
Impact of Duplicating Small Training Data on GANs

Yuki Eizuka1, Kazuo Hara1 and Ikumi Suzuki2
1Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata City, 990-8560, Japan

2Nagasaki University, 1-14 Bunkyo, Nagasaki City, 852-8521, Japan

Keywords: Generative Adversarial Networks, Small Training Data, Emoticons.

Abstract: Emoticons such as (^_^) are face-shaped symbol sequences that are used to express emotions in text. However,
the number of emoticons is miniscule. To increase the number of emoticons, we created emoticons using
SeqGANs, which are generative adversarial networks for generating sequences. However, the small number
of emoticons means that few emoticons can be used as training data for SeqGANs. This is concerning because
as SeqGANs underfit small training data, generating emoticons using SeqGANs is difficult. To address this
problem, we duplicate the training data. We observed that emoticons can be generated when the duplication
magnification is of an appropriate value. However, as a trade-off, it was also observed that SeqGANs overfit
the training data, i.e., they produce emoticons that are exactly the same as the training data.

1 INTRODUCTION

In recent years, multi-layer neural networks (MNNs)
have contributed to the considerable development of
artificial intelligence. In particular, remarkable
progress has been made in the technology used for
generating data such as images, texts, and music
using MNNs. The most representative of these are
generative adversarial networks (GANs)
(Goodfellow et al., 2014). GANs build models for
data at hand describing the data generation
mechanism. Subsequently, new images, texts, music,
among others, can be created using the model.

In this study, we use GANs to create emoticons
(precisely, kaomoji). An emoticon is a sequence of
symbols that make up the shape of a face. It is often
used to express emotions such as laughter, sadness,
and anger in blogs or social networking site (SNS)
texts. However, currently, the number of emoticons is
miniscule. For example, only 95 emoticons
representing laughter are in the SHIMEJI dictionary,1
as shown in Table 1. Nowadays, SNSs are widely
used, and the demand for emotional expressions is on
an increase. The objective of this paper is to increase
the number of emoticons by automatically generating
emoticons using GANs.

GANs are used to build a generator reproducing
the characteristics of the data at hand, which is called
the original data or training data. To achieve this,

1 https://simeji.me/blog/顔文字-一覧/kaomoji

GANs employ a discriminator as a guide. GANs are
algorithms that alternately update a generator and
discriminator by repeating the following three steps.
First, in step 1, data are generated using a current
generator, which is called fake data (see Figure 1(a)).
Next, in step 2, we build a discriminator that
distinguishes the fake data from the original data
(Figure 1(b)). A discriminator was used to evaluate
the performance of the generator. If the fake data and
the original data cannot be discriminated by the
discriminator, the generator is successfully built; that
is, the data with the characteristics of the original data
are successfully produced. However, if the fake data
and the original data can be discriminated, we
proceed to step 3, where the generator is rebuilt.
Ideally, by repeating the three steps, we obtain a
generator that can produce data indistinguishable
from or very similar to the original data (Figure 1(c)).

In GANs, the main role of the discriminator is to
guide the rebuilding of the generator. That is, a new
generator is built by being guided by the
discriminator such that the generator produces fake
data that are difficult for the discriminator to
distinguish from the original data.

More specifically, the discriminator divides the
data space into two regions:
 positive region, where the original data is likely

to be distributed, and
 negative region, where the original data is

unlikely to be distributed.

308
Eizuka, Y., Hara, K. and Suzuki, I.
Impact of Duplicating Small Training Data on GANs.
DOI: 10.5220/0010583403080315
In Proceedings of the 10th International Conference on Data Science, Technology and Applications (DATA 2021), pages 308-315
ISBN: 978-989-758-521-0
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Table 1: Examples of emoticons representing laughter.

