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Abstract: The Internet of Things (IoT) creates an ecosystem that connects people and objects through the internet. IoT-
enabled healthcare has revolutionized healthcare delivery by moving toward a more pervasive, patient-
centered, and preventive care model. In the ongoing COVID-19 pandemic, it has also shown a great potential 
for effective remote patient health monitoring and management, which leads to preventing straining the 
healthcare system. Nevertheless, due to the heterogeneity of data sources and technologies, IoT-enabled 
healthcare systems often operate in vertical silos, hampering interoperability across different systems. 
Consequently, such sensory data are rarely shared nor integrated, which can undermine the full potential of 
IoT-enabled healthcare. Applying semantic technologies to IoT is a promising approach for fulfilling 
heterogeneity, contextualization, and situation-awareness requirements for real-time healthcare solutions. 
However, the enrichment of sensor streams has been under-explored in the existing literature. There is also a 
need for an ontology that enables effective patient health monitoring and management during infectious 
disease outbreaks. This study, therefore, aims to extend the existing ontology to allow patient health 
monitoring for the prevention, early detection, and mitigation of patient deterioration. We evaluated the 
extended ontology using competency questions and illustrated a proof-of-concept of ontology-based semantic 
representation of vital sign streams. 

1 INTRODUCTION 

Healthcare has marked a significant paradigm shift 
from a centralized, professional-focused, and reactive 
model to a more pervasive, patient-centered, and 
preventive care model (Epstein et al., 2010). The 
Internet of Things (IoT) creates an ecosystem that 
connects people and objects through the internet. By 
revolutionizing healthcare service delivery, IoT-
enabled healthcare has a high potential to improve 
population health and transform a healthcare model 
toward a more comprehensive personalized care 
model (Kelly et al., 2020). For example, it enables 
preventive primary healthcare services to be more 
accessible and available by enabling remote and real-
time monitoring of the patient's health status and daily 
activities, leading to a more proactive prediction of 
health issues (Kelly et al., 2020).  

The current COVID-19 pandemic has posed 
devastating effects on global health and economies. 
Given that the incidence of emerging infectious 
diseases has been increasing at an unprecedented rate 

(Jones et al., 2008), it also has manifested the pressing 
need for more resilient healthcare systems against 
future emerging infectious diseases. IoT technology 
has been exerting its power through its potential to 
mitigate the impacts of COVID-19 on individuals and 
health systems. Those innovative IoT have been used 
for screening and early diagnosis of COVID-19, triage 
of patients, epidemiological surveillance (Golinelli et 
al., 2020), and contact tracing (Swayamsiddha & 
Mohanty, 2020). Other utility includes maintaining 
social distancing, remote and real-time monitoring of 
confirmed/asymptomatic/suspected cases, ensuring 
adherence to isolation/quarantine, and after-recovery 
follow-ups to understand long-time sequelae and 
possible re-infection (Nasajpour et al., 2020). By 
providing such capabilities, IoT-enabled healthcare 
systems can also help prevent overstretching 
healthcare systems (Swayamsiddha & Mohanty, 2020). 
Thus, the successful integration of IoT technology in 
existing healthcare systems seems to be a key to 
increase preparedness and resilience for future 
pandemics. 
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A dramatic increase in IoT usage has generated 
a massive amount of heterogeneous sensory data. 
Nevertheless, due to the heterogeneity of data sources 
and technologies, IoT-enabled healthcare systems are 
often operating in vertical silos, which hampers 
interoperability across different systems (Kelly et al., 
2020). As a result, such sensory data are rarely shared 
nor integrated. Moreover, a previous systematic 
literature review identified contextualization and 
situation-awareness as some of the challenges IoT 
applications in healthcare have been facing (Lim & 
Rahmani, 2020). An underlying reason for the issue 
is that raw sensory data are mere numerical values 
that are not necessarily easy to associate with 
meaningful and understandable information unless 
the context of data is provided (Ganz et al., 2016).  

