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Abstract: In this paper we introduce a new method for the automatic generation and computer experimentation of 
Discrete-Event Systems (DES). We introduce the concept that DES descriptions may be used to define a 
searchable configuration space. Configuration instances in this space a represented as a permutation encoding 
which shows the number-of and types-of resources in a given configuration. Each instance is checked that the 
number of resources does not exceed a maximum and whether a fixed set of processes (a decomposed goal of 
uncertain time intervals drawn from a Gaussian distribution) can be logically completed on the given set of 
resources. If the permutation instance satisfies these constraints, it is subsequently constructed as a simulation 
model to quantify completion through global features of makespan and total processing time. We claim this 
is the basis for a powerful tool in high-level informed design of these types of systems that have hitherto 
avoided autonomous description or have been previously individually designed using time consuming 
manually defined programs.  

1 INTRODUCTION 

The fields of engineering and computing have 
synergistically supported one another in providing 
tools to enhance humanities ability to shape our 
world. Various forms of ‘Electronic Design 
Automation’ (EDA), including optimisation of 
hypotheticals in the broadest sense under the context 
of Model Driven Engineering (MDE), have allowed 
engineering tasks to be presented in appropriate 
mathematical structures to be utilised by computer 
programs. As a result of the ability of computers to 
inform design decisions, the computer becomes a part 
of the engineer’s cognitive process allowing 
engineers to sit at a higher level of abstraction – 
typically defining the system constraints and goals. It 
is inevitable this trend will accelerate, EDA being one 
of the most established software disciplines to utilise 
design automation. In a broader-still context, 
Generative Modelling has emerged as software 
process in which a program assists in the design 
modelling of a wide range of mediums including 
sound, images, animations and products. In this work 
we show how Discrete-Event Systems (DES) that can 
be generalised as a ‘logical graph structure’ which 
defines a constrained space of sub-DES. These 
instances can be generated autonomously using a 

functional-style programming approach and then 
simulated using non-deterministic processing time 
intervals to quantify their performance. The program 
itself is inspired by the metaprogramming capabilities 
of the LISt Processing (LISP) programming language 
but written in MATLAB®. 

DES express phenomena that can only be 
described through two distal model-theoretic 
viewpoints; on the one hand, by considering their 
logical graph structure (a computer-science 
theoretical approach, in which analogies to Cellular 
Automata (CA), Markov Logic Networks (MLN), 
message passing networks, or even representation of 
a Chess board, in which places - squares - are 
resources) or on the other hand, through statistical 
modelling of the dynamic (i.e. time-focused) 
evolution of the system, which draws somewhat 
predictably from the fields of a simulation, computer 
programming and statistics. 

The former is related to the state space definition 
as a disjoint sum, as opposed to the Cartesian 
product, which removes the necessity to declare 
variables not required as simply undefined. There 
have been little to no attempts to unify or understand 
these two aspects of the DES field explicitly in a 
coherent framework, despite the fact that they are 
inextricably linked – the structure, and discrete-time  
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Figure 1: Discrete-Event Systems; in a) we have all possible DES configurations together, which can be seen by the high 
number of relations between processes that are queued on the left and their respective resources on the right. In b) we show 
the ‘highest performing’ configuration: it logically completes the processing; it satisfies the constraint of a maximum of 6 
resources; when it is generated and simulated it is found to be the most performant. 

process viewpoint allows us to both consider a 
‘space’ of possible structural DES configurations and 
subsequently establish how they stand in relation to 
one another when actualised through simulation and 
statistical uncertainty propagation. As shown in this 
paper, statistical information indicates that logical 
graph structure has an unequivocally fundamental 
and exploitable impact on system dynamics and 
consequentially has many applications in many real-
world systems. An accessible approach to enable 
computers to explore this configuration space is a 
powerful and useful tool in the discrete or 
combinatorial optimisation of many highly 
commercially valuable systems, allowing supply 
chains, logistical systems and manufacturing systems 
to be brought into the fold of EDA in a design 
perspective, and move towards ideals of Industrie 4.0 
in regards to control.  

