HIJaX: Human Intent JavaScript XSS Generator

Yaw Frempong, Yates Snyder, Erfan Al-Hossami, Meera Sridhar and Samira Shaikh
University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina, U.S.A.

Keywords:

Abstract:

JavaScript, Cross-site Scripting, Exploit Generation, Natural Language Processing.

Websites remain popular targets for web-based attacks such as Cross-Site Scripting (XSS). As a remedy, new

research is needed to preemptively secure applications with the use of Automated Exploit Generation (AEG),
whereby probing and patching of system vulnerabilities occurs autonomously. In this paper, we present HlJaX,
a novel Natural Language-to-JavaScript generator prototype, that creates workable XSS exploit code from
English sentences using neural machine translation. We train and test the HIJaX model with a variety of
datasets containing benign and malicious intents along with differing numbers of baseline code entries to
demonstrate how to best create datasets for XSS code generation. We also examine part-of-speech tagging
algorithms and automated dataset expansion scripts to aid the dataset creation and code generation processes.
Finally, we demonstrate the feasibility of deploying auto-generated XSS attacks against real-world websites.

1 INTRODUCTION

Cross-Site Scripting (XSS), a OWASP top-ten web at-
tack (owasp (2017)), was the most prominent attack
vector of hackers in 2019, comprising nearly 40% of
attacks globally (Ilic (2019)). Over 72% of attacks
targeted websites, indicating a strong need for con-
tinued improvements to web-based security solutions.
To combat the persistence and scale of web attacks
such as XSS, new defense methods are needed to pre-
emptively secure websites against malicious attacks.

Automatic exploit generation (AEG), an offensive
security technique, is a developing field that aims to
automate the exploit generation process, to explore
and test critical vulnerabilities before they are discov-
ered by attackers (Avgerinos et al. (2014)). AEG is
also critical for building exploit testbeds for testing
defense tools.

In this work, we combine AEG with Natural Lan-
guage Processing (NLP), to enable non-cybersecurity
practitioners to detect vulnerabilities in their own
software—by issuing commands, and with an in-
terface translating and executing command opera-
tions (Dheap (2017)). To this end, we report on
the prototype HlJaX, a Human Intent JavaScript XSS
generator, that adapts neural machine translation to
translate natural language sentences bearing mali-
cious intentions (intents) into exploit code. An in-
tent describes an action in natural language that a user
wants to implement, such as visit website X or

798

Frempong, Y., Snyder, Y., Al-Hossami, E., Sridhar, M. and Shaikh, S.
HlJaX: Human Intent JavaScript XSS Generator.
DOI: 10.5220/0010583807980805

get all strings from array Y. A smnippet repre-
sents the code required to perform the action specified
in the intent.We focus on using NLP to generate XSS
attack code (snippets) based on natural language in-
tents. The main contributions of our work include:

e We are the first to combine NLP and AEG with
JavaScript to generate XSS code.

e We design and build eleven different datasets for
training the HIJaX model; we use two approaches
for this—manual selection and transpiling—with
differing degrees of variance.

e We demonstrate that HIJaX can generate code
with high accuracy (using BLEU, exact, syntax,
execution scores).

e We provide an automated means to expand a
dataset while maintaining the original qualities
of the baseline entries (the original intent-snippet
pairs mined from online sources and used to cre-
ate our datasets (see Section §2.1)).

e We design a part-of-speech tagging (POS tag-
ging) algorithm for website names and URLs,
which resulted in a significant increase in code
generation accuracy for small datasets containing
malicious code.

e Our JavaScript Syntax & Execution Tester vali-
dates the syntax and execution of JavaScript code.

e Our XSS Attack Tester validates the success
of XSS attacks by deploying XSS attack code

In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 798-805

ISBN: 978-989-758-524-1

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

generated by HIJaX on the following wvul-
nerable websites: WebGoat (Owasp (2020)),
BWAPP (Mesellem (2018)), & The 12 Exploits
of XSS-mas (Chef Secure (2019)).

