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Abstract: This paper presents a data driven hybrid approach for Prognostics and Health Management (PHM) of military 
ground vehicles to mitigate a number of the unexpected failures, enabling intelligent decision-making for 
improved performance, safety, reliability, and maintainability. For military ground vehicles, the Controller 
Area Network (CAN) bus provides sensor data for collection and analysis. In this study we used collected 
operational time-series data for generating future operational time series data for military ground vehicles. 
Our sensor data share stochastic trends with more than one-time dependent variable to develop Vector Auto-
Regression (VAR) models suitable to forecast operational data. We have developed Long Short-Term 
Memory (LSTM) fault detection models which ingest VAR forecasted data to identify fault detection. Our 
experimental results show our hybrid approach provides promising fault diagnosis performance. Root mean 
squared error, mean absolute percentage error and mean absolute error have been used as the evaluation 
criteria. 

1 INTRODUCTION 

Excessive wear conditions occur when Army ground 
vehicles are operated under extreme stress, with 
heavy loads in a harsh environment. These conditions 
reduce the usable lifetime of mechanical components. 
This may cause unpredictable situations when a 
component is nearing the end of service life. It can be 
replaced instead of risking potential failure during the 
mission. Rather than relying on traditional preventive 
and reactive maintenance, data collected from the 
Collective Area Network (CAN) bus on-board 
sensors can be used for Prognostics and Health 
Management (PHM) to assess diagnostic and 
prognostics health state of the vehicle, moving 
maintenance into the predictive and preemptive roles.  
The main benefits of predictive health maintenance 
are increased safety due to the reduction of 
unexpected failures, reduced operation and 
sustainment costs, and increased reliability, 
availability and maintainability of army vehicles. 

U.S. Army ground vehicle operational sensor data 
has been collected for several years from some 
platforms. Monitoring the vehicle data trends and 
deviations with statistical and machine learning 
models can lead to insight that will allow the 

maintainer in the field to schedule maintenance 
before failure occurs. As a result, maintenance plans 
can be optimized, avoiding many potential break 
downs. Another main advantage of data-driven 
approaches is that machine learning models are 
scalable to entire fleets or families of vehicles. 
Generic models have the potential to be used for other 
vehicle models. 

To evaluate the health of the system, various 
techniques are used in data driven models (Lee et al., 
2014). For our study, we focus on data collected from 
the vehicle at one second intervals (1Hz data) coupled 
with system fault codes to design a supervised 
learning fault detection model for enhanced fault 
prediction. A Vector Autoregression (VAR) model 
using historical 1Hz data and a multivariate Long 
Short-Term Memory (LSTM) neural network for 
operational data forecasting was implemented. 
Comparing the forecast to real sensor output provides 
diagnosis and fault detection capability. The output 
from the LSTM model identifies whether the system 
is operating under normal operating conditions, 
represented with a value of zero. A nonzero value 
LSTM model can be further evaluated to determine 
the system fault code that the vehicle encounters. A 
fault code is a pre-defined list of numerical 
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identifiers, which correlate to a particular failure or 
error message for a component within the vehicle 
system. 

The applications of this study are twofold: (1) the 
forecasted data can be used to predict whether a 
vehicle is projected to continue operating within 
normal bounds using the LSTM fault detection 
model, and (2) the forecasted data can be used to 
predict the remaining useful life (RUL) of the vehicle. 
In this work, we focused on the first application by 
introducing an approach to predict the future 
operational health of a ground vehicle (section 2), 
demonstrated the preliminary results from this 
methodology (section 3), and discussed the future 
direction of this work (section 4). By predicting 
abnormal behavior potential field failure of a vehicle 
can be prevented. 

2 MATERIALS AND 
METHODOLOGY 

Hybrid autoregressive and LSTM models have been 
used to forecast anomalous events, such as stock 
market volatility (Ha and Chang, 2018). This paper 
particularly focuses on implementing a hybrid VAR-
LSTM forecast model as a novel approach to fault 
detection in military ground vehicles. 

This research effort explores the VAR model for 
forecasting. The VAR model uses historical 1 Hz 
operational data to forecast vehicle operational data. 
Then, LSTM model learns from the vehicle’s 
historical fault and operational data to develop a 
custom fault detection model. Once the model is built, 
it ingests the forecasted data and provides a fault 
detection and diagnosis based on what has been 
predicted.  
 