Applying semantic web technologies to represent 
IoT data is a promising approach for fulfilling 
heterogeneity, contextualization, and situation-
awareness requirements for real-time healthcare 
solutions. Adding semantic description can transform 
raw data into an unambiguous machine-interpretable 
form. The semantically enriched data can further be 
processed and interpreted by machines to generate 
meaningful knowledge (Biswanath, 2017). 

The need for and execution of IoT-enabled 
healthcare services largely varies depending on the 
context (Alirezaie et al., 2017). Ontologies are among 
the most appropriate approaches to perform context 
modeling (Strang & Linnhoff-Popien, 2004). 
Ontology refers to "a formal naming and definition of 
the types, properties, and relationships of the entities 
that really or fundamentally exist in a particular 
domain of discourse" (Biswanath, 2017). Ontologies 
are machine-interpretable due to the formal and 
explicit specification of conceptualizations, which 
has capabilities of knowledge sharing, logic 
inferencing, knowledge reuse, and knowledge 
integration (Biswanath, 2017; Perera et al., 2014). 

Linked Data is another critical pillar of semantic 
technologies, which refers to "a set of best practices 
for publishing and interlinking structured data on the 
Web." Linked Data connect items across different 
data sources in a single global data space (Heath & 
Bizer, 2011). Using an ontology complements Linked 
Data by supporting data integration, schema 
alignment, reasoning, and inferencing over data 
(Biswanath, 2017).  

Relevant previous studies have mainly focused on 
annotating cross-sectional/categorical data rather 
than continuous data. Jabbar et al. proposed an IoT-
based Semantic Interoperability Model (IoT-SIM) to 
improve semantic interoperability among 
heterogeneous IoT devices in the healthcare domain 

(Jabbar et al., 2017). In their study, physicians made 
a diagnosis using IoT devices and prescribed 
medicine accordingly. They then semantically 
annotated the diagnosis and prescription results (i.e., 
cross-sectional data) in RDF. Carbonaro et al. 
proposed an ontology-based cognitive computing 
eHealth system to achieve semantic interoperability 
among heterogeneous IoT fitness and wellness 
applications (Carbonaro et al., 2018). However, they 
did not describe any details about the steps to annotate 
sensor data.  

There is, thus, a lack of studies that have 
performed the enrichment of the sensor data streams 
with their spatial, temporal, semantic meaning (Pacha 
et al., 2020). Furthermore, to our knowledge, there is 
no existing ontology enabling continuous patient 
health monitoring for more effective patient 
management during infectious disease outbreaks.  

Therefore, this study aims to extend the IoT-
Stream ontology (Elsaleh et al., 2020) in order to 
enable patient health monitoring for the prevention, 
early detection, and mitigation of patient deterioration. 
Using the extended ontology, we performed 
ontology-based context modeling of vital signs (i.e., 
mapping vital sign data to ontology concepts) to add 
contextual information to raw sensor data (i.e., 
semantic enrichment). We formulated the following 
research question: "How can ontology-based context 
modeling be used for the semantic representation of 
vital sign streams from heterogeneous data sources 
for enabling patient health monitoring and 
management?" To address the research question, we 
performed the following four steps: 

1) Extend the existing ontology, named the IoT 
for patient health monitoring (IoT4PHM) 
ontology, to enable patient health monitoring 
and management. 

2) Extract vital signs data from two different data 
sources. 

3) Build and apply a semantic model to 
semantically enrich vital signs using the 
Resource Description Framework (RDF). 

4) Perform a semantic search using a SPARQL 
query language. 

2 RELATED WORK 

2.1 Ontology-based Context Modeling 
of Sensor Data 

Semantic Sensor Network (SSN) is an OWL 2 
ontology that is a de-facto standard ontology for 
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describing sensors, their accuracy and capabilities, 
observations, and sensing methods (Compton et al., 
2012).  

Nevertheless, context modeling using heavy-
weight ontologies can increase computational 
complexity and processing time, especially when data 
volume is high (Perera et al., 2014). Such heavy-
weight ontologies are thus not suitable for (near) real-
time IoT applications. Light-weight ontologies, 
therefore, have been created to cope with those real-
time applications.  