(*´∀｀) (^^) (^▽^)o (^-^)

(·∀·) (*ﾟ▽ﾟ)ﾉ (^O^) (^Д^)

(￣∀￣) (´∇｀) (⊙ꇴ⊙) (≧∇≦)

(⌒▽⌒) (゜▽゜) (☆∀☆) (Ŏ 艸 Ŏ)

(((^-^))) (★‿★) (*^ω^*) (*^^)v

(a) The blue circle is the region where the

original data are distributed and the points
inside the blue circle represent the original
data. The green circle is the region where the
data that will be generated by a current
generator are distributed and the points
inside the green circle are fake data.

(b) The red line is the separation boundary

determined by the discriminator, and it
divides the data space into positive and
negative regions. The positive region is
indicated in blue. A new generator is rebuilt
by moving toward the positive region.

(c) If the algorithm works, the green circle

approaches the blue circle.

Figure 1: An overview of GANs algorithm.

Based on the region determined by the
discriminator, a new generator is built in step 3 by
moving toward the positive region (see Figure 1(b)).

However, the small number of existing emoticons
means that the training data available for GANs to
create emoticons is also small. If there are only a few
training data, repeating the three steps may not build
the desired generator. In fact, we herein reports that
vanilla GANs (precisely, vanilla SeqGANs) do not fit
small training data and thus fail to generate
emoticons.

We believe that the reason GANs fail when there
are only a few training data is that the positive region
determined by the discriminator is too large to guide
the generator. Therefore, even if the generator moves
toward the positive region, the distribution of the data
generated by the generator does not necessarily
approach the distribution of the original data (see
Figure 2).

To cope with this problem, we build a
discriminator by improving step 2 such that the
positive region determined by the discriminator
includes only the region where the original data are
distributed (see Figure 3). Specifically, we duplicate
the original data N times and use them to build the
discriminator. We expect that the larger the value of
N is, the more the positive region will contain only
the neighborhood of the original data. As a result,
GANs will be successful in generating the desired
data, i.e., new emoticons.

2 BACKGROUND

We herein use SeqGANs (Yu et al., 2017) to create
emoticons. To explain SeqGANs, we first describe
discriminators and generators as MNNs, which are
the basic components of GANs. Next, we explain the
GANs that build generators using discriminators as an
auxiliary. Finally, we describe SeqGANs, which are
GANs for generating symbol sequences.

Impact of Duplicating Small Training Data on GANs

309

Figure 2: If the positive region is wide, the generator can
move in various directions, including the direction in which
the original data is not distributed.

2.1 Discriminators

When the purpose of MNNs is discrimination, the
input layer receives data to be discriminated, such as
text as a word sequence and emoticons as a symbol
sequence.

For example, if we want to distinguish whether
the content of the received email is “spam” or “non-
spam,” the email text is entered in the input layer.
Subsequently, in the intermediate layers, feature
extraction almost equivalent to the nonlinear
principal component analysis is performed, and the
input data are converted to a feature vector. Finally,
in the output layer, a calculation similar to logistic
regression was performed, and the feature vector was
converted to a probability value (“non-spam”
probability) between 0.0–1.0. If the output value is
less than 0.5, it is judged to be “spam,” and if it is 0.5
or more, it is judged to be “non-spam.”

In summary, a discriminator constructed by an
MNN is a function y = D(x, θௗ) that returns the
probability value y for the input data x with θௗ as the
parameter of the MNN. Tuning the parameter θௗ of the
discriminator with a set of pairs of input data x and its
correct output y is called learning the discriminator.

2.2 Generators

When the purpose of an MNN is to generate, the input
layer receives a random vector. The input random
vector is nonlinearly transformed as it passes through
the intermediate layers; finally, at the output layer, data
such as text and emoticons are outputted. In other
words, a generator constructed by an MNN is a

Figure 3: We assume that by narrowing the positive region,
the generator can be moved to the correct direction.

function x = G(z, θ௚) that returns data x for a random
input vector z with θ௚ as the parameter of the MNN.