 
Figure 1: VAR-LSTM Hybrid model workflow. 

Figure 1 shows the hybrid workflow to provide an 

enhanced model for future fault detection. The 
motivation behind the hybrid model is to speed up the 
fault prediction modeling and forecasting process. 

For building the VAR model Statmodels python 
API is used, which provide classes and functions to 
explore data, estimate statistical models, and perform 
statistical tests (Seabold and Perktold, 2010). 

2.1 Ground Vehicle Data Description 

The ground vehicle data are collected from the 
vehicle’s CAN Bus, during all operational intervals, 
by a Dynamic Stability Controller box. This time 
series data consists of sensor readings, such as oil 
pressure, RPM, accelerator position, vehicle speed, 
position, and other data points. Analysis of this data 
details the performance of vehicles and different 
components with respect to the driving status of those 
vehicles. For the demonstrated predictive model, we 
are using 1 Hz data from 25 vehicles. The entire 1 Hz 
operational dataset was collected from roughly 4500 
vehicles over seven years. Each 1 Hz vehicle history 
dataset contains approximately 20+ million rows and 
70+ columns. Figure 2 shows our data collection 
workflow. For training purposes, only clean data was 
selected and made stationary but outlier adjustments 
were not considered. 

 
Figure 2: Data Collection from CAN bus. 

2.2 Time Series Visualization 

Plotting the time series data will help visualize 
patterns, unusual observations, changes over time and 
relationships between the variables. Line plot, box 
plot and autocorrelation plot are used to learn about 
the statistical properties and the features present in the 
time series. 

2.3 Data Preparation 

Preparing and pre-processing the data is a multistep 
process involving missing value replacement and 
filtering columns and entries by specific criteria. This 
enhances the utility of the data in training and testing 
models and ensures that confounding attributes of the 
data don’t negatively impact the model’s 
performance. Specific data cleaning and imputation 
methods are discussed in Section 3. 
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2.4 Operational Data Forecasting 

Forecasting often presents a complex problem for 
data scientists and statisticians. This is due to many 
factors, including  
• Disappearance of correlation between variables in 

future states 
• Unexpected events can shift the data in ways the 

model cannot predict 
• The complexity of most multivariate time series 

datasets 
Selecting a suitable forecasting method for a dataset 
is also often a large task on its own. Choosing a 
method depends on the 
• Availability of historical data 
• Time interval that needs to be forecasted 
• Desired degree of accuracy 
• Computational power available for the model to 

run and train.  
Here we will discuss the Vector Auto Regression 
model for operation data forecasting 

We chose the VAR model to forecast this 1 Hz 
operational data because it is one of the most 
successful, flexible, and easy to use models for the 
analysis of multivariate time series data (Zivot and 
Wang 2006). These models are used to estimate 
future values of time series variables that influence 
each other. Besides forecasting economics and 
financial time series data, VAR models are also used 
for other disciplines such as medical research (Seth et 
al., 2015) and signal processing (Basu et al., 2019). 
VAR models are stochastic processes which are 
natural extensions of univariate autoregressive 
models as applied to dynamic multivariate time 
series. Univariate time series models, such as 
ARIMA, contain only one time-dependent variable 
while multivariate time series models consist of 
multiple time-dependent variables. Multivariate 
models leverage complex dependencies between 
variables to provide more reliable and accurate 
forecasts for specific data. All variables in the VAR 
model are treated as endogenous. There is one 
equation for each endogenous variable in its reduced 
form, and the right-hand side of each equation 
includes lagged values of all dependent variables in 
the system (Zivot and Wang, 2006).  

For to the VAR model, we can write a 𝑝௧௛ order 
model as the linear combination of previous vector 
values,  𝒗௧ ൌ  𝛼 ൅ 𝛽ଵ𝒗௧ିଵ ൅ 𝛽ଶ𝒗௧ିଶ ൅ ⋯ ൅ 𝛽௣𝒗௧ି௣ ൅ 𝜀௧ 

Where  𝒗௧  represents  the  predicted future values of 

each component in the past value vectors 𝒗𝒕ି𝒊 where 𝑖 ∈ ሾ1, 𝑝ሿ and 𝑖 represents the lag of the vector. The 
variable 𝛼 is the intercept of the model and 𝜀௧ is an 
error or noise term.  The procedure to build VAR 
models involves several steps. Figure 3 demonstrates 
the procedure of building VAR model. 
 