Motivations. NLP-based AEG is a nascent field that
has rich potential to provide unique and effective op-
portunities for automated exploit construction. Some
unique NLP-based AEG features include:

o Textual Information for Attack Construction:
Source code analysis is often insufficient to gen-
erate exploits practically. To generate difficult ex-
ploits AEG systems tend to reason about binary
and runtime details which are often not captured
in source code. NLP-based AEG approaches such
as SemFuzz (You et al. (2017)) propose novel al-
gorithms that capture such details from textual
sources such as CVE and git log reports to gen-
erate difficult exploits that are not easy to detect
and patch on the source code level.

e FExploit Abstraction: Utilizing NLP-based AEG
enables further abstraction of exploits in Al mod-
els. Often a single natural language description
can map onto multiple exploit source codes. This
enables NLP models to generate more exploits
from a single dataset and also facilitates further
research on abstracting exploits.

o [nterpretability: NLP-based AEG pairs abstract
and interpretable descriptions with source code to
generate cryptic exploits. This can help build a
bridge to further human understanding of machine
exploits. This can assist experts in creating ab-
stract ontologies for exploits. We also hope that
our work can be applied so that non-cyber security
experts can interpret and even generate exploits.
This helps keep developers in the loop about se-
curity issues during development.

HIJaX can generate a range of XSS attacks that it has
been trained on, if given a sufficient description of
the attack. HIJaX can help developers early in the
software development life cycle by helping generate
exploit code to test possible vulnerabilities. In future
work, we plan to augment HIJaX with the ability to
generate corresponding defense code.

Previous works either explore natural language to
code transformation (Ling et al. (2016); Barone and
Sennrich (2017); Gordon and Harel (2009)), or use
NLP techniques to find and generate exploits (You
et al. (2017)), but no extant research focuses on di-
rectly mapping Natural Language intents to exploit
code. To our knowledge, our work is the first to ex-
plore this subsection of NLP and AEG.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of HIJaX, our dataset

HIJaX: Human Intent JavaScript XSS Generator

creation processes, and metrics for evaluation. Sec-
tion 3 describes experiment results, §4 discusses re-
lated work, and §5 concludes.

2 THE HlJaX PROTOTYPE

Manual Selection Transpiling

JavaScript Python to JavaScript

T T Y —

\\//

Manually Stack Overflow CoNala
Created : S -
P Automated Script [
Automated Script
[~ Benign | /Stack Overflow / Transcrypt
| (low variance)/ / (low variance) / ‘
[Malicious [Stack Overflow | || / Post-Trans |
{ (low variance)/ / (high variance)/ | [J
[/ Benign ET——— . [)
e : / /Stack Overflow / / /
/ / / X / | . /
/ (high variance)/ /(v variance) / | / Pre-Trans |

f :) - 7 Lintent /
/ EEATE / | snippet intent
[(v.h. variance) L B . snippet
—— I -
[Malicious | intent L--»(—%
S

.snippet

/ (high variance)/ ¥
[Malicious | | —ISoN—(1)
11/ (v.h. variance) / |
B e — HiJaX Model @

-

T @ BLEU Score & .snippet
Malicious /[Transcrypt @
\—4?<-

BLEU, Syntax, Exact,»
Benign or SO or Transpiledj'

[Execution scores, and |

\\\77 .shippet files //
o

Figure 1: HIJaX Full Code-Generation System.

HIJaX is a prototype NLP-based code generation and
validation tool. The code generation component in
HIJaX (the HIJaX model (Anonymous (2020))) is
built using techniques from neural machine trans-
lation, specifically an English-to-Python Translation
Model built for the CoNalLa Challenge (Carnegie
Mellon University (2019)). The CoNaLa Challenge
tests a system’s ability to generate Python code when
given an English sentence or phrase. The HIJaX
model processes English intents, provided by our
datasets, into JavaScript snippets. The ability to
translate an intent into its equivalent snippet allows
us to translate malicious intents into exploit code.
HIJaX wuses sequence-to-sequence architec-
ture (Ma’amari (2018)) & a bi-directional LSTM
as the encoder to transform an embedded in-
tent sequence into a vector of hidden states with
equal length. We implement this architecture with
Bahdanau-style attention (Bahdanau et al. (2015))
using xnmt (Neubig et al. (2018)). We use an Adam
optimizer (Kingma and Ba (2014)) with B; = 0.9
& B2 =0.999. We use Auto-Regressive Inference

799

SECRYPT 2021 - 18th International Conference on Security and Cryptography

components with beam search (beam size of 5).

