1987), but this is outside of the scope of the present paper.

ple underlies the assignment of four parameters to the
transition fromSi to Ii). Note further that the conta-
gion parameters assigned toUi → Ii are different from
those assigned toSi → Ii to account for the possibil-
ity that a vaccinated person, which is unaware of the
fact that the vaccination was not successful, will likely
follow relaxed contact patterns, compared to persons
that still wait to be vaccinated.

In order refer to the above model in brief, let it be
denoted by:

ẋi(t) = f (xi(t),ψi(t)), xi(t0) = xi,0 (10)

with state vector xi(t) := (Si(t),Ui(t), Ii(t),
Di(t),Ai(t),Ri(t),Ti(t),Hi(t),Ei(t)), and the ini-
tial state xi,0. Furthermore, the model aims at
considering the spread of the virus across different
age groups of the population. In order to formalize
the contacts between different age groups, and thus
the possibility that infections occur across the groups,
an undirected graphG = {N,E} is set up. In here,
the setN of nodes models the different age groups,
with indicesi ∈ N as before. The setE of undirected
edges models the contact between a pair of groups.
To an edgeei, j ∈ E between the groups with indices
i and j, a positive weightWi j ∈ R

>0 is assigned,
representing that infections in groupj can affect the
infection in groupi (and vice versa), see also (1) - (3)
in the model. More precisely, a weightWi j models
the average share of time that a person from group
i spends with a person from groupj. Accordingly,
a self-loop transition with weightWii is introduced
for any node, and the matrixW ∈ R

n×n is chosen as
doubly stochastic matrix, i.e.,∑ j∈NWi j = 1 for all
i ∈ N, and∑i∈NWi j = 1 for all j ∈ N.

Note that the model in the present form does not
explicitly account for the necessity that two (or more)
shots of vaccine may be necessary to get from state
Si to Hi . This could be included by introducing inter-
mediate state in betweenSi → Hi andSi →Ui , but is
omitted here to not overload the model.

3 DETERMINATION OF
OPTIMIZED VACCINATION
STRATEGIES

Based on the model introduced before, this section
proposes to determine vaccination strategies for dif-
ferent age-groups of the population based on optimal
control principles. The underlying assumption is that
there is a shortage of available vaccine (as was true for
the COVID-19 pandemic in the first half year after de-
veloping the vaccine). This, together with the obser-
vation that the infection has, on average, more severe
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effects the older the infected person is, motivates to
divide the population inton groups according to their
age. For any age-group with indexi ∈N= {1, · · · ,n},
let its share of the total population be denoted byvi ,
and ∑i∈N vi = 1. The vaccination of different age
groups (represented in the model from Sec. 2 by the
ratesψi(t) andχi(t)) as well as contacts between age
groups (modelled by the weightsWi j ) can be expected
to have significant impact on the evolution of the epi-
demic.

3.1 Optimization Objectives and
Constraints

In order to set up the optimal control formulation, first
let an initial timet0 be given as well as a time inter-
val [t0, t0 +H], whereH is the number of days over
which the vaccine is distributed. Assume that the vac-
cination strategy can only be adjusted everyT days of
the horizon, leading to totallyHT decision steps. Let
k∈{0,1, · · · , H

T −1} index these steps. Once the strat-
egy is determined fork it is held constant for the com-
ing T days. Accordingly, the vaccination rate applied
to an age-groupi ∈ N on the interval[k ·T,(k+1) ·T[
is referred to byψi,k. The maximum amount of vac-
cine available for stepk over all groupsi is denoted
by Ψmax,k, leading to the following constraint:

∑
i∈N

P ·vi · (ψi,k+χi,k)≤ Ψmax,k, (11)

with a population sizeP , andP · vi representing the
size of age-groupi. Corresponding to the relation be-
tweenχi(t) andψi(t) as mentioned in Sec. 2, it fol-
lows that:χi,k := q ·ψi,k.

