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Abstract: DeepFakes are videos that include maliciously added in the postprocessing changes, quite often substituting
face of a portrayed individual with a different face using neural networks. Even though the technology gained
its popularity as a carrier of jokes and parodies, it raises a serious threat to ones security – via biometric
impersonation or besmearing. In this paper we focus on a method that allows of detecting DeepFakes for
a user without significant computational power. In particular, we enhance MesoNet (Afchar et al., 2018)
by replacing the original activation functions. We achieve over 1% improvement as well as increasing the
consistency of the results. Moreover, we introduced and verified a new activation function — Pish that at the
cost of slight time overhead allows even higher accuracy on certain datasets.

1 INTRODUCTION

The progress in the field of machine learning pro-
vided tools that automatize tasks that previously re-
quired high skills, specialized software and were
highly time–consuming. One of such tasks is ma-
nipulation of facial image — nowadays, thanks to
the DeepFake technology it is possible to create face
manipulation videos, on a level of detail unachie-
veable before. DeepFakes require facial images of
two persons — the individual present on the source
material and the victim whose face will be added
to the video. Using these two sets, two networks
are trained in order to reconstruct the appropriate
face — in result getting expression and illumination
of the victim, while keeping facial features of the
first person. Recently more sophisticated versions
of DeepFakes were introduced using Generative Ad-
versarial Networks (GAN) (Goodfellow et al., 2014).
Easy and open access to such technologies leads to
many threats that concern various spheres of people’s
lives. DeepFakes can be used to synthesize besmear-
ing videos, very often of a pornographic nature or de-
pict a public figure saying or doing things that might
harm their reputation. Not only celebrities may be
affected as shown in (Zakharov et al., 2019), only
several images of a person may be sufficient to cre-
ate such a video. In addition, existence of DeepFake
videos in a transparent way undermines the validity of
the evidence in courts of law. Naturally, during trials

one can be cleared of charged, after detailed examina-
tion of the video, yet the process is time–consuming
and the trust of general opinion may be irreparably
tarnished. In such cases a quick and easy method of
legitimacy verification cannot be overstated. Provid-
ing methods that allow DeepFake detection without
significant computational power and without delay is
even more important, due to increase in remote com-
munication, including financial matters.

State–of–the–art DeepFake detection models
based on deep neural networks provide results that
may be used in courts to examine video evidence.
However, their high computational cost makes them
unavailable for an individual user. Typically, such
scenarios are handled by the use of external services
examining the uploaded data, yet highly controversial
nature of these videos and costs such external services
may not be suitable for everyone wanting to verify the
news or clear their name. Notably, other architectures
like MesoNet (Afchar et al., 2018), which despite
not providing cutting edge results, are good enough
to allow an average citizen to have an access to a
tool that allows to determine the legitimacy of the
material.

Due to the fact that modern DeepFake solutions
utilize deep neural networks, one of their main com-
ponents, that highly influences final performance, is
an activation function. By following linear transfor-
mation in the neuron, activation function allows neu-
ral networks to map non–linear nature of the data.
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One of most widely used activation functions are
ReLU and LeakyReLU — both used in MesoNet.

In the paper we focus on detecting DeepFake
videos in a fast and reliable manner, so that users
may, using their personal PCs, determine if the pre-
sented recording is legitimate, before the damage to
the reputation spreads. We present a comparison of
the performances achieved by MesoNet DeepFake de-
tection model when trained using different activation
functions. Moreover, we present and describe a new
activation function — Pish. Furthermore, we show,
that the initial performance can be increased by using
other functions. In addition, we compare the perfor-
mance of Pish with state–of–the–art solutions using
well–known neural networks, e.g., SqueezeNet (Ian-
dola et al., 2016).

2 PREVIOUS WORK

DeepFake detection methods use approaches like fre-
quency analysis (Durall et al., 2019) where authors
look for marginal inconsistencies, local feature de-
scriptors (Akhtar and Dasgupta, 2019) or head pose
estimation (Yang et al., 2018) exploiting image incon-
sistencies, when frontal face is embedded into tilted
head. Solutions based on deep neural networks be-
come increasingly popular as an approach in Deep-
Fake detection. Their high performance in classi-
fication tasks successfully transfers to the problem
of detecting facial manipulations. In (Rössler et al.,
2019) various methods were evaluated on the dataset
— XceptionNet achieved best results. Similarly,
the best solution (Seferbekov, 2020) in DFDC Chal-
lenge (Dolhansky et al., 2020) was based on the en-
semble of EfficientNet networks (Tan and Le, 2019).
These methods, despite achieving good results, have
high computational requirements which makes them
inaccessible for many.