 
Figure 3: VAR model flowchart. 

2.4.1 Testing for Stationarity 

Time series data exhibits trend and seasonal residuals. 
Checking for stationarity was therefore important in 
our analysis because statistical forecasting models 
cannot forecast on non-stationary data. For a time-
series dataset to be stationary, its mean, variance, and 
autocovariance (at various lags) remain constant over 
time; that is, they are time invariant. The study used 
the two methods for testing stationarity of the 
variables, because these tests can provide 
contradictory results due to differences in type of 
stationarity. 

The Augmented Dickey–Fuller (ADF) test 
(Dickey and Fuller, 1979) is a statistical significance 
test to identify the presence of unit root in the time 
series. There are several possible unit root tests but 
the ADF test is a reliable option for time series with a 
large number of observations. The presence of a unit 
root in the ADF test means the time series difference 
is stationary. If the ADF test statistic is greater than a 
critical value based on alpha levels of 1%, 5% and 
10% then the null hypotheses is rejected and the series 
is non-stationary. The ADF significance level 
assesses the statistical significance of data for a null 
hypothesis. 

The Kwiatkowski–Phillips–Schmidt–Shin 
(KPSS) approach is another test for checking the 
stationarity nature of time series data (Kwiatkowski 
et al., 1992). It differs from the ADF tests in the sense 
that the series is assumed to be stationary under null 
hypothesis. According to the KPSS test, the null 
hypothesis tells us the process trends stationary and 
the alternate hypothesis identifies the unit root, which 
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denotes the presence of stationarity. Both approaches 
were applied to ensure that the series used in the 
present investigation is stationary. 

2.4.2 Testing for Causality 

Once stationarity is established, we applied Granger’s 
causality test on our time series data. Granger’s 
causality test (Granger, 1969) is a statistical 
hypothesis test to investigate whether one time series 
is useful for forecasting another, which is the basis of 
the VAR model. It determines if systems influence 
each other.  If the p-value obtained from the test is 
less than the significance level, the hypothesis is 
rejected and we can conclude that one time series is 
causing the other. Significance level assess the 
statistical significance of data for a null hypothesis. 
For our test we used popular 1%, 5% and 10% of 
significance level. We must make the time series 
stationary before running Granger’s Causality test to 
eliminate the possibility of auto correlation. To 
accomplish this, our study employs chi-square 
distribution because we are testing with a large 
number of lags and variables. 

2.4.3 Selection of Model Order 

Model order selection for reliable forecast is an 
important step in statistical analysis when using the 
VAR model. The most common approach for model 
order selection involves choosing a model order that 
minimizes one or more information criteria evaluated 
over a range of model orders. Choosing optimal lag 
reduces residual correlation. To select the right order 
of the VAR model we iteratively fit the model which 
requires the maximum number of lags. The command 
returns a statistical information criterion to use for 
order selection which are Akaike Information 
Criterion (AIC) (Akaike, 1985), Schwarz-Bayes 
Criterion (SBC) (Schwarz, 1978) – also known as the 
Bayesian Information Criterion (BIC) – Akaike’s 
Final Prediction Error Criterion (FPE), and Hannan-
Quinn Criterion (HQ) (Hannan and Quinn, 1979). We 
have selected the order that produces the lowest AIC, 
BIC, FPE and HQIC scores. 

2.4.4 Residual Checking 

After choosing the lag order, the selected model is 
trained and check for serial correlation of residuals. 
For our study, we are using Durbin Watson Statistics 
(Durbin and Watson, 1951), which is a standard tool 
for checking residual autocorrelation in VAR models. 
The null hypothesis is that there is no residual 
autocorrelation; the alternative is that residual 

autocorrelation exists. The Durbin Watson test 
reports a test statistic with a value from 0 to 4 where 
a value close to 2 has no autocorrelation, closer to 0 
indicates positive autocorrelation, and closer to 4 
implies negative autocorrelation.  