For example, the Sensor, Observation, Sample, 
and Actuator (SOSA) ontology is a light-weight, 
general-purpose ontology that provides a flexible but 
coherent framework to represent the entities, relations, 
and activities involved in sensing, sampling, and 
actuation (Janowicz et al., 2019). IoT-Lite is another 
light-weight semantic model for IoT (Bermudez-Edo 
et al., 2017). The ontology instantiates the SSN 
ontology to describe key IoT concepts, enabling 
interoperability and discovery of sensory data among 
heterogeneous IoT platforms. However, SOSA and 
IoT-Lite focus on devices rather than IoT data 
streams (Elsaleh et al., 2020). Thus, IoT-Stream, a 
light-weight semantic model for annotating IoT 
streaming data, was created by extending SOSA.  

2.2 Semantic Enrichment of Sensor 
Data Streams 

Discovering and analyzing sensor data requires 
spatial, temporal, and thematic information. 
Nevertheless, sensor observation data are by nature 
opaque. Thus, metadata is crucial for managing 
sensor data. A semantic sensor web (SSW) enriches 
sensor data by providing the meaning for the sensor 
data. The semantic enrichment facilitates 
interoperability and enables situational awareness 
and advanced application from heterogeneous 
sensors (Sheth et al., 2008).  

As written in Section 1, few studies have focused 
on annotating sensor data streams. However, there are 
still several pioneering studies that aimed to address 
the research gap. Pacha et al. proposed a novel 
framework called SEmantic Annotation over 
Summarized sensOr Data stReam (SEASOR), 
enabling the real-time semantic annotations of 
streaming sensor data (Pacha et al., 2020). Their 
framework facilitates sensor data stream analytics 
through summarization, semantic annotation, and 
query processing (Pacha et al., 2020). Semantic 
annotation is performed over the summarized sensor 
data using the base ontology extended from the SSN 
ontology.  

Alirezaire et al. presented a system called E-
care@home, which can integrate measurements from 
heterogeneous sensor sources used for ambient 
assisted living using ontologies  (Alirezaie et al., 
2017). By augmenting devices and their 
measurements into semantic representation, the 
system provides the semantic interpretation of events 
and context awareness. To semantically represent 
sensor data, they developed the SmartHome 
ontology, which includes modules representing a 
smart home environment's physical and conceptual 
aspects. They proposed to use a network of 
interlinked ontology modules because real-time 
reasoning requires reducing the complexity of 
semantic reasoning (Alirezaie et al., 2017).  

3 METHODS 

3.1 Data Preparation 

3.1.1 Electronic Medical Record (EMR) 
Vital Sign Dataset 

We extracted patient vital signs from the early 
prediction of sepsis from clinical data published on 
the PhysioNet website (Reyna et al., 2020). The 
dataset consists of hourly vital sign summaries, 
laboratory values, and static descriptions of 60,000 
ICU patients from two hospitals. It includes 40 
clinical variables: 8 vital signs, 26 laboratory 
variables, and six demographic variables (Reyna et 
al., 2020). Of the 40 variables, this study utilized the 
following seven variables: age, gender, heart rate, 
oxygen saturation, temperature, systolic blood 
pressure, and respiration rate.  

In addition, we simulated sensor ID by random 
number generation and the start and end time of the 
IoT stream, assuming that the selected vital signs are 
monitored simultaneously. Since the location data are 
required for context-aware health systems, we 
conveniently extracted the location data from the 
epidemiological dataset of the COVID-19 outbreak  
(Xu et al., 2020). We randomly selected ten patients 
who developed sepsis within 10 hours after admission 
to ICU and used their 10-hour vital sign observations 
for the semantic enrichment.  