A different approach, has been presented
in (Afchar et al., 2018), where a relatively shallow ar-
chitecture that requires significantly lower resources
(28615 parameters in comparison to 23.5 million
in ResNet50 (He et al., 2015)), yet at the cost of
accuracy resulting in accuracy at the level of 0.873
for low quality images, such as used in our case.
More details on MesoNet are presented in Sect. 4.
For broader analysis of DeepFake detection methods,
their vulnerabilities and the datasets used one can
refer to (Nguyen et al., 2020; Lyu, 2020; Tolosana
et al., 2020; Yisroel Mirsky, 2020).

In recent years there was also improvement in
the field of activation functions. Recently introduced
solutions, Swish (Ramachandran et al., 2017) and

Mish (Misra, 2019), showed an increase in accuracies
when compared to most of the baseline solutions.

3 ACTIVATION FUNCTIONS

Various activation functions were introduced through-
out recent years (e.g., (Glorot et al., 2011; Maas et al.,
2013; Ramachandran et al., 2017; Misra, 2019)) with
some showing progress in relation to their predeces-
sors. However, they have not replaced baseline solu-
tions as their superiority was not universal enough.
This has partially changed with the introduction of
two activation functions — Swish (Ramachandran
et al., 2017) and Mish (Misra, 2019). They were eval-
uated on many various problems and most of the time
outperformed baseline solutions.

Figure 1: Pish activation function and its derivative.

In this paper we propose Pish (Fig. 1) as a new func-
tion, whose properties were inspired by the state of
the art functions like Swish and Mish. It is defined
by f (x) = x · arctan(softplus(x)+ sigmoid(x)), where
softplus(x) = ln(1+ ex) and sigmoid(x) = 1

1+e−x . It
is a smooth and non–monotonic function, character-
ized by a shift in values near 0. Values of Pish
are bounded from below and unbounded at the top,
with a range of values [≈ −0.56,+∞). Note that
the function is continuous, with a smooth deriva-

tive f ′(x) =
x
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. Its performance has been tested on

datasets like MesoNet DeepFake detection dataset,
MNIST and CIFAR–10 (Sect. 7). Note that it is
slightly more computationally demanding than the
aforementioned functions (cf. Sect. 6), yet shows
signs of improved performance on some data.
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4 MesoNet

MesoNet is an architecture of convolutional neural
network proposed in (Afchar et al., 2018) that bas-
ing on an input image, determines if presented facial
image is a DeepFake manipulation. Method comes
in two variants — Meso–4 and MesoInception–4.
Meso–4 begins with 4 blocks consisting of a con-
volutional layer with ReLU, batch normalization and
max–pooling layer, followed by a fully–connected
layer of 16 neurons with a dropout. MesonInception–
4 comes with inception modules (Szegedy et al.,
2014) in place of first two blocks.

The solution is shallow in comparison to other ar-
chitectures like ResNet–50 (He et al., 2015) or Xcep-
tionNet (Chollet, 2016) that are commonly used in
DeepFake detection. MesoNet solution comes with
27977 and 28615 trainable parameters for respec-
tively Meso–4 and MesoInception–4 variants whereas
ResNet–50 is composed of over 23.5 million param-
eters. Such difference allows using MesoNet in an
environment, like the user’s PC, that does not provide
resources needed for the other architectures and de-
termine the legitimacy of the video in shorter time.

Figure 2: Example of DeepFake image from (Afchar et al.,
2018) depicting Jimmy Fallon as Paul Rudd.

5 DeepFake DETECTION
EXPERIMENTS

In order to determine the influence of various activa-
tion functions, in particular Pish, on the performance
of DeepFake detection using MesoNet architecture
we performed exhaustive tests. Due to the greater
diversity of the model’s architecture (use of differ-
ent convolution kernels in inception module) we have
selected MesoInception–4 as a testing subject. It is
composed of two activation functions — ReLU, in
inception and convolution modules and Leaky ReLU
in fully connected layer. Our experiments included

ReLU, Leaky ReLU (following the original, using
α = 0.1), Mish, Swish and Pish. We used same
activation functions in both convolution and fully–
connected modules.

For a fair comparison we used the same training’s
and network’s parameters whenever they were speci-
fied (Afchar et al., 2018). The input data was of size
256×256×3; the optimization was performed using
Adam optimizer. In addition, training process used a
batch size of 75 samples and an adjustable learning
rate that decreased every 1000 steps by the factor of
10 from 10−3 down to 10−6.

Training data underwent augmentation process in-
cluding zoom, flips, rotations and color appearance
parameter adjustments. Augmentation details and
number of epochs were selected by us in the course
of the experiment, as they were not specified in the
original work.