Given the constraint (11), the task is
now to optimize the vaccination strategy
ψ := (ψ0,ψ1, . . . ,ψ H

T −1) with ψk = (ψ1,k, . . . ,ψn,k)
T

for all age-groups in all decision steps, in order to
minimize the infected share of the population (i.e., all
persons assigned to the statesIi , Di , Ai , Ri , Ti in Fig.
1), as well as the death cases (referring to the state
Ei). To consider, in addition, the vaccination costs,
an additional term can be introduced, leading to the
following cost function:

J(ψ) := ∑
i∈N

(∫ t0+H

t0
Pvi(c1 · (Ii(t)+Di(t)+Ai(t)

+Ri(t)+Ti(t))+ c2 ·Ei(t))dt

+c3 · ∑
k∈{0,··· ,H

T −1}

ψi,k



 . (12)

The parametersc1, c2 andc3 (all positive) denote ap-
propriate weights of the terms of the cost function.

Note thatJ(ψ) may be extended to additional cost
terms to account, e.g., for costs of testing. Likewise,
additional constraints, as limitations in available staff
for vaccination could be considered.

3.2 The Optimization Problem

In order to determine an optimized vaccination strat-
egy, denoted byψ∗, the aforementioned objectives
and constraints together with the model (10) are cast
into the following optimization problem:

Problem 1.

min
ψ

J(ψ) (13)

s.t. for all i∈ N and given G:

xi(t0) = xi,0, t ∈ [t0, t0+H],

dynamics(10),

for all k ∈ {0, . . . ,
H
T
−1} : (14)

ψi,k ≥ 0, (15)

∑
i∈N

P ·vi · (1+q)ψi,k ≤ Ψmax,k. (16)

The optimized strategyψ∗ is then determined by
solving this nonlinear continuous-time optimization
problem. The constraint (14) is a local constraint of
groupi, while (16) determines a coupling constraint.
The dynamics of the groups is also coupled through
the matrixW affecting (1) - (3).

To solve Problem 1, one can apply, e.g., tech-
niques of multiple shooting, see e.g. (Bock et al.,
2000), which casts the original problem into a finite
dimensional nonlinear programming problem by pa-
rameterizing the input and state space. One should
note, however, that one can only hope to determine a
sub-optimal strategy for the given non-convex prob-
lem (this is why it is referred to an optimized strategy,
rather than the optimal one).

4 SIMULATION

To illustrate the computation of optimized vaccination
strategies and to discuss a number of effects, consider
a midsize city with a population ofP = 200,000. Ac-
cording to a statistics of distribution of the population
over the age groupsi ∈N (in Germany for 2021), con-
sider the following values for the city:

Table 1: Distribution over age groups.

Age 0-19 20-39 40-59 60-79 80+
vi 18.5% 24.6% 28.8% 21.6% 6.5%
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Table 2: Contacts between different age-groups during the
epidemic.

Age 0-19 20-39 40-59 60-79 80+
0-19 31% 34% 25% 8% 2%

20-39 34% 45% 15% 5% 1%
40-59 25% 15% 30% 20% 10%
60-79 8% 5% 20% 50% 17%
80+ 2% 1% 10% 17% 70%

The estimated average time (in percentage) per-
sons of one group spend with those of another is listed
in Table 2, representing the entries of matrixW. Note
that Table 2 also reflects certain intervention policies
deployed in certain phases in Germany, such as that
visiting nursing homes was forbidden (such that the
most senior group had to spent most of their time with
its own), while schools were open during that phase.
The parameters contained in the dynamics (1) - (9)
are chosen similar to (Giordano et al., 2020), except
for the following:

• The contagion parametersα̂i , γ̂i for the transition
fromUi → Ii are larger than forSi → Ii . This aims
at reflecting the effect that people are less cautious
to the virus after being vaccinated, although the
vaccination may be ineffective.

• Effectiveness of the vaccine is assumed to be 90%
for all age-groups2, i.e.,χi := 0.11ψi, i ∈ N.

The initial states fort0 are chosen according to the
pandemic situation of the city at the end of 2020. The
considered horizon isH = 90 days, and the vaccina-
tion strategy can be changed everyT = 30 days (thus,
in total 3 decision steps). The weights inJ satisfy
c2 > c1 ≫ c3, i.e., the main goal is to reduce the over-
all number of casualties, while the vaccine costs can
be neglected.

