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Abstract: Emoticons such as (^_^) are face-shaped symbol sequences that are used to express emotions in text. However, 
the number of emoticons is miniscule. To increase the number of emoticons, we created emoticons using 
SeqGANs, which are generative adversarial networks for generating sequences. However, the small number 
of emoticons means that few emoticons can be used as training data for SeqGANs. This is concerning because 
as SeqGANs underfit small training data, generating emoticons using SeqGANs is difficult. To address this 
problem, we duplicate the training data. We observed that emoticons can be generated when the duplication 
magnification is of an appropriate value. However, as a trade-off, it was also observed that SeqGANs overfit 
the training data, i.e., they produce emoticons that are exactly the same as the training data. 

1 INTRODUCTION 

In recent years, multi-layer neural networks (MNNs) 
have contributed to the considerable development of 
artificial intelligence. In particular, remarkable 
progress has been made in the technology used for 
generating data such as images, texts, and music 
using MNNs. The most representative of these are 
generative adversarial networks (GANs) 
(Goodfellow et al., 2014). GANs build models for 
data at hand describing the data generation 
mechanism. Subsequently, new images, texts, music, 
among others, can be created using the model. 

In this study, we use GANs to create emoticons 
(precisely, kaomoji). An emoticon is a sequence of 
symbols that make up the shape of a face. It is often 
used to express emotions such as laughter, sadness, 
and anger in blogs or social networking site (SNS) 
texts. However, currently, the number of emoticons is 
miniscule. For example, only 95 emoticons 
representing laughter are in the SHIMEJI dictionary,1 
as shown in Table 1. Nowadays, SNSs are widely 
used, and the demand for emotional expressions is on 
an increase. The objective of this paper is to increase 
the number of emoticons by automatically generating 
emoticons using GANs.  

GANs are used to build a generator reproducing 
the characteristics of the data at hand, which is called 
the original data or training data. To achieve this, 

 
1 https://simeji.me/blog/顔文字-一覧/kaomoji 

GANs employ a discriminator as a guide. GANs are 
algorithms that alternately update a generator and 
discriminator by repeating the following three steps. 
First, in step 1, data are generated using a current 
generator, which is called fake data (see Figure 1(a)). 
Next, in step 2, we build a discriminator that 
distinguishes the fake data from the original data 
(Figure 1(b)). A discriminator was used to evaluate 
the performance of the generator. If the fake data and 
the original data cannot be discriminated by the 
discriminator, the generator is successfully built; that 
is, the data with the characteristics of the original data 
are successfully produced. However, if the fake data 
and the original data can be discriminated, we 
proceed to step 3, where the generator is rebuilt. 
Ideally, by repeating the three steps, we obtain a 
generator that can produce data indistinguishable 
from or very similar to the original data (Figure 1(c)). 

In GANs, the main role of the discriminator is to 
guide the rebuilding of the generator. That is, a new 
generator is built by being guided by the 
discriminator such that the generator produces fake 
data that are difficult for the discriminator to 
distinguish from the original data. 

More specifically, the discriminator divides the 
data space into two regions: 
 positive region, where the original data is likely 

to be distributed, and 
 negative region, where the original data is 

unlikely to be distributed. 
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Table 1: Examples of emoticons representing laughter.  

(*´∀｀) (^^) (^▽^)o (^-^) 

(·∀·) (*ﾟ▽ﾟ)ﾉ (^O^) (^Д^) 

(￣∀￣) (´∇｀) (⊙ꇴ⊙) (≧∇≦) 

(⌒▽⌒) (゜▽゜) (☆∀☆) (Ŏ 艸 Ŏ) 

(((^-^))) (★‿★) (*^ω^*) (*^^)v 

 

 
(a) The blue circle is the region where the 

original data are distributed and the points 
inside the blue circle represent the original 
data. The green circle is the region where the 
data that will be generated by a current 
generator are distributed and the points 
inside the green circle are fake data. 

 
(b) The red line is the separation boundary 

determined by the discriminator, and it 
divides the data space into positive and 
negative regions. The positive region is 
indicated in blue. A new generator is rebuilt 
by moving toward the positive region. 

 
(c) If the algorithm works, the green circle 

approaches the blue circle. 

Figure 1: An overview of GANs algorithm. 

Based on the region determined by the 
discriminator, a new generator is built in step 3 by 
moving toward the positive region (see Figure 1(b)). 

However, the small number of existing emoticons 
means that the training data available for GANs to 
create emoticons is also small. If there are only a few 
training data, repeating the three steps may not build 
the desired generator. In fact, we herein reports that 
vanilla GANs (precisely, vanilla SeqGANs) do not fit 
small training data and thus fail to generate 
emoticons. 