When generating a sequence of symbols, the input
layer receives a one-hot vector corresponding to a
symbol that represents the Begin of Sentence. Then,
symbols are randomly generated one by one to form
a symbol sequence according to a multinomial
distribution wherein the number of terms in the
multinomial distribution is the number of symbols.
The multinomial distribution is constructed using an
MNN with parameter θ௚.

2.3 Generative Adversarial Networks

How can we build a generator G(z, θ௚) that produces
data with the desired characteristics rather than
random data? GANs are the answer to this question:

To produce the desired data using GANs, we first
prepare a set of data x୰ୣୟ୪ having the desired
characteristics, which are called original data or
training data for GANs. Next, by providing an initial
value to parameters θௗ and θ௚, we repeat steps 1 to 3
as follows:

Step 1. Generate a set of fake data x୤ୟ୩ୣ using
generator G(z, θ௚) with a random vector z.

Step 2. Update the parameter θௗ of discriminator D(x, θௗ) such that the set of generated fake
data x୤ୟ୩ୣ is discriminated from the set of
original data x୰ୣୟ୪.

Step 3. Update the parameter θ௚ of generator G(z, θ௚) to generate fake data x୤ୟ୩ୣ in the
positive region determined by the
discriminator.

DATA 2021 - 10th International Conference on Data Science, Technology and Applications

310

More formally, in Step 2, the discriminator
parameter θௗ is updated such that the log-likelihood
of θௗ given data x୰ୣୟ୪ and x୤ୟ୩ୣ increases. The log-
likelihood was calculated as follows: log likelihood(θௗ|x୰ୣୟ୪, x୤ୟ୩ୣ) = log D(x୰ୣୟ୪, θௗ) + log ൫1 − D(x୤ୟ୩ୣ, θௗ)൯. (1)

In Step 3, the generator parameter θ௚ is updated
such that the log-likelihood of θ௚ given data x୤ୟ୩ୣ =G(z, θ௚) decreases. The log-likelihood was calculated
as follows: log likelihood൫θ௚|x୤ୟ୩ୣ൯ = log ൫1 − D(x୤ୟ୩ୣ, θௗ)൯ = log ቀ1 − D൫G൫z, θ௚൯, θௗ൯ቁ. (2)

Here, the discriminator D(x, θௗ) is a function that
outputs the probability that data x is the original data.
Conversely, 1 − D(x, θௗ) denotes the probability that
the discriminator predicts the data x as fake data. This
means that, in Step 2, the discriminator parameter θௗ is updated such that the discriminator correctly
discriminates between the original data and the fake
data with a high probability. In Step 3, the generator
parameter θ௚ is updated such that the fake data
generated by the generator are judged as fake data by
the discriminator with a low probability.

If all goes well, the parameter θ௚ is tuned such
that P௚(x|θ௚) approaches P௧௥௨௘(x|θ௧௥௨௘) , where P௧௥௨௘(x|θ௧௥௨௘) denotes the distribution of data x
sampled from the original data, and P௚൫xหθ௚൯ denotes
the distribution of data x generated by the function G(z, θ௚).

Mathematically, GANs are equivalent to solving
the minimax problem of an objective function f(θௗ, θ௚) for the discriminator parameter θௗ and
generator parameter θ௚ . The objective function f(θௗ, θ௚) is obtained by marginalizing the log likelihood(θௗ|x୰ୣୟ୪, x୤ୟ୩ୣ) with the distribution P௧௥௨௘(x୰ୣୟ୪|θ௧௥௨௘) of the original data and the
distribution P௚൫x୤ୟ୩ୣหθ௚൯ of the generated data. Thus,
the objective function of the GANs is f(θௗ, θ௚) = E୔೟ೝೠ೐[E୔೒[log likelihood(θௗ|x୰ୣୟ୪, x୤ୟ୩ୣ)]]= E୔೟ೝೠ೐[E୔೒[log D(x୰ୣୟ୪, θௗ) + log ൫1 − D(x୤ୟ୩ୣ, θௗ)൯]] = E୔೟ೝೠ೐[log D(x୰ୣୟ୪, θௗ)] + E୔೒[log ቀ1 − D൫G൫z, θ௚൯, θௗ൯ቁ].