4.1 Uniform Vaccination Strategy

Before the optimized strategy is tested, a uniform
vaccination strategy is first simulated: When assum-
ing that the availability of the vaccine is constant in
all decision steps, i.e.,Ψmax,k := Ψmax, ∀k∈ {0,1,2},
the ψi,k in the uniform vaccination strategy takes a
value of: ψi,k := Ψmax

P ·(1+q) for all i ∈ N. The outcome
by adopting this strategy is illustrated in Fig. 2 and
3. Obviously, most of the casualties occur in the
senior groups60 - 79 and80+, although the number
of infections (over the states infected (Ii), diagnosed
(Di), ailing (Ai), recognized (Ri) and threatened (Ti))

2This may be extended to considering different effec-
tiveness rates of the vaccine for different age-groups, or to
different rates for different types of vaccines.

Figure 2: Number of infections when applying the uniform
strategy overH = 90 days.

Figure 3: Casualties for each age group with the uniform
strategy at the end of the 90 days.

in these groups are not the highest. This is mainly
due to the high mortality rate of the two groups.

4.2 Optimized Vaccination Strategy

In the second test, the Problem 1 is solved to deter-
mine the optimal vaccination strategy. The resulting
ψ∗

i,k for each group is shown in Fig. 4. By adopting
this strategy, the evolution of the infections and ca-
sualties are illustrated in Fig. 5 and 6. Compared to
the uniform strategy, more infected cases occur in the
groups20 - 39 and40 - 59, while less in the groups60
- 79 and80+. The casualties for the two senior groups,
however, is significantly reduced by adopting the op-
timized strategy, and this also leads to a decrease of
the total number of casualties from 329 to 174, see
Fig. 7 and 8.

The optimized strategy is further compared to the
popular strategy of first vaccinating the older genera-
tions, see Fig. 9 and 10. In this strategy, all available
vaccine is first provided to the group80+ in the steps
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Figure 4: The optimized vaccination strategy from Problem
1: in k = 0, the complete available vaccine is distributed to
the groups60 - 79 and80+; in k = 1, most of the vaccine
is distributed to the group40 - 59, 60 - 79 and 0 - 19; in
the last stepk = 2, the vaccine is distributed to all groups
besides the group40 - 59.

Figure 5: Infections with the optimized strategy.

Figure 6: Casualties with the optimized strategy.

k = 0 andk = 1, and then to the group60 - 79 for
k= 2. One can notice, however, that only the number
of casualties in the group80+ is slightly reduced com-
pared to the uniform strategy, while much more occur
in the group60 - 79. This is due to the larger size of
the latter group than the80+ group, and to the more
frequent contacts of this group with younger persons.

Uniform strategy

Optimized strategy

Figure 7: Infections over all age-groups by adopting the
uniform vaccination strategy and the optimized one.

Uniform strategy (329)

Optimized strategy (174)

Figure 8: Casualties over all age-groups by adopting the
uniform vaccination strategy and the optimized one.

Figure 9: Infections when applying the older-first strategy.

The immunity of the group60 - 79 is, however, only
slightly better than for the80+ group, but much worse
than for the junior groups. Accordingly, the group60
- 79 should not be ignored in the first step of the vac-
cination process based on the simulation results.

4.3 Increasing Availability of Vaccine

In the third test, it is assumed that more vaccine
can be provided over time, i.e.,Ψmax,k := 2k ·Ψmax,
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Figure 10: Casualties when applying the older-first strategy.

k ∈ {0,1,2}. The new outcome from solving Prob-
lem 1 is illustrated in Fig. 11 and 12. Compared with
the last test, in which the available amount vaccine is
constant over time, the total number of casualties has
been barely reduced, but a decrease of the total num-
ber of infections can be observed after 30 days. In an-
other test withΨmax,k := 2k ·Ψmax, the infections rates
for the transitionsSi → Ii andUi → Ii are reduced by
20% compared to the test before for allk ∈ {0,1,2}.
This may be achieved by additional intervention poli-
cies such as lock down. Hereby, the number of infec-
tions as well as the number of casualties can be sig-
nificantly reduced, as shown in Fig. 11 and 12 – this
result shows that one should not only rely on vaccina-
tion to mitigate the epidemic fast, i.e., the vaccination
strategy and intervention policies should be optimized
at the same time.