We believe that the reason GANs fail when there 
are only a few training data is that the positive region 
determined by the discriminator is too large to guide 
the generator. Therefore, even if the generator moves 
toward the positive region, the distribution of the data 
generated by the generator does not necessarily 
approach the distribution of the original data (see 
Figure 2). 

To cope with this problem, we build a 
discriminator by improving step 2 such that the 
positive region determined by the discriminator 
includes only the region where the original data are 
distributed (see Figure 3). Specifically, we duplicate 
the original data N times and use them to build the 
discriminator. We expect that the larger the value of 
N is, the more the positive region will contain only 
the neighborhood of the original data. As a result, 
GANs will be successful in generating the desired 
data, i.e., new emoticons. 

2 BACKGROUND 

We herein use SeqGANs (Yu et al., 2017) to create 
emoticons. To explain SeqGANs, we first describe 
discriminators and generators as MNNs, which are 
the basic components of GANs. Next, we explain the 
GANs that build generators using discriminators as an 
auxiliary. Finally, we describe SeqGANs, which are 
GANs for generating symbol sequences. 
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Figure 2: If the positive region is wide, the generator can 
move in various directions, including the direction in which 
the original data is not distributed. 

2.1 Discriminators 

When the purpose of MNNs is discrimination, the 
input layer receives data to be discriminated, such as 
text as a word sequence and emoticons as a symbol 
sequence. 

For example, if we want to distinguish whether 
the content of the received email is “spam” or “non-
spam,” the email text is entered in the input layer. 
Subsequently, in the intermediate layers, feature 
extraction almost equivalent to the nonlinear 
principal component analysis is performed, and the 
input data are converted to a feature vector. Finally, 
in the output layer, a calculation similar to logistic 
regression was performed, and the feature vector was 
converted to a probability value (“non-spam” 
probability) between 0.0–1.0. If the output value is 
less than 0.5, it is judged to be “spam,” and if it is 0.5 
or more, it is judged to be “non-spam.” 

In summary, a discriminator constructed by an 
MNN is a function y = D(x, θௗ)  that returns the 
probability value y for the input data x with θௗ as the 
parameter of the MNN. Tuning the parameter θௗ of the 
discriminator with a set of pairs of input data x and its 
correct output y is called learning the discriminator. 

2.2 Generators 

When the purpose of an MNN is to generate, the input 
layer receives a random vector. The input random 
vector is nonlinearly transformed as it passes through 
the intermediate layers; finally, at the output layer, data 
such as text and emoticons are outputted. In other 
words, a generator constructed by an MNN is a  
 

 
Figure 3: We assume that by narrowing the positive region, 
the generator can be moved to the correct direction. 

function x =  G(z, θ) that returns data x for a random 
input vector z with θ as the parameter of the MNN. 

When generating a sequence of symbols, the input 
layer receives a one-hot vector corresponding to a 
symbol that represents the Begin of Sentence. Then, 
symbols are randomly generated one by one to form 
a symbol sequence according to a multinomial 
distribution wherein the number of terms in the 
multinomial distribution is the number of symbols. 
The multinomial distribution is constructed using an 
MNN with parameter θ. 

2.3 Generative Adversarial Networks 

How can we build a generator G(z, θ) that produces 
data with the desired characteristics rather than 
random data? GANs are the answer to this question: 

To produce the desired data using GANs, we first 
prepare a set of data x୰ୣୟ୪  having the desired 
characteristics, which are called original data or 
training data for GANs. Next, by providing an initial 
value to parameters θௗ and θ, we repeat steps 1 to 3 
as follows: 

Step 1. Generate a set of fake data xୟ୩ୣ  using 
generator G(z, θ) with a random vector z. 

Step 2. Update the parameter θௗ  of discriminator D(x, θௗ) such that the set of generated fake 
data xୟ୩ୣ  is discriminated from the set of 
original data x୰ୣୟ୪. 