Fig. 1 shows an overview of our tool chain. A key
effort in this work is the process of building adequate
datasets for training the HIJaX model on JavaScript
(exploit) code. We employ two approaches for this
effort—manual selection (manually collecting train-
ing data from online JavaScript sources) and tran-
spiling (converting existing Python snippets from the
CoNalLa dataset (Carnegie Mellon University (2019))
into JavaScript). The orange boxes in Fig. 1 show
datasets; Steps 1A and 1B show manually selected
datasets, and Step 1C shows the transpiled dataset. In
Step 1A, we create our own JavaScript intent-snippet
pairs manually from a JavaScript tutorial website and
a GitHub repository of XSS payloads, resulting in the
Benign and Malicious datasets respectively. We then
expand the collected datasets with automated scripts
to create variations of the chosen snippet code struc-
tures. In Step 1B, we scrape JavaScript intent-snippet
pairs manually from Stack Overflow (SO) (Overflow”
(2020)), a website where developers can ask questions
and receive answers to programming problems, then
expand the collected dataset with automated scripts.
This results in the Stack Overflow dataset. In Step
1C, we convert an existing Python dataset (Carnegie
Mellon University (2019)) into JavaScript through
transpiling. We use two approaches for transpiling:
The first approach is Pre-transpiling, where we con-
vert the Python dataset into JavaScript before using
it as input for HIJaX. The second approach is Post-
transpiling, where we use the Python dataset as input
for HIJaX then converting it to JavaScript later. In
Step 2, 80% of each dataset is used to train the HI-
JaX model and 20% is used to test the HIJaX model.
The model outputs the generated snippets along with
BLEU and exact scores. In Step 3, the generated snip-
pets from the Post-transpiled datasets are converted
to JavaScript. In Step 4, the datasets are tested for
syntax and execution using different methods based
on the type of dataset they are. The generated snip-
pets from the malicious datasets are used as input for
the Attack Tester. Generated snippets from the Stack
Overflow, Benign, and Transpiled datasets are used as
input for the JavaScript Syntax and Execution Tester.
In Step 5, the Attack Tester outputs the syntax and
execution score for the XSS attacks in the malicious
datasets. In Step 6, the JavaScript Syntax and Exe-
cution Tester outputs the syntax and execution score
for the JavaScript code in the Benign, Stack Overflow,
and Transpiled datasets. In step 7, we compare all the
datasets to each other based on their BLEU, exact,
syntax, and execution score.

800

2.1 Manual Selection

We coin the term manual selection for our approach
of creating datasets to train the HIJaX model, where
we manually collect data from online sources such
as Stack Overflow (SO). We use SO to collect large
numbers of JavaScript-based questions and answers,
since it offers a good representation of how a user
would describe a piece of code they want to gener-
ate. These JavaScript-based questions and answers
are useful for training HIJaX, a tool that converts de-
scriptions of code into code, since the questions of-
ten contain a precise description of code and the most
popular answer to the question often contains the cor-
rect corresponding snippet of code. We also manu-
ally select snippets from a JavaScript tutorial web-
site (HTMLCheatSheet (2019)) and a list of XSS pay-
loads from a GitHub repository (Payload Box (2019))
to create the baseline entries for the Benign and Ma-
licious datasets (see more details in §2.3).

2.2 Transpiling

We coin the term transpiling for our approach of
creating datasets to train the HIJaX model, where
we convert existing Python snippets to JavaScript.
While the manual selection process tests HIJaX with
JavaScript datasets, exploring the capability to utilize
existing large datasets written in other programming
languages and then translating them into JavaScript is
beneficial from a cost and time efficiency perspective.

As mentioned earlier, we conduct two experi-
ments, Pre-transpiled and Post-transpiled, with the
existing Python dataset (Carnegie Mellon Univer-
sity (2019)) (called conala-mined, but we refer to
it as CoNaLa) to determine if HIJaX can generate
JavaScript code even if the dataset contains snippets
in a programming language other than JavaScript.

We use a transpiler called Transcrypt (Transcrypt
(2016)) to transform the Python CoNaLa dataset into
its JavaScript equivalent. The CoNaLa dataset con-
sists of 598,237 intent/snippet pairs.

In our transpiling process, as depicted in Fig. 1,
we first retrieve the . intent and . snippet files from
the CoNaLa dataset. In our post-transpiled experi-
ment, we train the HIJaX model with the files directly,
and the model outputs a Python .snippet file. We
then use Transcrypt to transpile the Python . snippet
file into its JavaScript equivalent. In the pre-transpiled
experiment, we transpile CoNaLa’s Python . snippet
into its JavaScript equivalent then train the model.

redirect script to vare
: «script>window.location="https://www.vare"</script>

var@: facebook.com
intent: redirect script to facebook.com

snippet: <script>window.location="https://www.facebook.com”</script>

Stack Overflow

intent: Replace all occurences of String var@ with String varl using REGEX
snippet: anotherString = someString.replace(/var@/g, 'varl');

var@: cat
varl: dog

intent: Replace all occurences of String cat with St
snippet: anotherString = someString.replace(/cat/g, "do

using REGEX

Figure 2: Dataset Expansion.