3.1.2 Radar Vital Sign Dataset 

In the EMR vital sign dataset, every vital sign is 
provided in hourly summaries. To demonstrate the 
semantic enrichment of raw sensor data, we extracted 
ECG raw data from a publicly available dataset which 
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consists of 24 h of synchronized data from radar and 
a reference device (Schellenberger et al., 2020). The 
dataset contains data including ECG, impedance 
cardiogram, and non-invasive continuous blood 
pressure collected from 30 healthy participants. We 
extracted ECG signals, tfm_ecg1, which were 
recorded at the sampling frequency of 2000 Hz.  

First, we randomly selected 10 of the total 30 
participants and assessed their ECG signals' length. 
Since one participant had the shortest ECG length of 
1200000 (corresponding 10 minutes recording), we 
truncated other participants' ECG to this point so that 
every participant has the same ECG length.  

We then applied a sliding window for the real-
time processing of ECG. We set the size of the sliding 
window to 150000 samples (i.e., 60 seconds) and the 
step size of the sliding window to 120000 samples 
(i.e., 60 seconds), which indicates the overlapped 
interval between sliding windows is 30000 samples 
(i.e., 15 seconds).  

After setting the sliding window, step size, and 
overlapped interval, we applied the Pan Tompkins 
algorithm for each sliding window using the 
MATLAB function, "Complete Pan Tompkins 
Implementation ECG QRS detector" (Sedghamiz, 
n.d.). The algorithm is most widely used to detect 
QRS complex for detecting and monitoring various 
cardiovascular diseases (Fariha et al., 2020). After 
detecting R peaks in each sliding window, RR 
intervals were determined to compute heartbeats.  

Please note that optimizing R-peak detection and 
the size of sliding window and step size is out of this 
study's scope. Other preprocessing methods for 
denoising ECG and detecting QRS complexes can 
undoubtedly be used to achieve clinical relevance. 

We prepared the datasets from both data sources 
with MATLAB ver. R2020b.  

3.2 Context Modeling of Vital Signs 
using Linked Data 

We chose ontology-based context modeling because 
the approach was identified to be the most promising 
asset for context modeling in ubiquitous computing 
(Strang & Linnhoff-Popien, 2004). Figure 1 shows 
the overview of the IoT4PHM ontology. We reused 
the IoT-Stream ontology. The ontology focused on 
modeling an IoT stream, stream observations 
belonging to the IoT stream, and analysis used for and 
events detected from the IoT stream. Those concepts 
are captured in four classes: IoTStream, 
StreamObservation, Analytics, and Event, depicted in 
sky blue rectangles in Figure 1 (Elsaleh et al., 2020). 

The IoTStream class is the central concept of the 
ontology, representing an IoT data stream generated 
by an IoT source. The StreamObservation class is 
continuous stream observations belonging to the IoT 
stream, observed by a sensor device captured as a data 
point over a time instant or a subset of data points 
over a defined time interval. The Analytic class 
captures the data analytics that has been applied to 
analyze the IoT data stream. The Event class abstracts 
the event that has been detected by using an analytics 
process to an IoT data stream (Elsaleh et al., 2020). 

Moreover, the IoT-Stream ontology is linked with 
six concepts from external ontologies (Figure 1): 
qoi:Quality, iot-lite:Service, sosa:Sensor, 
qu:QuanityKind, qu:Unit,  and geo:Point. The 
qoi:Quality is the top class to describe the quality of 
IoT data sources. The class has a sub-class called 
Timeliness which defines a metrics category to 
represent which rate a data source provides data 
within a defined time span or age. The iot-lite:Service 
is an abstract of a service provided by an IoT device. 
The sosa:Sensor is a device, agent (including 
humans), or software (simulation) that generates an 
IoT stream. The qu:QuanityKind represents a 
quantity without any numerical value or unit, while 
qu:Unit abstracts the concept of measurement unit. 
The geo:Point represents the latitude, longitude, and 
altitude of the location where an IoT stream 
originates. For a complete description of the 
ontology, see (Elsaleh et al., 2020). 

We added three concepts (Figure 1) to support the 
data integration and sharing, knowledge 
representation and reasoning, and computer-assisted 
data analysis to enable patient health monitoring and 
management for the prevention, early detection, and 
mitigation of patient deterioration.  