The comparison used the dataset provided by
Afchar et al. — 12353 training and 7104 test sam-
ples. As no validation set was explicitly separated, it
has been extracted by use of 10% of training images.
This process was done with the respect to the scenes
— in order to prevent data leakage whole scenes were
moved to validation set.

We divided the experiments into 3 stages, each of
the described processes was repeated several times to
ensure that the results are reproducible. We have used
all training samples in each epoch which ended with
a validation on the whole validation set.

First stage of the experiment concerned training
models with a different activation function in both
convolution and fully connected modules using all of
the aforementioned functions. Each training was per-
formed 12 times for the fixed number of 30 epochs.
One training process lasted about 70 minutes using
Nvidia RTX 2080Ti, which corresponded to the state-
ment from the original work that few hours of com-
putations on consumer grade GPU were enough to
achieve satisfying results.

The second stage aimed to give more details about
the efficacy of functions when trained using different
learning rates, similar to (Ramachandran et al., 2017;
Misra, 2019). We investigated best 3 combinations
from the previous stage together with the original one
and used two different data splits.

We repeated previous process using different
learning rates — functions were trained using de-
creasing learning rates starting with 10−2, 10−3 and
10−4. This resulted in the final rates of correspond-
ingly 10−5, 10−6 and 10−7. Each of the 12 training
procedures was performed 16 times.

The final stage of the experiment was performed
on 5 architectures. They were chosen basing on their
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maximum validation accuracy in the second stage (av-
eraged across corresponding experiments). For each
of the chosen architectures we have selected 5 models
that scored the highest validation accuracy (25 mod-
els). Networks were later evaluated on the testing set
of 7104 images provided by (Afchar et al., 2018).

In addition to the evaluation of the accuracy, we
have run tests to estimate the differences between in-
ference times of various models. To achieve that we
measured several times how long did it take for each
architecture to evaluate 2000 random images.

6 RESULTS

Results from the first stage (Table 1) clearly showed
the increase in the case of other activation functions.
Each of the non–original functions provided a better
performance that the baseline approach which used
ReLU activation.

Table 1: The averaged results of the best accuracy and loss
for both training and validation sets scored by the models in
the first stage of the experiment.

Activation Acc. Loss V. Acc. V. Loss
L. ReLU 0.973 0.027 0.923 0.059

Pish 0.954 0.047 0.923 0.060
Swish 0.976 0.031 0.918 0.064
Mish 0.949 0.049 0.912 0.067
ReLU 0.966 0.035 0.909 0.067

Note that the best performance was achieved by
Leaky ReLU and Pish. In order to select the functions
for the next stage we have based on the maximum
validation accuracy averaged across all the iterations
of the process. Basing on this criteria we have se-
lected three activation functions — Leaky ReLU, Pish
and Swish along with the the originally used ReLU +
Leaky ReLU combination.

Table 2 contains data of 10 best models from
the second stage along with their metrics and learn-
ing rates used in the training process. The best re-
sults were achieved by Swish function with Pish as a
close second achieving almost the identical accuracy,
whereas Leaky ReLU, the best architecture from the
previous stage, performed worse. Top 5 of the pre-
sented architectures were selected for the final stage.

Results of the final stage of our experiment are
presented in Table 3. Swish function achieved best
mean test accuracy with the number of 0.891 while
keeping the highest minimum accuracy (at the level
of 0.865). Interestingly Pish achieved overall high-
est test accuracy of 0.928. The original architecture
based on ReLU and Leaky ReLU (with the learning

Table 2: Top 10 validation metrics obtained from the sec-
ond stage of the experiment involving training process with
the use of different learning rates.

Activation LR V. Acc. V. Loss
Swish 10−3 0.905 0.071
Pish 10−3 0.905 0.071

Leaky ReLU 10−2 0.900 0.074
Leaky ReLU 10−3 0.899 0.074

ReLU+L.ReLU 10−2 0.880 0.086
ReLU+L.ReLU 10−3 0.877 0.090

Swish 10−2 0.875 0.092
Pish 10−2 0.844 0.108

Leaky ReLU 10−4 0.829 0.115
ReLU+L.ReLU 10−4 0.829 0.115

rate of 10−2) scored 3rd best results throughout mini-
mum, mean and maximum metrics.

Table 3: The results of the final stage of the process involv-
ing testing best architectures from the previous stage on the
test set (values come from the evaluation of the best 5 mod-
els for each of the selected architectures).