4.4 Effectiveness of the Vaccine

In the last test, a lower effectiveness of the vaccine
(compared to before) is investigated. By assuming
that the effectiveness isχi := 0.5ψi instead ofχi :=

Increased availability
Constant availability

Increased + Lockdown

Figure 11: Infections over all age-groups when: 1.) the
availability of vaccine is constant over time; 2.) the amount
of vaccine increases over the steps; 3.) additional interven-
tion policies are deployed and the amount of vaccine in-
creases overk.

Increased availability (171)
Constant availability (174)

Increased + Lockdown (131)

Figure 12: Casualties by applying the strategies in Fig. 11.

0.11ψi, i ∈ N, the outcome from solving Problem 1 is
shown in Fig. 13 and 14. As could be expected, this
change will lead to less healed cases at the end of the
horizon, as well as an increase of casualties.

5 CONCLUSION

In this paper, the known SIDARTHE model has been
extended in different respects in order to be tailored to
the study of vaccination procedure against epidemic
virus spread. The motivation of these extensions is
the typical shortage of vaccine, if a new virus spreads
and the vaccine first has to be developed. To effec-
tively combat the epidemic with a limited amount of
vaccine, this paper has shown that the solution of opti-
mal control problems serves to determine strategies to
optimally distribute the vaccine among different age-
groups. The contacts between the age-groups, hetero-
geneous infection and mortality rates over the groups,
as well as limited effectiveness of the vaccine can all
be taken into account in the optimization. The model
proposed here can also be adapted straightforwardly
to study some additional problems occurring during
vaccination procedures, such as the effect that a vac-

χi := 0.5ψiχi := 0.5ψi

χi := 0.11ψi

Figure 13: Number of healed persons of all age-groups for
different effectiveness of the vaccine.

ICINCO 2021 - 18th International Conference on Informatics in Control, Automation and Robotics

636



χi := 0.5ψi (215)

χi := 0.11ψi (174)

Figure 14: A less effective vaccine leads to an increase of
the total number of casualties.

cine is less effective or bears danger for certain age
groups, or that a vaccinated person would not get ill
but may still be contagious in case of infection.

Finally, for the situation that the transition rates or
model parameters are only known within certain inter-
vals, the optimal control problem could be modified
into one of optimization under uncertainty, e.g. adopt-
ing techniques of robust optimal control. To account
for the change of the parameters over time (e.g. due
to a virus mutation), the solution of the optimal con-
trol problem could be recursively solved over time,
leading to a strategy of model predictive control.
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López, L. and Rodó, X. (2020). The end of social con-
finement and COVID-19 re-emergence risk.Nature
Human Behaviour, 4(7):746–755.

Ndaı̈rou, F., Area, I., Nieto, J., Silva, C., and Torres, D.
(2021). Fractional model of COVID-19 applied to
Galicia, Spain and Portugal.Chaos, Solitons & Frac-
tals, page 110652.

Pastor-Satorras, R., Vespignani, A., et al. (2003). Epidemics
and immunization in scale-free networks.Handbook
of Graphs and Networks, Wiley-VCH, Berlin.

Peng, C., Jin, X., and Shi, M. (2010). Epidemic thresh-
old and immunization on generalized networks.Phys-
ica A: Statistical Mechanics and its Applications,
389(3):549–560.

Preciado, V., Zargham, M., Enyioha, C., Jadbabaie, A., and
Pappas, G. (2013). Optimal vaccine allocation to con-
trol epidemic outbreaks in arbitrary networks. In52nd
IEEE Conf. on Decision and Control, pages 7486–
7491.

Wan, Y., Roy, S., and Saberi, A. (2007). Network design
problems for controlling virus spread. In46th IEEE
Conf. on Decision and Control, pages 3925–3932.

Zanette, D. and Kuperman, M. (2002). Effects of immu-
nization in small-world epidemics.Physica A: Statis-
tical Mechanics and its Applications, 309(3-4):445–
452.

A Study on Model-based Optimization of Vaccination Strategies against Epidemic Virus Spread

637