The first concept, Patient, stores the patient-
related information such as ID, age, sex, and social 
determinants of health, which can have a considerable 
effect on health outcomes. For example, the 
increasing evidence shows that social determinants of 
health, including poverty, physical environment, 
race, or ethnicity, impacts COVID-19 morbidity and 
mortality profoundly and unevenly (Abrams & 
Szefler, 2020). Thus, the concept is essential for 
understanding the patient's needs to provide optimal 
healthcare services. 

The second concept, UnderlyingHealthCondition, 
is added to understand the patient's underlying health 
conditions because they can significantly increase the 
risk of a worse disease prognosis. For example, a 
modeling study shows that the population with 
underlying health conditions such as chronic kidney  
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Figure 1: The overview of the IoT4PHM ontology. 

disease, diabetes, cardiovascular disease, and chronic 
respiratory disease are at increased risk of severe 
COVID-19 and hospitalization (Clark et al., 2020). 
Having the UnderlyingHealthCondition class enables 
identifying high-risk groups, which is crucial for 
performing triage and rolling out effective epidemic 
management (e.g., identifying individuals who may 
need to be shielded or vaccinated first). 

The third class, PatientManagement, is added 
because it is essential to enable a computer-assisted 
analysis to recommend patient management measures 
(e.g., perform semantic reasoning to compute early 
warning score and recommend the corresponding 
patient management measure).  The class has three 
subclasses: HealthEducation, EmergencyAlert, and 
ReferralToHealthcare. The HealthEducation 
represents the concept of general public health 
practices recommended by, for example, a public 
health agency to reduce the transmission of infectious 
diseases. The EmergencyAlert class abstracts a 
concept of clinical alert that can be critically 
important for an individual (e.g., dispatch an 
ambulance). The ReferralToHealthcare represents the 
concept of referring the patient to healthcare.  

We also added PhysiologicalParameter and 
EnvironmentalParameter as subclasses of 
QuantityKind, which refers to an "aspect common to 
mutually comparable quantities" and represents the 
essence of a quantity without any numerical value or 
unit (e.g., humidity) (Elsaleh et al., 2020). In addition 
to physiological parameters, monitoring 
environmental parameters can also play an essential 
role in transmitting some infectious diseases such as 

water-associated and vector-borne infectious diseases 
(Yang et al., 2012). The environmental parameters 
are also crucial for assessing their possible effects on 
emerging infectious diseases and supporting 
decision-making to control the disease effectively, as 
has been done by (Poirier et al., 2020) during the early 
phase of the ongoing COVID-19 pandemic. 

We implemented an extension of the IoT-Stream 
ontology using Protégé ver. 5.5.0  (Musen & Team, 
2015) and evaluated the IoT4PHM ontology using 
competency questions (CQ) listed in Table 1.  

We performed semantic enrichment by mapping 
data to the ontology classes using the open-source 
tool called Karma, which is a data integration tool that 
allows the transformation of the data into Linked Data 
by creating URIs for entities (Knoblock et al., 2012).  

Finally, we demonstrate basic query search on the 
enriched RDF using SPARQL Protocol and RDF 
Query Language (SPARQL) to extract some patient 
health information. We used a SPARQL processor 
called ARQ, which is part of the Apache Jena 
framework (The Apache Software Foundation, n.d.).    

Table 1: Competency Questions. 

CQ1 What types of patient data are collected?
CQ2 Is there any information gathered that can be 

associated with a worse disease prognosis? 
CQ3 What are the possible types of quantity kind 

to monitor patient health in the context of an 
infectious disease outbreak? 

CQ4 What are the main types of patient 
management that can be utilized for patient 

triage according to the detected event? 

DATA 2021 - 10th International Conference on Data Science, Technology and Applications

296



4 ILLUSTRATION OF IoT4PHM 
ONTOLOGY AND PROOF OF 
CONCEPT  

We illustrated how the IoT4PHM ontology enables 
the semantic representation of the vital sign streams 
to monitor the patient's health condition. We present 
a proof-of-concept of ontology-based semantic 
modeling and semantic enrichment of vital sign data 
from the two different data sources. 