1.1 Previous Work 

There is very little previous work to be found though 
searching for automatic generation of DES 
specifically. However, on a more general level, early 
work oriented around modelling theory and how DES 

stands in relation to automation and Artificial 
Intelligence (AI). As early as 1984, Klir, as part of a 
holistic approach to systems modelling architectures, 
focused on techniques for inductive System 
Identification (SI) of systems with variable structures. 

Whereas Zeigler, also in 1984, who coined the 
term ‘variable structure model’, was primarily 
concerned with capturing this phenomena through 
simulation – computer programs. (Uhrmacher & 
Arnold, 1994), explored a constructive view of 
autonomous agents in which hierarchical, 
compositionally organised, internal models that 
describe an agent-environment coupling are 
fundamentally discrete-event structures, and are 
thereby central to progress in AI. The term processors 
is seen here also, and uses an analogy of ‘hiring’ and 
‘firing’ to indicate processor instantiation under 
response to different workloads and development of 
strategies to undertake them. (Barros, 1995), and 
previously in (Barros, Mendes, & Zeigler, 1994), 
introduce the concept of ‘dynamic structure’ 
computer modelling [presumably inspired by 
Variable Structure Modelling in (Zeigler, Kim, & 
Lee, 1991) and (Zeigler & Praehofer, 1989) neither of 
which are accessible] which extended the original 
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Discrete-Event System Specification (DEVS) 
formalism that assumes a static structure of the 
system with a formalism known as Dynamic 
Structure Discrete Event System Specification 
(DSDEVS), extending DEVS via a special model 
called a network executive. (Uhrmacher, 2001) states 
the motivation and necessity for capturing structural 
changes via variable structure models originated in 
sociological and ecological applications. 

Recent formalisation work by (Ay, 2020) defines 
characteristics of robustness is in ‘invariance of their 
function against the removal of some of their 
structural components’. We argue that the advent of 
Industrie 4.0 – the information age – decentralised 
multi-agent technological systems will begin to 
reflect these same properties. It is broadly agreed that 
autonomous systems or agents must model 
concurrent dynamics in actions, interactions, 
composition and robust behaviour that features the 
appearance, disappearance and movement of entities. 
Most closely to this work, Aspenti & Busi in 1996 
(Asperti & Busi, 2009) [appeared as a technical report 
in 1996, but later published in 2009] presented Mobile 
Petri Nets (MPN) that use join-calculus to support a 
change of coupling between nodes; and Dynamic 
Petri Nets (DPN) that support additions of new Petri 
Net components, both via firing of transitions on a 
higher level to create new complete net structures – 
new models – in which is thus a DSDEVS. 

(Perrica, Fantuzzi, Grassi, & Goldoni, 2010) 
discussed in detail requirements surrounding DES 
experiments and design of such experiments in 
regards to interactions between samples drawn from 
probability distributions. Perrica made some 
important points about ‘proper configuration’ of 
simulation experiments, namely; a great deal of 
attention is paid to model development, verification 
and validation steps [see (Van Tendeloo & 
Vangheluwe, 2019) for a brilliantly clear tutorial 
exposition of these steps], whereas comparatively 
little attention is paid to what might be summarised as 
Design of Experiments (DoE). 

Although the generality of DES will affect the 
necessity to focus on one aspect or another, for 
example; some work primarily use DES formalisms 
to address logical graph structures only by omitting 
consideration of time as a variable completely, and 
instead, only consider ordering or sequencing of 
events. In description of a DES, a ‘global’ 
understanding of state space, state transitions and 
output function is required, so we broadly support this 
argument, and it is reflective in this work that model 
development, verification and validation is not only 
time consuming - making a strong argument for its 

automation - but also may help to address the need for 
more attention (vis-a-vis researcher time) to statistical 
analysis by defining the logical graph structure only. 

(Cai & Wonham, 2010) consider a top-down 
approach by a decomposition of a monolithic 
(centralised) for supervisory control in pre-defined 
DES systems. Wonham, developer of foundational 
work in DES (Ramadge & Wonham, 1989), has 
focused primarily on synthesis of supervisory control 
as opposed to establishing theory surrounding scalar 
comparisons between different DES. That said, the 
ability to control DES systems is severely complex 
and any statements regarding their overall 
performance must be restricted to global feature 
summaries using typical initial states and goal states 
[as it is here], in the form of a ‘job-shop scheduling’ 
problem formulation. 