2.4.5 Forecasting and Model Diagnostic 

Based on the best fit of the VAR(p) model we obtain 
the forecast for each variable where p indicates the 
model order. After training the model on training 
data, we use the model to make predictions on test 
data. Based on test data predictions, we can determine 
how the model performed. If we are detrending or 
differencing our time series, the differenced or 
detrend forecasts must be reversed into the original 
forecast values. We use descriptive statistics mean, 
minimum, maximum, standard deviation to observe 
how the statistical distribution of test values differ 
from forecasted values. Root Mean Square Error 
(RMSE) is used to evaluate model accuracy. 

2.5 Supervised Fault Detection Model 

This section discusses a supervised learning model 
that provides a novel approach to fault detection (Dai 
and Zhao, 2013). Preliminary results indicate that 
artificial neural network models, namely LSTM 
models, provide promising fault detection capabilities 
for highly dimensional data observed over millions of 
samples. 

The vehicle’s operational behaviors, as presented 
in the 1Hz dataset, coupled with the observed fault 
data for that particular vehicle over the same 
timeframe, provided the framework to design a 
supervised learning model for enhanced fault 
prediction. We hope to identify a significantly greater 
number of fault conditions and component failures 
than are identifiable using physics-based models 
before they occur, increasing mission capability and 
cost savings. Logistics, sustainment, and operational 
decisions and policies will also benefit from insights 
provided by these models. 

2.5.1 Long-Short Term Memory Model 

Artificial neural networks (ANNs) lie within the 
realm of supervised machine learning and can process 
operational data and produce fault detection and 
prediction values (Helbing and Ritter, 2018). 
Univariate regression models use input data and, 
under an assumed linear relationship, generate 
coefficients representing their functional values (Park 
et al., 1991). However, ANNs utilize both linear and 
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non-linear functional capabilities to detect the 
correlation of input and output values. 

Our method deploys a LSTM model as a data-
driven approach for fault detection. LSTMs are an 
ANN that utilize deep-learning, artificial recurrent 
neural network methods (Fu, Huang, Qin, Liang, & 
Yang, 2018). Deployed on the historical 1 Hz vehicle 
data, the LSTM model observed multiple columns of 
sensor data and provided fault detection and 
diagnosis. The detection levels identify operating 
conditions that could be classified as normal, 
representing them with a value of 0. The LSTM 
model further identified the type of numerical fault 
code encountered by the system. A fault code is an 
integer value that correlates to a unique failure 
indicator or error status for a component within the 
vehicle system. 

The LSTM model, with network layers shown in 
Figure 4, provided the capability to distinguish 
normal operational behavior from a fault interval. 
Though, the original dataset contained over 28 
columns of data, the input layer only received 5 
columns of data needed to detect a fault. The LSTM 
model received the 5 input neurons and through a 
hidden layer, transcribed it to 1 output neuron which 
corresponds to a fault code. The LSTM model was 
trained over 15 epochs. 
 

 
Figure 4: LSTM network layer based on operational data. 

The two available datasets used to train the LSTM 
model were the multivariate 1Hz operational data, 
spanning over one year, and the vehicle’s fault data 
for the same timeframe. The raw historical data 
contained mostly normal operational data. The 
sample size of the historical data was filtered, 
reducing the occurrence of normal event data, to 
prevent overfitting of the LSTM model. To filter the 
historical data, an anomaly detection model was built 
using Independent Component Analysis (ICA) to 
identify a low-dimensional subspace of the dataset in 
which normal and abnormal operation could be 
identified using statistical methods along with K-
means clustering. Abnormal operational data was 
determined to be data that resided in clusters that 
related timewise with known fault indicators. 

Analysis from the unsupervised anomaly 
detection model identified areas within the data where 
a fault was likely to occur. The training batch size and 
epochs were reset, reflecting a more constricted time 
frame. The separate multivariate fault dataset 
correlated time-wise to the operational dataset 
columns. The fault data’s sample size pre-processing 
techniques included applying a fault code toward the 
operational data. 