2.3 Datasets

In addition to the Pre-transpiled and Post-transpiled
datasets (see §2.2), we also create nine datasets within
the umbrella of manual selection. Three of the man-
ual selection datasets are created with the use of SO
while the remaining six are created from other sources
(as described in §2.1). The following datasets are in-
cluded in manual selection since their baseline entries
are manually selected or created prior to expanding
the dataset with an automated script: Stack Overflow
Low Variance, Stack Overflow High Variance, Stack
Overflow Very-High Variance, Benign Low Variance,
Benign High Variance, Benign Very-High Variance,
Malicious Low Variance, Malicious High Variance,
and Malicious Very-High Variance.

“Benign” refers to intent-snippet pairings that are
representative of simple programmatic operations,
whereas “malicious” refers to intent-snippet pairings
that are XSS-related, and are generally more abstract
or semantically complex. Variance is a quantitative
measurement referring to the number of baseline en-
tries present in a dataset; whereby Low is one, High
is five, and Very-High is fifty. Baseline entries for
the Benign and Malicious datasets are characterized
in the same way as baseline entries in the SO dataset
from the manual selection process, and are used to en-
large a dataset. As depicted in Fig. 2, we increase the
size of our datasets by first taking a dataset’s baseline
entry and changing the identified variables with ran-
domly selected words from a word bank (FreeBSD
(2020)) to generate multiple similar snippets for train-

ing.
24 POS Tagging

POS Tagging, in combination with regular expres-
sions, allows for an automated way to mark website
names in an intent—identifying website names is im-

HIJaX: Human Intent JavaScript XSS Generator

Redirect to Gmail
(Verb){ Stop Word)(Moun)

Go to Facebook
(Verb)(Stop Word)(Moun)

Filter Out Stop Words

Y 4

Go Facebook
(Verb)(Noun)

Redirect Gmail
(Verb)(Noun)

Marks Words After A Verb

Y A 4
Facebook Gmail
(Noun) {Noun)

Figure 3: Tagging website names with POS tagging.

portant since they often appear in XSS attacks. POS
tagging is an NLP technique for marking words in
text and grouping them into a particular part of speech
(nouns, verbs, adjectives, adverbs, pronouns, etc). We
use the POS tagging function in the spaCy Python
library (’spaCy” (2020)) to mark pronouns as web-
sites. To mitigate mislabeling, we mark all nouns that
succeed a verb in an intent as a website. This is ef-
fective for Malicious datasets because they consist of
URL redirects that often contain phrases such as “Go
to (website)” or “Redirect to (website)”.

2.5 Evaluation of Generated Code

We use three methods to evaluate the snippets that are
generated from HIJaX:

BLEU Score: BLEU score (Carnegie Mellon Uni-
versity (2019)) is a metric for comparing generated
translations of text to reference translations. In our
case, the generated translations are the snippets that
HIJaX generates and the reference translations are
the intent-snippets pairs provided as input to HIJaX.
BLEU score is generated by calculating a precision
value, based on word sequences, between the pro-
vided snippet and the predicted snippet in addition to
a brevity penalty (Tatman” (2019)).

Exact Score: Unlike BLEU score, where precision
and brevity are used to measure generated snippets
against provided snippets, the exact score is based
simply on the whether or not the generated snippet
is an exact match to the provided snippet.

Syntax & Execution Score: In the third method,
we use our own syntax & execution score to evalu-
ate if generated snippets are syntactically valid and
executable using our JavaScript Syntax & Execution
Tester and XSS Attack Tester. The purpose of the
JavaScript Syntax & Execution Tester is to measure
HIJaX’s ability to generate JavaScript code that has
correct syntax and executes without error. The pur-
pose of the XSS Attack Tester is to measure HIJaX’s

801

SECRYPT 2021 - 18th International Conference on Security and Cryptography

esprima.pa

Script {
type:
body: [
ExpressionStatement {
type:
expression:

1
)

1

)
sourceType:

1
i)

esprima.parseScript(

throw this.unexpectedTokenError(token, message);

Error: Line 1: Unexpected token .

Figure 4: Esprima outputs - success & failure.

ability to generate XSS attacks that execute without
error and work as intended.