(Jiao, Gan, Xiao, & Wonham, 2020), [with prior 
work in (Jiao, Gan, Yang, & Wonham, 2016) and 
(Macktoobian & Wonham, 2017)] discuss an 
approach for reduction in the computational 
complexity by grouping together identical processes 
and ‘achieve controller reduction by suitable 
relabelling of events’ to exploit symmetry inherent to 
many DES. In addition to describing a computational 
model of DES, in the final part of (Van Tendeloo & 
Vangheluwe, 2019)’s work, a queueing system is 
considered, and they undertake performance analysis 
regarding how the number of resources stands in 
relation to the average and maximum queuing times. 
In defining a ‘maximum queuing time’, a constraint 
is defined, and they discover that 2 resources is the 
minimum to satisfy this constraint, whilst it is 
speculated that 3 would be quantifiably optimal based 
on the future definition of a cost function that trade-
off the waiting of jobs to the cost of adding additional 
resources. 

2 METHODOLOGY 

DES are defined by a discrete state space 
representation and asynchronous discrete events. It is 
evident that a variable structure model could be 
represented in such a way that a static structure is used 
to fully enfold all possible variable or dynamic 
structural change and associated possible state space 
by exploiting either model-based conditionals [See 
Fig. 1. a)] or hardcoding intricate conditional 
structures as mentioned by (Uhrmacher, 2001). 

It is unfeasible for large models, and applications 
such as the one outlined in this work, in which the 
purpose is to automate the process of model 
construction and simulation, to approach the problem 
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in this inefficient and less elegant manner. We 
consider instead a stochastically searched 
configuration space of sub-DES, represented as a 
sequence of real-valued integers, called a 
permutation, that is constrained by the maximum 
total number of resources (in this example, 6) in 
which each unique structure is generated [Fig. 1. b) 
shows instead how the present treatment illustrates an 
instance of a structure]. This is checked first for 
logical feasibility in regards to completing the 
workload (an exemplar set of processes) and then 
simulated (i.e. a trajectory through time or 
simulation) with uniformly probable random routing, 
inclusion of processing time interval uncertainty, and 
asymmetric context (process) switching time 
intervals for resources. By defining a DES instance in 
a procedural sequence, the workflow is undertaking 
an epistemic action, taking the role of the higher-level 
‘network executive’. As with (Uhrmacher, 2001), we 
have been inspired by Ferber’s concept of 
“reflectivity” (Ferber & Carle, 1991), (Ferber, 1999), 
defined as “the ability of a computational system to  
 

Table 1: Model Input Data. 

Resource 
Type 

PROCESS TIME INTERVALS 

 CST – FROMa 

MEAN VAR A1 A2 B2  

R1 

A1 100 100 0 4 5  
A2 400 150 8 0 9  
B2 600 200 10 19 0  

RESOURCE TYPE 2 A2 B1 C2  

R2 

A2 500 100 0 7 4  
B1 200 50 4 0 5  
C2 300 75 8 12 0  

RESOURCE TYPE 3 A1 B1 B1  

R3 

A1 100 50 0 8 6  
B1 250 100 18 0 14  
C1 150 25 7 5 0  

RESOURCE TYPE 4 A1 B1 B2 C2

R4 

A1 70 30 0 12 15 10
B1 300 50 5 0 7 5 
B2 550 200 8 5 0 12
C2 350 20 11 14 12 0 

RESOURCE TYPE 5 B1 B2 C1  

R5 

B1 400 50 0 15 10  
B2 550 100 4 0 5  
C1 125 50 17 8 0  
a. Context Switching Time (CST) ‘from’ being the current state or mode. 

 
Figure 2: General Layout of a DES in a scheduling format. 

represent, control and modify its own behaviour”. 
Strictly speaking, this encapsulates many of the 
automated tools seen in EDA for MDE (as discussed 
in the introduction), but in the context of DES 
structures specifically leads to a recursive definition 
of models. 

Metaprogramming for simulation allows for the 
labelling of variables and functions in a manner that 
partially avoids the requirement of hardcoding 
intricate case structures. Inspired by the LISP 
language, the program generates its structure by 
selecting the number of instances of each processor (0 ≤ 6) , then recording the ‘events’ (i.e. state 
transitions) as a dynamically generated list of variable 
length and content. That list is then used as a typical 
mapping that relates events and entities in simulation. 