The independent datasets, coupled as a supervised 
learning problem, enhance fault detection. Input data 
for LSTM is filtered 1Hz operational data with 
reduced columns that mirror the layout VAR dataset. 
Column reduction decreases dimensionality and 
mitigates model overfitting. The columns that were 
used to train the model were filtered according to the 
columns identified by the VAR methodology.  As a 
stand-alone model, the LSTM detects faults based on 
the historical data upon which it was trained. 
Including the VAR model in the workflow increases 
model effectiveness while lowering computational 
complexity by reducing input dimensionality. 
Column alignment allows the independently 
developed LSTM and VAR models to seamlessly 
transition the VAR output data as input data for the 
LSTM model. VAR-LSTM can function as one 
hybrid model. Once the projected data is ingested into 
the LSTM model, the LSTM model analyzes and 
classifies which data represent specific fault 
conditions. The LSTM model evaluation used a 
Binary cross-entropy loss function. 

3 RESULTS AND DISCUSSION 

This study evaluated an expansive 1Hz operational 
time series dataset and corresponding fault data. We 
estimated and validated our model on the data from 
several vehicles. We have used one-year operational 
data generated from 25 vehicles, we found that results 
from our best performing models are identical. 
Therefore, results and analysis presented here focused 
on a one-year operational interval for one vehicle. 

3.1 VAR Results 

For data preparation, we removed columns with 
outlier percentages greater than 80% and with 
variance less than 0.05. These columns don’t 
meaningfully contribute to the model’s predictive 
capability because the data they contain is either 
unreliable or approximately constant. We used scatter 
plot and IQR (Interquartile range) for multivariate 
outlier analysis. 
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Analyzing the line plot of time series in Figure 5, 
we see that all of the time series data follow a 
stochastic trend, showing stronger intertemporal 
variations with larger drops. All of the series seem to 
be related in some way and none look stationary in 
their levels. They all appear to have common trends, 
an indication that they may be co-integrated.  

 
Figure 5: Time Series line plot. 

The series was differenced to make it stationary. 
Results from KPSS and ADF tests verified that the 
series was difference stationary. The differenced 
series was then checked for stationarity. Granger’s 
causality test was performed on the first order of the 
differenced time series, then tested with 20, 30 and 40 
lags applied at 1% and 5% significance levels. P-
values less than the significance levels were found 
consistently, confirming the relationships of multiple 
variables in the time series and justifying the VAR 
modelling approach to forecast the 1Hz operational 
dataset. 

To determine optimal lag order we have used the 
python library model.select_order(maxlags) method 
with different values for our max lag. BIC statistics 
from running the command suggest the optimal lag 
order is 44 and FPE statistics suggest 45. We ran this 
command for other VIN numbers and other years, and 
the resultant lag order suggestion stayed 
approximately the same for all of the data we 
considered. Durbin-Watson residual tests indicated 
no autocorrelation between the residuals. 

We experimented with model VAR model orders 
between 42 and 49 for different VIN numbers. In this 
paper, we are presenting results from best performing 
model. Most models performed best between the lag 
length 44-48 and had the lowest number of outliers as 
suggested during multivariate outlier analysis. The 
worst performing models had RMSE in the range of 
40-50% and were discarded. 

Before forecasting we de-differenced the 
forecasted data once to bring it back to original scale. 

Figure 6 shows the plot of forecasted data against 
the actual test data for Transmission Oil Temperature, 
Engine Coolant Temperature and Engine Oil 

Pressure. Forecasting for 8 days was generated using 
fitted VAR (44) model in blue. Red represents the 
actual value. Forecasted and actual data demonstrate 
similar pattern throughout the forecasted days. For 
Engine Oil Pressure, forecasted data is close to actual 
data but except near transition points. The 
Transmission Oil Temperature data pattern is also 
very close but predicted values are overestimated. 
The Forecast plot for Engine Coolant Temperature 
shows a similar pattern, but predicted values were 
underestimated for the last two days. In general, we 
observed phases of high forecasting accuracy 
alternating with phases of low forecasting accuracy. 
Identifying structural breaks (Allaro, 2018) in the 
data and training the model with segments of time 
series is expected to improve forecast accuracy. Table 
1 shows the evaluation of VAR model to measure the 
average forecast accuracy. RMSE value indicate that 
VAR model was not able to successfully forecast 
large variation in data therefore it suffered from 
accuracy issue. 