Our JavaScript Syntax & Execution Tester is built
using the Node.JS packages Esprima JavaScript To-
kenizer (Ariya Hidayat (2020)) (see Fig. 4) and
compile-run (Vibhor Agrawal (2019)). In our
JavaScript Syntax & Execution Tester, we take in a
list of snippets written in JavaScript and output syn-
tax and execution scores based on the number of snip-
pets that had correct JavaScript syntax and executed
without error. We use the Esprima JavaScript Tok-
enizer to identify variables and functions in a snippet.
Tokenization is important because it allows us to de-
termine which identifiers need to be initialized. We
initialize every variable and function in a snippet with
every combination of default values (zero, empty ar-
ray, or empty string) so it has the chance to compile
and execute without error. Initialization allows us to
know that a failed execution is a result of the snip-
petitself and not uninitialized variables and functions.
We then use compile-run to compile our JavaScript
snippets. Based on the response from compile-run,
we calculate the number of successful snippet execu-
tions in the SO and Benign datasets.

In our XSS Attack Tester, we use Selenium (Se-
lenium (2020)), a tool that enables us to automate
actions in a web browser, to inject the XSS attacks
generated from HIJaX into targeted input fields and
validate the success of each XSS attack by detect-
ing whether the correct response is generated from
the browser or server. We test the execution of XSS
attacks in the Malicious datasets using multiple in-
secure websites made for penetration testing: We-

802

bGoat, BWAPP, and The 12 Exploits of XSS-mas.
The Malicious dataset contains XSS attacks that open
alerts, prompts, & confirmation boxes in the browser,
redirect to other websites, send user data to external
servers, and so on. These websites contain unsani-
tized input text boxes where users can inject attack
code to generate some result. We use a socket server
to listen for incoming data being sent to an IP address.
This is used to see if XSS attacks that send data to a
remote server has successfully executed.

3 PRELIMINARY
EXPERIMENTAL RESULTS

Setup. As mentioned earlier in §2.1, for all datasets
we define Low Variance as a dataset made up of one
baseline entry, High Variance as a dataset made up
of five baseline entries, and Very-High Variance as a
dataset made up of 50 baseline entries. For the Be-
nign, Malicious, and SO datasets, we define Small
as a dataset made up 200 entries, Medium as 2,000
entries, and Large as 20,000 entries. For the Tran-
spiled datasets we define Small as a dataset made up
1,500 entries, Medium as 15,000 entries, and Large as
150,000 entries. To remind the reader, Pre-Transpiled
is a dataset of JavaScript code that is transpiled from
the (Python) CoNaLa Dataset before being fed into
the HIJaX model, and Post-Transpiled is a dataset of
JavaScript code that is transpiled from the (Python)
CoNaLa Dataset after being fed into the HIJaX model
(see §2.2).

Training & Testing. We use our eleven different
datasets to train our HIJaX models (see Section §2.1).
If we want a model to generate exploit code based
on intents that describe exploits, we train using one of
our malicious datasets which contains 200, 2,000, and
20,000 examples of malicious intent-snippet pairs. In
order to measure our model’s performance, we split
our dataset into two subsets, the testing set and the
training set. The training set, which contains 80% of
the intent-snippet pairs in the original dataset, is used
to train the model. The testing set, which contains
the other 20% of the intent-snippet pairs in the orig-
inal dataset, is used to test the model’s performance.
We use the testing set to measure our model’s per-
formance because we already know the correct snip-
pet for each intent in the testing set. We can use the
testing set to see if the model can predict the correct
snippet for each intent in the testing set.

Experiments. To see the effect of size, variance, &
POS tagging on code generation accuracy, we conduct
the following tests: Experiment #1: Benign (Vari-
ance): Low vs. High vs. Very-High; Experiment
#2: Benign (Size): Small vs. Medium vs. Large;
Experiment #3: SO (Variance): Low vs. High vs.
Very—High; Experiment #4: SO (Size): Small vs.
Medium vs. Large; Experiment #5: Malicious: Low
vs. High vs. Very—High; Experiment #6: Malicious:
Small vs. Medium vs. Large; Experiment #7: Mali-
cious: POS-Tagging Disabled vs. POS-Tagging En-
abled; Experiment #8: Transpiled (Before & After):
Pre-Transpiled vs. Post-Transpiled; Experiment #9:
Transpiled (Size): Small vs. Medium vs. Large; Ex-
periment #10: XSS Execution (Variance): The 12
Exploits of XSS-mas vs. WebGoat vs. BWAPP; Ex-
periment #11: XSS Execution (Size): The 12 Ex-
ploits of XSS-mas vs. WebGoat vs. BWAPP.

Benign Dataset(Experiment #2)

® BLEU Exact A Syntax W Execulion

——
——eo—

75%

50%

25%

$ & & & o o ey 'y
o QQ ,\‘Q 0 eﬁ ,\§ “Q DQ
s° & & & & &
f o & i
o
o

o e*\»
Figure 5: Benign Experiment Results Across Size.