The term Uncertainty Quantification (UQ) is used 
in many different contexts to classify those 
methodologies that integrate and propagate 
uncertainties into mathematical and computer models 
where they are used to generate data that is typically 
used in forecasting or prediction. Models are 
fundamentally limited on account of epistemic 
uncertainty regarding a limit on understanding of a 
modelled system [and its consequential complexity] 
and secondly, on the intractability of complex 
models.  

2.1 System Architecture 

Resources are used by processes over time intervals. 
The main thesis is that connections [in this case, 
events] between processes and resources are the 
fundamental source of structure in defining 
possibility. In this context, connections are couplings 
of atomic propositions that represent concurrent state 
transitions, but could equally be seen as a simple 
function - namely - unitary decrement of a process 
token from the origin node and increment at the target 
node. 

Jobs, tasks and processes are similar, 
interchangeable concepts and are held in process  
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Figure 3: Mean permutation performances data; shown in relation to one another on the left-half; on the right-half, organised 
in classes using sub-plots by total number of resources where the error bars show the standard deviation and the dotted 
instance is the highest performing configuration of that class. 

queue nodes, which are rectangular on the left hand 
side of Fig. 2. Identical instances of processes are 
held together within one node, categorically labelled 
as ‘Process Type’ with a unique encoding and the 
number of processes within a node is shown. 
Actualisation involves the instantiation of a uniquely 
labelled process-resource coupling upon assignment; 
an event. External events (perhaps via a supersystem) 
can be used to instantiate or inject new process tokens 
to their respective process queue, or remove 
finished/completed processes. Resources are nodes 
on the right hand side which are instantiated as part 
of the model construction process. Each has a label or 
name indicating its type and index. Nodes of process 
and resource types are connected by events of two 
types; uncontrolled and controlled, which are dotted 
and solid respectively. The possibility of assignment 
between processes and resources (and vice-versa) is 
dictated by these connections. A lower-level policy 
must be used when selecting between (𝑛 ൐ 1) 
possible assignments. Once an assignment is made, 
the nondeterministic time interval from a Gaussian 
distribution with a specific mean and variance of the 
resultant process-resource coupling is generated from 
the input data in Table 1. 

Depending on the current state or mode of the 
resource, the Context Switching Time (CST) which is 
asymmetrical and deterministic, [for instance, if a 

type R4 resource was in mode C2, and switched to 
A1, it takes 10 units of time, whereas in reverse it will 
take 11]. Process-resource couplings persist, 
addressing the ‘frame’ problem through 
circumscription. Requalifying the proposition is 
achieved through scheduled firing of uncontrolled 
events in future. Because process-resource couplings 
(also known as fluents) have the quality of qualitative 
reasoning, process models can be described using 
natural language, and like language systems, have a 
syntax - rules of structure dictated by their 
configuration. 

2.2 Program Structure & Parameters 

Table 1 shows the logical relations between 
processes (A1, A2, …, C3) and respective resources 
(R1, R2, …, R5). A workload is a set of processes. In 
this experiment we only consider one workload; 
comprised of 100 A, B and C process tokens each. A1, 
A2, A3 are sub-states of the processes – A1 state 
would indicate unprocessed, A2, partially processed 
and A3 is completed – processed. The performance is 
judged on two primary features; the processing time 
and makespan. Processing time indicates the literal 
amount (scalar sum total) of processing required, 
since this relates to important second-order resources, 
e.g. energy. The makespan gives a scalar value that is 
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indicative of system global performance; the total 
processing time of all processes from first process 
start to last process finish. Because a given control 
policy (e.g. intelligent task sequencing/routing or 
load balancing) can vary the local features; process 
queue volume and/or associated waiting times, this 
consequentially hides global system performance 
from evaluation. This phenomena is pervasive in real-
life systems, and it is exceptionally difficult to 
perceive, since local control policies are deployed to 
avoid bottlenecks at a cost of overall performance (it 
can be conceptualised as performance lowering to the 
point at which evidence of bottlenecks is removed).  