 

 

 
Figure 6: VAR model forecast data vs. test data. 

Table 1: VAR model forecast accuracy. 

Variable RMSE 
EngCoolantTemp 20.2 
EngineOilPressure 17.3 

TransOilTemp 32.3 
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3.2 LSTM Results 

Fault detection accuracy varied between the vehicle 
models. The entire research effort implemented the 
model across several vehicles, but this paper presents 
results from building a hybrid VAR-LSTM model for 
a single vehicle. The LSTM model that was built 
using only historical data provided 65% - 90% 
accuracy across multiple vehicles. Once the LSTM 
model was built, LSTM model was given the 
forecasted VAR data to see if it could detect any fault. 
The combined LSTM-VAR model, as a preliminary 
finding for a single vehicle, provided at most a 64% 
detection accuracy as shown in Figure 7. Therefore, 
the LSTM model lost accuracy when detecting faults 
as a hybrid model than it did as a stand-alone model. 
The loss function in Figure 7 showed a loss of 57% 
for this particular vehicle. The LSTM model proved 
successful in learning the correlation between normal 
operational data and fault data. The LSTM model can 
be further expanded to observe data across the entire 
vehicle fleet and for an increased period of time. An 
increase of time-series data observations and may 
contribute to increased model accuracy. 
 

 
Figure 7: LSTM model training and validation 
accuracy/loss. 

The hybrid VAR-LSTM model output, produced 
scaled fault detection values, labeled as 
FailureModeIdentifier, as shown in Figure 8. The 
corresponding plot corresponds to the fault values are 
indicated as a failure mode value as a function of 
time, as shown along the x-axis. These values can be 
descaled and traced directly back to the fault code 
status log to determine the projected fault status of the 
vehicle. 

 
 

 
Figure 8: Hybrid VAR-LSTM model output for fault 
detection. 

4 CONCLUSIONS AND FUTURE 
WORK 

The VAR model captured the temporal dynamics of 
our time series data but was not able to improve the 
accuracy. Experimentation with different VIN 
numbers, selection of variable and lag order shows no 
signs of improving the VAR model forecast. The 
VAR model is a popular tool in time series 
forecasting but its parameters are estimated by the 
least square technique which is very sensitive to the 
presence of outliers. We did not smooth or filter the 
outliers from our data because removing the outliers 
may disturb the information content hence the series 
was only differenced to make it stationary which is a 
prerequisite for inferring Granger’s Causality test. 
We couldn’t scale the VAR model across the fleet 
because this model is computationally expensive to 
run and adding more data complicates the learning 
ability of the model. We only experimented with a 
few variables at a time because adding more variables 
to a VAR model creates complications. Predictions 
become more unreliable. Another challenge with the 
VAR model is that predictions quickly deteriorate. 
Very short-term forecasting was found to be slightly 
more accurate than long term forecasting, suggesting 
some gain is possible by iteratively running the model 
over short intervals. In terms of forecast stability, the 
model does not constantly yield accurate results 
mainly due to structural breaks in the data which can 
occur due to periods of inactivity or major 
maintenance related change in the vehicle.  

Though the LSTM model provided low accuracy 
levels using forecasted data, we have succeeded in 
building a hybrid workflow for a fault detection 
model. However, it can be improved upon with 
expanding the model to learn across additional 
vehicles and increase the size of the dataset. The 
VAR-LSTM hybrid model is very promising for fault 
prediction. However, further comparisons of LSTM 
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hybrid models should also be evaluated to potentially 
increase model accuracy.  We will explore other deep 
learning models such as CNN-LSTM model (Livieris 
et al., 2020), which has been proven successful in 
forecasting time series data. 

In next phase of the project, in addition to 
increasing model sample size, we will be using 
corresponding maintenance data for more accurate 
forecasting. We will expand our model further using 
the fault detection codes to identify data-driven 
Remaining Useful Life (RUL) estimation for systems 
with abrupt failures. The patterns and trends of 
forecasted data our analysis reveals will be used for 
condition monitoring and identifying abnormal 
operating conditions. 
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