Step 3. Update the parameter θ  of generator G(z, θ) to generate fake data xୟ୩ୣ  in the 
positive region determined by the 
discriminator. 
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More formally, in Step 2, the discriminator 
parameter θௗ is updated such that the log-likelihood 
of θௗ  given data x୰ୣୟ୪  and xୟ୩ୣ  increases. The log-
likelihood was calculated as follows: log likelihood(θௗ|x୰ୣୟ୪, xୟ୩ୣ) = log D(x୰ୣୟ୪, θௗ) + log ൫1 − D(xୟ୩ୣ, θௗ)൯. (1)

In Step 3, the generator parameter θ is updated 
such that the log-likelihood of θ given data xୟ୩ୣ =G(z, θ) decreases. The log-likelihood was calculated 
as follows: log likelihood൫θ|xୟ୩ୣ൯ = log ൫1 −  D(xୟ୩ୣ, θௗ)൯ = log ቀ1 −  D൫G൫z, θ൯, θௗ൯ቁ. (2)

Here, the discriminator D(x, θௗ) is a function that 
outputs the probability that data x is the original data. 
Conversely, 1 − D(x, θௗ) denotes the probability that 
the discriminator predicts the data x as fake data. This 
means that, in Step 2, the discriminator parameter θௗ is updated such that the discriminator correctly 
discriminates between the original data and the fake 
data with a high probability. In Step 3, the generator 
parameter θ  is updated such that the fake data 
generated by the generator are judged as fake data by 
the discriminator with a low probability. 

If all goes well, the parameter θ  is tuned such 
that P(x|θ) approaches P௧௨(x|θ௧௨) , where P௧௨(x|θ௧௨)  denotes the distribution of data x 
sampled from the original data, and P൫xหθ൯ denotes 
the distribution of data x generated by the function G(z, θ). 

Mathematically, GANs are equivalent to solving 
the minimax problem of an objective function f(θௗ, θ)  for the discriminator parameter θௗ  and 
generator parameter θ . The objective function f(θௗ, θ)  is obtained by marginalizing the log likelihood(θௗ|x୰ୣୟ୪, xୟ୩ୣ) with the distribution P௧௨(x୰ୣୟ୪|θ௧௨)  of the original data and the 
distribution P൫xୟ୩ୣหθ൯ of the generated data. Thus, 
the objective function of the GANs is f(θௗ, θ) = Eೝೠ[E[log likelihood(θௗ|x୰ୣୟ୪, xୟ୩ୣ)]]= Eೝೠ[E[log D(x୰ୣୟ୪, θௗ) + log ൫1 − D(xୟ୩ୣ, θௗ)൯]] = Eೝೠ[log D(x୰ୣୟ୪, θௗ)] + E[log ቀ1 −  D൫G൫z, θ൯, θௗ൯ቁ ]. 

(3)

The GANs algorithm calculates the following 
equation: arg min max f(θௗ, θ). (4)

In other words, in Step 2, θௗ is updated such that f(θௗ, θ) becomes large while fixing θ. In Step 3, θ 
is updated such that f(θௗ, θ) becomes small while 
fixing θௗ. 

Figure 4 shows an image of the objective function 
of GANs, showing the values of f(θௗ, θ)  as a 
contour map where the horizontal axis is θௗ and the 
vertical axis is θ. The value of f(θௗ, θ) is large in 
the upper left and lower right and small in the lower 
left and upper right of the figure. The center of the 
figure is a saddle point, which is the solution to the 
minimax problem. 

In Figure 4, each small rectangle represents the 
space of data x. The red line is the separation 
boundary determined by the discriminator D(x, θௗ), 
and it divides the space of data x into positive and 
negative regions. The positive region is indicated in 
blue. The blue circle is the region supported by P௧௨(x|θ௧௨), and the points inside the blue circle 
represent the original data x୰ୣୟ୪. The green circle is 
the region supported by the distribution P൫xหθ൯ of 
data x generated by the generator function G(z, θ), 
and the points inside the green circle are fake data xୟ୩ୣ. The black arrow represents the transition of θௗ 
and θ by the iterative algorithm of the GANs. The 
green circle of P൫xหθ൯ approaches the blue circle of P௧௨(x|θ௧௨)  by repeatedly updating θௗ  and θ 
from the initial value in the upper left and converging 
to the center, i.e., the solution of the minimax 
problem. 

2.4 SeqGANs 

SeqGANs generate sequence data in a GAN 
framework. SeqGANs differ from GANs in that they 
solve a specific problem occurring in the update of θ 
in Step 3. The problem is that the generator parameter θ can be significantly updated in response to slight 
differences in the sequence data. 

For example, in generating emoticons, D(xୟ୩ୣ, θௗ) ≈ 1  for xୟ୩ୣ =  (^____^), which is 
almost the original data. However, D(xୟ୩ୣ, θௗ) ≈ 0 
for xୟ୩ୣ =  (^____^_, even though there is only a 
slight difference from (^____^). This is because xୟ୩ୣ = (^____^_ does not have a pair of left and right 
parentheses; hence, it is not recognized as an 
emoticon. In Step 3, for xୟ୩ୣ , where the value of 
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Figure 4: An image of the objective function of GANs, shown as a contour map. The black arrow represents the transition of θௗ and θ by the iterative algorithm of the GANs. 