(3)

The GANs algorithm calculates the following
equation: arg min஘೒ max஘೏ f(θௗ, θ௚). (4)

In other words, in Step 2, θௗ is updated such that f(θௗ, θ௚) becomes large while fixing θ௚. In Step 3, θ௚
is updated such that f(θௗ, θ௚) becomes small while
fixing θௗ.

Figure 4 shows an image of the objective function
of GANs, showing the values of f(θௗ, θ௚) as a
contour map where the horizontal axis is θௗ and the
vertical axis is θ௚. The value of f(θௗ, θ௚) is large in
the upper left and lower right and small in the lower
left and upper right of the figure. The center of the
figure is a saddle point, which is the solution to the
minimax problem.

In Figure 4, each small rectangle represents the
space of data x. The red line is the separation
boundary determined by the discriminator D(x, θௗ),
and it divides the space of data x into positive and
negative regions. The positive region is indicated in
blue. The blue circle is the region supported by P௧௥௨௘(x|θ௧௥௨௘), and the points inside the blue circle
represent the original data x୰ୣୟ୪. The green circle is
the region supported by the distribution P௚൫xหθ௚൯ of
data x generated by the generator function G(z, θ௚),
and the points inside the green circle are fake data x୤ୟ୩ୣ. The black arrow represents the transition of θௗ
and θ௚ by the iterative algorithm of the GANs. The
green circle of P௚൫xหθ௚൯ approaches the blue circle of P௧௥௨௘(x|θ௧௥௨௘) by repeatedly updating θௗ and θ௚
from the initial value in the upper left and converging
to the center, i.e., the solution of the minimax
problem.

2.4 SeqGANs

SeqGANs generate sequence data in a GAN
framework. SeqGANs differ from GANs in that they
solve a specific problem occurring in the update of θ௚
in Step 3. The problem is that the generator parameter θ௚ can be significantly updated in response to slight
differences in the sequence data.

For example, in generating emoticons, D(x୤ୟ୩ୣ, θௗ) ≈ 1 for x୤ୟ୩ୣ = (^____^), which is
almost the original data. However, D(x୤ୟ୩ୣ, θௗ) ≈ 0
for x୤ୟ୩ୣ = (^____^_, even though there is only a
slight difference from (^____^). This is because x୤ୟ୩ୣ = (^____^_ does not have a pair of left and right
parentheses; hence, it is not recognized as an
emoticon. In Step 3, for x୤ୟ୩ୣ , where the value of

Impact of Duplicating Small Training Data on GANs

311

Figure 4: An image of the objective function of GANs, shown as a contour map. The black arrow represents the transition of θௗ and θ௚ by the iterative algorithm of the GANs.

D(x୤ୟ୩ୣ, θௗ) is close to 0, the generator parameter θ௚
is updated such that the generator never generates x୤ୟ୩ୣ again. Therefore, x୤ୟ୩ୣ = (^____^_ will not be
generated in the iterative algorithm in the future. This
is not a good idea because it will become similar to
the original data with a few more modifications.

To cope with this problem, for x୤ୟ୩ୣ = (^____^),
SeqGANs evaluate partial sequences such as (, (^, ...
, (^____^ by performing Monte Carlo simulations.
Specifically, for each of partial sequences, SeqGANs
randomly generate subsequent sequence until a
complete sequence xୡ୭୫୮୪ୣ୲ୣ is obtained.
Subsequently, in Step 3, D(xୡ୭୫୮୪ୣ୲ୣ, θௗ) is
calculated, and the parameter θ௚ is updated using
this. Thus, this problem is avoided.