2.3 Results 

The system discovered 221 unique configurations 
that feasibly process this workload with a maximum 
of 6 resources. The logically minimum resource 
number is 3, as the workload required 3 different 
resource types for completion. Fig. 3. shows the 
majority of permutations (outliers were omitted for 
clarity) and their respective total number of resources 
(as different coloured classes), the respective mean 
makespan time and mean processing time [in X-Y 
respectively] calculated from a population of 400 
simulations. It can be seen that the number of 
resources has a significant impact on performance; 
and within each class there is also an optimal resource 
configuration. It is suggestive in the data that clusters 
appear in certain regions, opening the possibility to 
discover some heuristic to help inform the selection 
of new configurations in larger problems. In Fig. 4. 
(upper) the highest performing configurations of each 
class are shown with their simulation results. 

It is notable that fewer resources show a greater 
relation between total processing time and makespan, 
as indicated by linear regression fit. In Fig. 4. (lower), 
the highest performing configuration is shown once 
again, with inclusion of the total Context Switching 
Time (CST). Note the highest performing 
configuration is visually represented in Fig. 1 b).  

3 FUTURE WORK 

The routing policy used is likely to be creating 
second-order un-modelled effects on simulation, 
impacting generated behavior data and performance, 
alleviated by; 1) detection using a hybridization of 
global and local performance features for evaluation 
and/or 2) a more systematic simulation. Using purely 
exploratory stochastic search, the discovery of 
configurations in larger spaces that are both feasible  
 

 
Figure 4: Performances – top; best in each class, bottom; 
best overall. 

and high-performing is unacceptably inefficient 
without exploitation. Further development will 
feedback high performing features [performance 
result(s) of the forward model] from an initial 
population to a selection mechanism for 
configurations of new populations. An obvious 
candidate could be a derivative of the canonical 
Genetic Algorithm (GA), via a mixed-integer 
encoding, since the permutation itself has no 
particular structure. In addition to establishing useful 
heuristics to the user about this particular problem, an 
interesting avenue of research would be a 
metaheuristic algorithm where the generation of new 
permutations are limited to features inherent to 
clusters of high performing configurations in the 
existing population. Software experience limits this 
work in regards understanding how variable structure 
modelling is manifest in other application contexts. 
However, the ability to construct structurally variable 
models is growing in applicability to both well 
established and contemporary use cases – in systems 
that adapt online to variation in requirements. Many 
computational workloads involve the fault-tolerant 
decomposition, processing and recomposition of 
processes or tasks and the allocation of these 
subproblems to computer systems that are 
increasingly interconnected, hierarchical and 
heterogeneous. The internet has enabled macro-scale 
workload distribution through cloud computing, 
whilst at processing scale, we see a continuous 
growth in multi-processor Central Processing Units 
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(CPU), a growth in the use of Graphical Processing 
Units (GPU), and new specialised systems, such as 
the Intelligence Processing Unit (IPU)(Mohan et al., 
2020)(Jia, Tillman, Maggioni, & Scarpazza, 
2019)(Ortiz, Pupilli, Leutenegger, & Davison, 2020) 
and Tensor Processing Unit (TPU) (Jouppi, Young, 
Patil, & Patterson, 2018). The advent of Industrie 4.0 
demands that these systems can adaptively self-
organise so that large workloads are distributed 
between specialised resources in real time.  

The design or operational control manufacturing 
systems is an obvious candidate, and was anticipated 
by (Uhrmacher, 2001); “in factories where machines 
are capable of being dynamically reconfigured for 
different products”. Typically in the design and 
control of manufacturing systems, the time interval 
distribution of jobs, the types of resources unto which 
the jobs can be executed, how they are sequenced and 
context switching in the form of tool changeovers are 
all known or estimated. In which case a project is to 
establish a globally optimal manufacturing system 
design based on exemplar workloads which satisfies 
the demands of the supply chain. It appears that DES 
models or structures undertake a form of automatic 
reification in order to provide a closed domain of 
discourse a la constructivism. Machine Learning 
(ML) and metamodeling has approaches for 
modelling that encapsulates different structures 
numerically, removing the requirement to create or 
omit entities. Most evident is the property of linear 
separability in classical Perceptrons and ‘dropout’ in 
contemporary Neural Networks (NN) in which 
variables between layers are contextually 
disconnected by reaching zero weight. This suggests 
generality is a property of models that in some way 
manifest reconfigurablity. 
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