D(xୟ୩ୣ, θௗ) is close to 0, the generator parameter θ 
is updated such that the generator never generates xୟ୩ୣ again. Therefore, xୟ୩ୣ = (^____^_ will not be 
generated in the iterative algorithm in the future. This 
is not a good idea because it will become similar to 
the original data with a few more modifications. 

To cope with this problem, for xୟ୩ୣ = (^____^), 
SeqGANs evaluate partial sequences such as (, (^, ... 
, (^____^ by performing Monte Carlo simulations. 
Specifically, for each of partial sequences, SeqGANs 
randomly generate subsequent sequence until a 
complete sequence xୡ୭୫୮୪ୣ୲ୣ  is obtained. 
Subsequently, in Step 3, D(xୡ୭୫୮୪ୣ୲ୣ, θௗ)  is 
calculated, and the parameter θ  is updated using 
this. Thus, this problem is avoided. 

 
 
 
 
 

3 DUPLICATE TRAINING DATA 

In this study, SeqGANs were used to generate 
emoticons with only a small amount of original data. 
However, as seen in Figure 3, the discriminator 
cannot guide the generator in the correct direction 
because the positive region determined by the 
discriminator is too wide. To address this problem, 
we modify Step 2 in the GAN algorithm. 

Specifically, the update formula of parameter θௗwith respect to the original data x୰ୣୟ୪, θௗ ← θௗ + 𝜂 ddθௗ log D(x୰ୣୟ୪, θௗ) (5)

is modified to θௗ ← θௗ + N 𝜂 ddθௗ log D(x୰ୣୟ୪, θௗ) (6)

where 𝜂  is the learning rate, and N is an integer 
greater than or equal to 1.  
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Table 2: Examples of symbol sequences generated by SeqGANs without duplicating the original data. 

。ਊლ ಡ^。 و✧ヾ) ๑و.)Д 

︶o。ｯ▿)。^) ^ ᗢ(♫✌ﾟ☆ ˊᕑ★◠ 

∀Д٩ ▽(^ﾉ ಡ▽✿^ ꉂ`ﾟ 

ｸ◠。 ꉂ*◠✌ª ﾉ *ლ￣)) ｀ 

ﾟᗜ∀) !ᗢノ^)) ★ਊ ﾟ)و๑。*)) ◡^∀∀｀ 

Table 3: Examples of symbol sequences generated by SeqGANs when duplicating the original data N = 10 times. Those in 
red meet the definition of emoticons. 

(´▽`)) ヽヽ(*^o^*)／ ♫ヽ(゜∇゜)ノ♩ (⌒艸⌒) 

♫ヽ(゜∇゜♪ ヾ(*^▽^)/★*☆ (ლ▽^=) (((o(*ﾟ▽ﾟ*)o)) 

ヾ(๑ㆁᗜㆁ ๑)" (✿º 艸 º灬) ✧*٩(ˊωˋ*)و✧*。 ヽ(*^^)o 

(ಡ∀·) (*^▽^)/⊙ｸ л̵ ʱªʱª (ｷ。✪ω✪ヽ(๑)✌✌ 

(o^^oo) (✿◠˃̶ꇴ) ٩(*^^*)ノ (๑๓´❛) 

 

By doing this, the value of D(x୰ୣୟ୪, θௗ)  can be 
increased. Subsequently, we expect that the positive 
region determined by the discriminator will include 
only the support region of the distribution of the 
original data. 

Simply put, if N is an integer greater than or equal 
to 1, this is equivalent to duplicating the original data 
N times and using the conventional update formula. 
Therefore, in the experiment presented herein, we 
duplicate the original data N times without changing 
the update formula. Furthermore, along with 
duplicating the original data N times, we increased 
the number of fake data generated by the generator N 
times and used them to train the discriminator. 

4 EXPERIMENT 

The purpose of the experiment was to generate 
emoticons representing laughter using SeqGANs. We 
used 95 emoticons in Table 1 as original data, i.e., the 
training data for SeqGANs. Both the generator and 
the discriminator in SeqGANs have a 128-
dimensional embedding layer and an LSTM layer. 
The output layer is a softmax layer for the generator 
and sigmoid for the discriminator. 

First, Table 2 shows the symbol sequences 
generated by SeqGANs without duplicating the 
original data. Almost all generated symbol sequences 

did not resemble emoticons. To evaluate this 
quantitatively, we define emoticons as follows:  

A symbol sequence in which all of the following 
I, II, and III hold is defined as an emoticon. 