3 DUPLICATE TRAINING DATA

In this study, SeqGANs were used to generate
emoticons with only a small amount of original data.
However, as seen in Figure 3, the discriminator
cannot guide the generator in the correct direction
because the positive region determined by the
discriminator is too wide. To address this problem,
we modify Step 2 in the GAN algorithm.

Specifically, the update formula of parameter θௗwith respect to the original data x୰ୣୟ୪, θௗ ← θௗ + 𝜂 ddθௗ log D(x୰ୣୟ୪, θௗ) (5)

is modified to θௗ ← θௗ + N 𝜂 ddθௗ log D(x୰ୣୟ୪, θௗ) (6)

where 𝜂 is the learning rate, and N is an integer
greater than or equal to 1.

DATA 2021 - 10th International Conference on Data Science, Technology and Applications

312

Table 2: Examples of symbol sequences generated by SeqGANs without duplicating the original data.

。ਊლ ಡ^。 و✧ヾ) ๑و.)Д

︶o。ｯ▿)。^) ^ ᗢ(♫✌ﾟ☆ ˊᕑ★◠

∀Д٩ ▽(^ﾉ ಡ▽✿^ ꉂ`ﾟ

ｸ◠。 ꉂ*◠✌ª ﾉ *ლ￣)) ｀

ﾟᗜ∀) !ᗢノ^)) ★ਊ ﾟ)و๑。*)) ◡^∀∀｀

Table 3: Examples of symbol sequences generated by SeqGANs when duplicating the original data N = 10 times. Those in
red meet the definition of emoticons.

(´▽`)) ヽヽ(*^o^*)／ ♫ヽ(゜∇゜)ノ♩ (⌒艸⌒)

♫ヽ(゜∇゜♪ ヾ(*^▽^)/★*☆ (ლ▽^=) (((o(*ﾟ▽ﾟ*)o))

ヾ(๑ㆁᗜㆁ ๑)" (✿º 艸 º灬) ✧*٩(ˊωˋ*)و✧*。 ヽ(*^^)o

(ಡ∀·) (*^▽^)/⊙ｸ л̵ ʱªʱª (ｷ。✪ω✪ヽ(๑)✌✌

(o^^oo) (✿◠˃̶ꇴ) ٩(*^^*)ノ (๑๓´❛)

By doing this, the value of D(x୰ୣୟ୪, θௗ) can be
increased. Subsequently, we expect that the positive
region determined by the discriminator will include
only the support region of the distribution of the
original data.

Simply put, if N is an integer greater than or equal
to 1, this is equivalent to duplicating the original data
N times and using the conventional update formula.
Therefore, in the experiment presented herein, we
duplicate the original data N times without changing
the update formula. Furthermore, along with
duplicating the original data N times, we increased
the number of fake data generated by the generator N
times and used them to train the discriminator.

4 EXPERIMENT

The purpose of the experiment was to generate
emoticons representing laughter using SeqGANs. We
used 95 emoticons in Table 1 as original data, i.e., the
training data for SeqGANs. Both the generator and
the discriminator in SeqGANs have a 128-
dimensional embedding layer and an LSTM layer.
The output layer is a softmax layer for the generator
and sigmoid for the discriminator.

First, Table 2 shows the symbol sequences
generated by SeqGANs without duplicating the
original data. Almost all generated symbol sequences

did not resemble emoticons. To evaluate this
quantitatively, we define emoticons as follows:

A symbol sequence in which all of the following
I, II, and III hold is defined as an emoticon.

I. There is a pair of parentheses on the left and
right that correspond to the outline of the face.

II. Symbols correspond to the eyes inside the
outline of the face. Specifically, it is the case
in which either of the following two holds:
(a) Symmetrical symbols corresponding to the

eyes.
(b) Symbols corresponding to the eyes exist

asymmetrically, but an asymmetric pattern
exists in the original data.