First, we built the heart rate dataset's semantic 
model from the EMR vital sign dataset. We semi-
automatically performed the semantic enrichment by 
mapping data to the ontology entities using the Karma 
Data Integration Tool. In addition, to handle the 
volume and velocity of streaming ECG data from the 
Radar Vital Sign dataset and realize its real-time 
semantic enrichment, we performed summarization 
to enrich ECG streams, inspired by the previous study 
(Pacha et al., 2020). To summarize the 10-minute 
ECG streams, we applied a sliding window to 
compute the average heart rate over a set of one-
minute periods. After the summarization step, the 
same semantic model used to annotate vital signs 
from the EMR vital sign dataset can also be applied 
to automatically annotate the summarized ECG data 
streams from the Radar Vital Sign dataset. Figure 2 
shows the enrichment of the first sliding window 
from the patient's ECG stream whose ID is 
"GDN0021" (from the Radar Vital Sign dataset) in a 
turtle format. Semantic IoT data can later be queried, 
interpreted, and reasoned to generate new information 
and knowledge (Zgheib et al., 2020).  

After converting patient data into RDF using 
semantic enrichment, we performed a basic SPARQL 
query search to extract some patient's information. 

Figure 3 shows the SPARQL query we run to 
identify the female patients older than or at the age of 
70, with a respiration rate greater than or equal to 25 
breaths per minute, and the search results.  

5 CONCLUSIONS 

There is a lack of an ontology that enables IoT-based 
patient health monitoring and management in the 
context of infectious disease outbreaks. To answer the 
research question, we extended the IoT-Stream 
ontology to create the IoT4PHM ontology to enable 
patient health monitoring and management for the 
prevention, early detection, and mitigation of patient 
deterioration during infectious disease outbreaks.  

We evaluated the IoT4PHM ontology using four 
CQs in Table 1. The answer to the CQ1 is that the 
current version of the ontology can store the patient's 
ID, age, gender, symptoms, and (if any) recent 
contact with a wild animal. Such information is 
essential to collect, especially at an early phase of a 
newly emerging infectious disease outbreak, for 
investigating possible high-risk groups and 
symptoms and virus spillover from wildlife.  

 

Figure 2: An excerpt of ontology-based semantic 
enrichment for the first sliding window of the ECG stream 
for patient "GDN0021". 

 

 

Figure 3: An excerpt of the SPARQL query and results for 
extracting the IDs of the patients with a respiration rate ≥ 
25. 
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The answer to the CQ2 is that the IoT4PHM 
ontology has the UnderlyingHealthCondition class 
that can capture risk factors associated with the 
increased risk of developing complications. This 
information is critical to identify high-risk groups 
who need to be prioritized for the treatment and 
public health interventions.  

The answer to the CQ3 is that both physiological 
and environmental parameters are included as 
subclasses of the QuantiyKind class. Since 
environmental factors play a crucial role in 
transmitting some infectious diseases, they 
significantly impact public health strategies.  

Finally, the answer to the CQ4 is the patient 
management can be classified as either 
HealthEducation, ReferralToHealthcare, and 
EmergencyAlert, depending on the severity of the 
detected event (e.g., an early warning score). The 
classification contributes to ensuring the limited 
resources are effectively allocated to those who need 
most and prevent overburdening healthcare systems.  

Therefore, the IoT4PHM ontology successfully 
addressed all the CQs and can potentially  

be used for effective patient health monitoring and 
management during infectious disease outbreaks.  

In our future study, we will further extend the 
ontology by adding relevant concepts to annotate the 
aggregated individual patient data to obtain 
population-level data.  

Furthermore, to evaluate the capability of the 
IoT4PHM ontology more rigorously and improve the 
quality of the ontology, we will invite domain experts 
to assess the ontology in terms of accuracy, clarity, 
and completeness. We also plan to evaluate the 
validity of our ontology through a series of real 
annotation scenarios. 
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