Stack Overflow Dataset(Experiment #4)

® BLEU Exact A Syntax ® Execution

100%
— e —
75%
50%

o o)
& &
< &

e

+ -«

Figure 6: SO Experiment Results Across Size.

Results. In Experiment #1 & #2 (see Fig. 5), in-
creasing variance had an overall negative effect on
all Benign datasets but had a less significant effect on
datasets of size 20,000. In Experiments #3, #4, #5, #6,
& #7 (see Fig. 6 & Fig. 7), increasing variance had an
overall negative effect on all datasets and a less sig-
nificant effect on datasets of size 2,000 and 20,000.
In Experiments #10 & #11, we saw similar results for
successful XSS execution on WebGoat, BWAPP, &
The 12 Exploits of XSS-mas. In Experiment #8 (see

HIJaX: Human Intent JavaScript XSS Generator

Malicious Dataset(Experiment #6 & #7)

® BLEU Exact A Syntax M Execuon @ BLEU(POS) & ExactPOS) A Syntax(POS) M Execulion(POS)

100% 7=‘

5% ¥ 22%
50%

25%

Figure 7: Malicious Experiment Results Across Size.

Transpiled Dataset(Experiment #9)

@® BLEU Exact 4 Syniax
100%
— e
75%
50% —
25% 0____“ o\‘
—o
0% ——
) %)) Q))
o o s & & &
N N KN o ™ v
& & & g g
< Q' ¢ qae; Q‘R‘ Qo"

Figure 8: Transpiled Experiment Results Across Size.

Fig. 8), Pre-Transpiled performed roughly twice as
well in BLEU score compared to Post-Transpiled. In
Experiment #9, exact and syntax score are positively
correlated to dataset size. Due to space constraints we
are only able to present figures for select experiments.

We saw that increasing variance had an overall
negative effect on all datasets but had a less signifi-
cant effect on datasets of size 2,000 and 20,000. We
also saw that POS tagging measurably improved exe-
cution scores for smaller malicious datasets. We con-
cluded that a medium dataset is sufficient for gener-
ating different executable XSS attacks such as URL
redirects, popups, alerts, and cookie stealing attacks.
We also concluded that HIJaX cannot accurately gen-
erate JavaScript code through the use of transpiling.
Given these preliminary results, we expect that with a
more robust and diverse malicious dataset of sufficent
size, HIJaX would be able to generate a wide-range
of executable XSS attacks with high accuracy.

4 RELATED WORK

NLP for Code Generation. Natural language for
code generation has been explored with JavaScript,
Python (Barone and Sennrich (2017); Ling et al.
(2016)), C (Mokhov et al. (2014))], C# (Lyer et al.
(2016); Allamanis et al. (2015)), C++ (Mokhov et al.

803

SECRYPT 2021 - 18th International Conference on Security and Cryptography

(2014)), Java (Mokhov et al. (2014); Ling et al.
(2016)), and SQL (Iyer et al. (2016); Giordani and
Moschitti (2012)). While these works conduct code
generation that is a representation of natural language,
they do not incorporate aspects of exploit generation,
which we do by training our tool on XSS-related data.
To our knowledge, there is no other available research
on NLP-to-code for exploit generation, in which the
natural language intent describes an attack, and its
corresponding snippet contains the executable code.

JavaScript & XSS Code Synthesis. To our knowl-
edge, only one work exists for translating English in-
tents into JavaScript code— a natural-language pro-
gramming system for a computer video game that
transforms user sentences into JavaScript code (Hsiao
(2018)). Past works utilize XSS attack generation
for creating test cases. AppSealer focuses on au-
tomatically generating security patches on Android
apps when vulnerabilities are detected (Zhang and
Yin (2014)). Another work automates unit testing
to detect XSS vulnerabilities caused by improper en-
coding (Mohammadi et al. (2017)). In another work,
researchers also build a novel and principled type-
qualifier based mechanism that attempts to automate
the process of sanitization for XSS attack preven-
tion (Samuel et al. (2011)). The approaches stated
above utilize XSS attack generation but do not tie the
attack code to intents written by people. With HIJaX,
we connect the human intention behind the XSS at-
tack to the attack code using NLP.