III. If a symbol corresponds to the nose or mouth,
it exists between the symbols corresponding to
the eyes.

Applying this definition to the symbol sequences in
Table 2, we can see that there is no symbol sequence
that satisfies the definition of emoticons.

Next, Table 3 shows the symbol sequences
generated by SeqGANs when the original data were
duplicated N = 10 times and used as training data.

Approximately 70% of the generated symbol
sequences meet the definition of emoticons.

Impact of Duplicating Small Training Data on GANs

313

Figure 5: Ratio of the symbol sequences generated by
SeqGANs that meet the definition of emoticons.

Figure 5 shows the change in the ratio of the
symbol sequences generated by SeqGANs that meet
the definition of emoticons when the duplication
magnification N is moved from 1 to 10. As N
increases, the ratio of symbol sequences that satisfy
the definition of emoticons increases.

On the contrary, as the duplication magnification
N increases, SeqGANs output emoticons that are
exactly the same as the original data. In this
experiment, if SeqGANs generated the same
emoticons as the original data, the generation was
redone. Figure 6 shows the ratio of the number of
regenerated data to the number of generated data. It
can be observed that the ratio increases as N increases.
This is because when the duplication magnification N
is high, the distribution of the data generated by the
generator approaches the original data itself rather
than the distribution of the original data. In other
words, overfitting occurs.

5 RELATED WORK

Karras et al., (2020) focused on overfitting as a
problem of GANs when training data was scarce. In
contrast, we herein discussed a way to deal with
underfitting to small training data.

Although GANs are excellent for building
generators, GANs have a weakness in that tuning
parameters is difficult. This is because, as shown in
Figure 4, the solution of GANs is the saddle point of
the objective function f(θௗ, θ௚). The GAN algorithm
usually repeats updating the parameters θௗ and θ௚
alternately depending on the gradient of f(θௗ, θ௚).

Figure 6: Ratio of the symbol sequences generated by
SeqGANs that are exactly the same as the original data.

This calculation tends to be unstable because the
objective function repeatedly increases and decreases.
To stabilize the algorithm, we need to be aware of the
following when updating the parameters:

(1) Is the length of the gradient vector appropriate,
not too short or too long?

(2) Is the direction of the gradient vector pointing
to the correct direction?

Regarding the issue (1), (Gulrajani et al., 2017)
and (Mescheder et al., 2017) use the length of the
gradient vector as a regularizer of the objective
function. In contrast, we herein deal with issue (2).

6 CONCLUSION

We duplicated a small amount of training data and
used it for SeqGANs. As a result, we successfully
generated emoticons when duplication magnification
was appropriately set. However, as a trade-off, it was
also observed that SeqGANs overfit the training data,
i.e., they produce emoticons that are exactly the same
as the training data. Resolving this trade-off is a
future task.

In this study, data generation was limited to
emoticons representing laughter. However, there are
also emoticons that express various meanings such as
sadness, shy, anger, and surprise. Future tasks include
creating emoticons that can distinguish between these
subtle differences in meaning, and creating emoticons
that have new meanings, such as shy + laughter.

DATA 2021 - 10th International Conference on Data Science, Technology and Applications

314

REFERENCES

L. Mescheder, S. Nowozin, and A. Geiger, “The numerics
of GANs,” In Proc. of the Advances in Neural
Information Processing Systems, pp. 1825-1835, 2017.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative Adversarial Nets,” In Proc. of the
Advances in Neural Information Processing Systems,
pp. 2672—2680, 2014.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A.
Courville, “Improved Training of Wasserstein GANs,”
In Proc. of the Advances in Neural Information
Processing Systems, pp. 5769–5779, 2017.

T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and
T. Aila, “Training Generative Adversarial Networks
with Limited Data,” In Proc. of the NeurIPS, 2020.

L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient,” In
Proc. of the AAAI Conference on Artificial
Intelligence, vol. 31, no. 1, 2017.

Impact of Duplicating Small Training Data on GANs

315