I. There is a pair of parentheses on the left and 
right that correspond to the outline of the face.  

II. Symbols correspond to the eyes inside the 
outline of the face. Specifically, it is the case 
in which either of the following two holds:  
(a) Symmetrical symbols corresponding to the 

eyes. 
(b) Symbols corresponding to the eyes exist 

asymmetrically, but an asymmetric pattern 
exists in the original data. 

III. If a symbol corresponds to the nose or mouth, 
it exists between the symbols corresponding to 
the eyes. 

Applying this definition to the symbol sequences in 
Table 2, we can see that there is no symbol sequence 
that satisfies the definition of emoticons.  

Next, Table 3 shows the symbol sequences 
generated by SeqGANs when the original data were 
duplicated N = 10 times and used as training data.  

Approximately 70% of the generated symbol 
sequences meet the definition of emoticons.  
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Figure 5: Ratio of the symbol sequences generated by 
SeqGANs that meet the definition of emoticons. 

Figure 5 shows the change in the ratio of the 
symbol sequences generated by SeqGANs that meet 
the definition of emoticons when the duplication 
magnification N is moved from 1 to 10. As N 
increases, the ratio of symbol sequences that satisfy 
the definition of emoticons increases.  

On the contrary, as the duplication magnification 
N increases, SeqGANs output emoticons that are 
exactly the same as the original data. In this 
experiment, if SeqGANs generated the same 
emoticons as the original data, the generation was 
redone. Figure 6 shows the ratio of the number of 
regenerated data to the number of generated data. It 
can be observed that the ratio increases as N increases. 
This is because when the duplication magnification N 
is high, the distribution of the data generated by the 
generator approaches the original data itself rather 
than the distribution of the original data. In other 
words, overfitting occurs. 

5 RELATED WORK 

Karras et al., (2020) focused on overfitting as a 
problem of GANs when training data was scarce. In 
contrast, we herein discussed a way to deal with 
underfitting to small training data.  

Although GANs are excellent for building 
generators, GANs have a weakness in that tuning 
parameters is difficult. This is because, as shown in 
Figure 4, the solution of GANs is the saddle point of 
the objective function f(θௗ, θ). The GAN algorithm 
usually repeats updating the parameters θௗ  and θ 
alternately depending on the gradient of f(θௗ, θ).  

 
Figure 6: Ratio of the symbol sequences generated by 
SeqGANs that are exactly the same as the original data. 

This calculation tends to be unstable because the 
objective function repeatedly increases and decreases. 
To stabilize the algorithm, we need to be aware of the 
following when updating the parameters: 

(1) Is the length of the gradient vector appropriate, 
not too short or too long? 

(2) Is the direction of the gradient vector pointing 
to the correct direction? 

Regarding the issue (1), (Gulrajani et al., 2017) 
and (Mescheder et al., 2017) use the length of the 
gradient vector as a regularizer of the objective 
function. In contrast, we herein deal with issue (2). 

6 CONCLUSION 

We duplicated a small amount of training data and 
used it for SeqGANs. As a result, we successfully 
generated emoticons when duplication magnification 
was appropriately set. However, as a trade-off, it was 
also observed that SeqGANs overfit the training data, 
i.e., they produce emoticons that are exactly the same 
as the training data. Resolving this trade-off is a 
future task. 

In this study, data generation was limited to 
emoticons representing laughter. However, there are 
also emoticons that express various meanings such as 
sadness, shy, anger, and surprise. Future tasks include 
creating emoticons that can distinguish between these 
subtle differences in meaning, and creating emoticons 
that have new meanings, such as shy + laughter. 

 
 

DATA 2021 - 10th International Conference on Data Science, Technology and Applications

314



REFERENCES 

L. Mescheder, S. Nowozin, and A. Geiger, “The numerics 
of GANs,” In Proc. of the Advances in Neural 
Information Processing Systems, pp. 1825-1835, 2017. 

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. 
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, 
“Generative Adversarial Nets,” In Proc. of the 
Advances in Neural Information Processing Systems, 
pp. 2672—2680, 2014. 

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. 
Courville, “Improved Training of Wasserstein GANs,” 
In Proc. of the Advances in Neural Information 
Processing Systems, pp. 5769–5779, 2017. 

T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and 
T. Aila, “Training Generative Adversarial Networks 
with Limited Data,” In Proc. of the NeurIPS, 2020. 

L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence 
Generative Adversarial Nets with Policy Gradient,” In 
Proc. of the AAAI Conference on Artificial 
Intelligence, vol. 31, no. 1, 2017. 

Impact of Duplicating Small Training Data on GANs

315