S CONCLUSION & FUTURE
WORK

We present HIJaX: a prototype NLP-AEG tool that
adapts techniques from machine translation to gener-
ate JavaScript, especially XSS code, from written in-
tents. Our contributions include the creation of eleven
datasets using two different approaches, automating
the testing of output snippets for correct JavaScript
syntax & execution, and successful execution of XSS
attacks generated by HIJaX. We also contribute an al-
gorithm for POS tagging website names and URLs
to increase the code generation accuracy of XSS-
based intent-snippet pairs. Our preliminary experi-
mental results show that HIJaX is able to generate
both executable benign JavaScript code and malicious
JavaScript code that successfully executes in our cho-
sen online testing environments: WebGoat, BWAPP,
& The 12 Exploits of XSS-mas. This prototype of
HIJaX has laid the groundwork for our aim to use

804

NLP-based AEG to help developers create more se-
cure websites early in the software development life
cycle and help security experts automated the process
of generating real-life XSS vulnerabilities.

In future work, we plan to construct larger datasets
with code examples of the most popular XSS attacks
as well as adapt the model to website-specific DOM
structure. This will allow us to generalize HIJaX and
generate semantically new attacks as long as the intent
describes a type of XSS attack that HIJaX is familiar
with such as phishing, keylogging, etc. We also plan
to have HIJaX not only generate attack code but also
defense code that prevents the attack from executing.
Developers can use the generated defense snippet to
proactively secure their website in the design & pro-
totyping stage of the software development life cycle.

Since our approach of NLP-based AEG is novel,
we plan to compare HIJaX’s code generation per-
formance against different neural machine translation
techniques. This includes LSTM, GRU, and RNN
seq2seq techniques (Pedamallu” (2020)).

REFERENCES

Allamanis, M., Tarlow, D., Gordon, A., and Wei, Y. (2015).
Bimodal Modelling of Source Code and Natural Lan-
guage. In Proc. of the International Conference on
Machine Learning (ICML), pages 2123-2132.

Anonymous (2020). HIJaX model. https://github.com/
HlJaXAnonymousRepo/HIJaX. Retrieved 04-01-
2021.

Ariya Hidayat (2020). Esprima: ECMAScript
parsing infrastructure for multipurpose anal-
ysis. https://esprima.readthedocs.io/en/latest/

syntactic-analysis.html. Retrieved 04-01-2021.

Avgerinos, T., Cha, S. K., Rebert, A., Schwartz, E. J., Woo,
M., and Brumley, D. (2014). Automatic exploit gen-
eration. Communications of the Association for Com-
puting Machinery (Commun. ACM), page 74-84.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural
machine translation by jointly learning to align and
translate. Computing Research Repository (CoRR) on
Arxiv.org, pages 1-15.

Barone, A. V. M. and Sennrich, R. (2017). A Parallel Cor-
pus of Python Functions and Documentation Strings
for Automated Code Documentation and Code Gen-
eration. In The 8th Intl. Joint Conf. on Natural Lan-
guage Processing (IJCNLP 2017), pages 314-319.

Carnegie Mellon University (2019). CoNaLa: The Code/-
Natural Language Challenge. https://conala-corpus.
github.io/. Retrieved 04-01-2021.

Chef Secure (2019). The 12 Exploits of XSS-
mas. https://playground.insecure.chefsecure.com/
the-12-exploits-of-xssmas. Retrieved 04-01-2021.

Dheap, V. (2017). Man With Machine: Har-
nessing the Potential of Artificial Intel-
ligence. https://securityintelligence.com/

man-with-machine-harnessing-the-potential-of'\
-artificial-intelligence. Retrieved 05-13-2021.

FreeBSD (2020). The FreeBSD Project. https:/www.
freebsd.org/. Retrieved 04-01-2021.

Giordani, A. and Moschitti, A. (2012). Translating Ques-
tions to SQL Queries with Generative Parsers Dis-
criminatively Reranked. In Proc. of Intl. Conf. on
Computational Linguistics 2012: Posters - (COL-
ING), pages 401-410.

Gordon, M. and Harel, D. (2009). Generating Executable
Scenarios from Natural Language. In Intl. Conf. on
Computational Linguistics and Intelligent Text Pro-
cessing (CICLing), pages 456—467.

Hsiao, M. S. (2018). Automated Program Synthesis
from Object-Oriented Natural Language for Com-
puter Games. In Controlled Natural Language - Proc.
of the Sixth Intl. Workshop (CNL), pages 71-74.

HTMLCheatSheet (2019). JS CheatSheet. https://
htmlcheatsheet.com/js/. Retrieved 04-01-2021.
Ilic, J. (2019). Cross-Site ~ Scripting (XSS)

Makes Nearly 40% of All Cyber Attacks in
2019. https://www.precisesecurity.com/articles/
cross-site-scripting- xss-makes-nearly-40-of\
-all-cyber-attacks-in-2019/. Retrieved 04-01-2021.

Iyer, S., Konstas, I., Cheung, A., and Zettlemoyer, L.
(2016). Summarizing Source Code using a Neural
Attention Model. In Proc. of the Assoc. for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2073-2083.

Kingma, D. P. and Ba, J. (2014). Adam: A Method for
Stochastic Optimization. Intl. Conf. on Learning Rep-
resentations, pages 1-15.

Ling, W., Blunsom, P., Grefenstette, E., Hermann, K. M.,
Kocisky, T., Wang, F., and Senior, A. (2016). Latent
Predictor Networks for Code Generation. In Proc. of
the Assoc. for Computational Linguistics (Volume 1:
Long Papers) (ACL), pages 599-609.

Ma’amari, M. (2018). NLP — Sequence to Sequence
Networks — Part 2 — Seq2Seq Model (En-
coderDecoder Model). https://towardsdatascience.
com/nlp-\sequence-to-sequence-networks-part-2\
-seq2seq-model-encoderdecoder-model-6c22e29fd7el.

Mesellem, M. (2018). bWAPP - an extremely buggy web
app! http://www.itsecgames.com/. Retrieved 04-01-
2021.

Mohammadi, M., Chu, B., and Lipford, H. R. (2017). De-
tecting Cross-Site Scripting Vulnerabilities through
Automated Unit Testing. In 2017 Intl. Conf. on Soft-
ware Quality, Reliability and Security (QORS), pages
364-373.

Mokhov, S. A., Paquet, J., and Debbabi, M. (2014). The Use
of NLP Techniques in Static Code Analysis to Detect
Weaknesses and Vulnerabilities. In Canadian Conf.
on Artificial Intelligence (CAIAC), pages 326-332.

Neubig, G., Sperber, M., Wang, X., Felix, M., Matthews,
A., Padmanabhan, S., Qi, Y., Sachan, D., Arthur, P.,
Godard, P., Hewitt, J., Riad, R., and Wang, L. (2018).
XNMT: The eXtensible Neural Machine Translation
Toolkit. In Proc. of the 13th Conference of the Asso-
ciation for Machine Translation in the Americas (Vol-
ume 1: Research Track) (AMTA), pages 185-192.

HIJaX: Human Intent JavaScript XSS Generator

Overflow”, S. (2020). “stack Overflow: Where Developers
Learn Share & Build Careers”. https://stackoverflow.
com/. Retrieved 04-01-2021.

owasp (2017). OWASP Top Ten. https://owasp.org/
www-project-top-ten/. Retrieved 04-01-2021.

Owasp (2020). OWASP WebGoat - Learn the hack - Stop
the attack. https://owasp.org/www-project-webgoat/.
Retrieved 04-01-2021.

Payload Box (2019). Cross Site Scripting (XSS) Vulner-
ability Payload List. https://github.com/payloadbox/
xss-payload-list. Retrieved 04-01-2021.

Pedamallu”, H. (2020). "RNN vs GRU vs
LSTM”. https://medium.com/analytics-vidhya/
rnn-vs- gru-vs-1stm-863b0b7b1573.

Samuel, M., Saxena, P., and Song, D. (2011). Context-
Sensitive Auto-Sanitization in Web Templating Lan-
guages Using Type Qualifiers. In Proc. of the As-
sociation for Computing Machinery Conf. on Com-
puter and Communications Security (ACM CCS),
page 587-600.

Selenium (2020). SeleniumHQ Browser Automation. https:
/lwww.selenium.dev/. Retrieved 04-01-2021.

”spaCy” (2020). “’spaCy - Industrial-strength Natural Lan-
guage Processing in Python”. https://spacy.io/.

Tatman”, R. (2019). “Evaluating Text Output in NLP:
BLEU at your own risk”. https://towardsdatascience.
com/evaluating-text-output-in-nlp-bleu-at-your-\
own-risk-e8609665a213.

Transcrypt (2016). https://www.transcrypt.org/docs/html/
index.html. Retrieved 04-01-2021.

Vibhor Agrawal (2019). compile-run. https://www.npmjs.
com/package/compile-run. Retrieved 04-01-2021.

You, W.,, Zong, P., Chen, K., Wang, X., Liao, X., Bian, P.,
and Liang, B. (2017). SemFuzz: Semantics-Based
Automatic Generation of Proof-of-Concept Exploits.
In Proc. of the Conf. on Comp. and Comm. Security
(ACM CCS), page 2139-2154.

Zhang, M. and Yin, H. (2014). AppSealer: Automatic Gen-
eration of Vulnerability-Specific Patches for Prevent-
ing Component Hijacking Attacks in Android Appli-
cations. In Network and Distributed System Security
Symposium 2014 (NDSS).

805