Activation LR Min Mean Max
Swish 10−3 0.865 0.891 0.918

Leaky ReLU 10−3 0.844 0.888 0.907
ReLU+L.ReLU 10−2 0.793 0.878 0.911

Pish 10−3 0.733 0.857 0.928
Leaky ReLU 10−2 0.793 0.848 0.911

Afchar et al. provided pretrained weights of their ar-
chitectures — these models were also evaluated in the
experiment. MesoInception–4 achieved the maximal
accuracy of 0.917 on test set. This value differs from
the results achieved by the corresponding architecture
presented in Table 3 due to differences between train-
ing processes. As some of the details like number of
epochs or degrees of augmentations were not speci-
fied, we could not exactly reproduce original training
procedure.

As mentioned, our evaluation process covered
not only the performance of activation function but
also times of inference. All activations, except for
Pish, utilized their official implementations. Treating
ReLU as a baseline, we obtained +0.929% for Leaky
ReLU, +1.074% for Mish, +2.217% for Swish, and
+3.174% for Pish. Note that, since (Afchar et al.,
2018) did not provide the exact time requirements of
their training and inference, hence we need to treat
those as a reference.

Described experiment shows that use of newer
activation functions can indeed improve the perfor-
mance of the neural network. New activation function
introduced in this paper — Pish, achieved results that
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Table 4: Inference times achieved on 1 element batches of
random images. Results averaged across 2000 predictions.

Activation Inference Time Relative
ReLU 31.757ms -

Leaky ReLU 32.052ms +0.929%
Mish 32.098ms +1.074%
Swish 32.461ms +2.217%
Pish 32.765ms +3.174%

were comparable to state–of–the–art functions. De-
spite being slightly more demanding in the terms of
required computations, the provided results showed
that it is a promising and reliably consistent alterna-
tive to the existing solutions and that it is worth to
explore further its characteristics.

7 ADDITIONAL PISH TESTS

In (Misra, 2019), aside from proposing Mish activa-
tion function, extensive tests and benchmarks were
provided in the related repository (Misra, 2021). The
following section contains the result gathered from
some of these benchmarks that were later used to
compare Pish with well–known activation functions.

Various Depths of the Neural Network. First test
aimed to give information about the performance of
model in relation to its depth. The architectures used
in the benchmark differed only in the number of fully
connected layers. Following author we have used
MNIST dataset (Lecun et al., 1998).

Each network started with 2 convolutional layers,
followed by a max pooling with a dropout (25%). It
was followed by a number of fully connected lay-
ers (from range from 15 to 25) of 500 neurons with
batch normalization and dropout (25%). Final layer
of the network was composed of output neurons us-
ing softmax activation function. Both convolutional
and fully–connected layers used the currently evalu-
ated activation function. Discussed benchmark was
performed using ReLU, Swish, Mish and Pish func-
tions. The utilized optimizer was stochastic gradient
descent (SGD), all training processes used the same
learning rate with a batch size of 128 and were con-
ducted for 20 epochs.

Figure 3 shows test accuracies of the aforemen-
tioned activation functions. Presented results are the
maximum test accuracies scored for each consecutive
number of layers. Note that, the values remained sim-
ilar for the smaller number of layers. As their num-
ber increased, so had the differences between func-
tions’ performance. While the differences between

Figure 3: Maximum test accuracy in relation to the depth
of the neural network. Plot generated using a script
from (Misra, 2021).

Mish and Pish are not big, Pish achieves the top accu-
racies in the case of almost all network’s depths.

SqueezeNet. The second benchmark concerned
evaluation of popular architecture SqueezeNet (Ian-
dola et al., 2016). Described process was performed
using CIFAR–10 dataset (Krizhevsky, 2012). All ac-
tivation functions were trained for 100 epochs using
the same parameters — batch size of 128 and a learn-
ing rate equal of 10−3. Process was repeated 3 times
to ensure the reliability of the results.

Table 5: Top–1 test accuracies of SqueezeNet neural net-
work trained on CIFAR–10 dataset.

Activation function Top–1 accuracy
Swish 0.887
Pish 0.886
Mish 0.885
ReLU 0.878

Table 5 contains test accuracies of SqueezeNet trained
with ReLU, Mish, Swish and Pish. Models were eval-
uated after each epoch — presented values are the
maximum achieved by each of the networks. The
results of the well known functions are as expected.
ReLU function provided smallest accuracy, about
0.01 less than the other functions, which is a typi-
cal outcome confirmed by many benchmarks. Mean-
while, results of Mish and Swish are close, respec-
tively 0.887 and 0.885. As stated in the original Mish
paper, there are cases when Mish function performs
slightly worse than the other one. The second best
score, 0.886, belonged to Pish.
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8 CONCLUSION

In the paper we focus on DeepFake detection, that be-
comes a serious threat to the privacy and biometric
security. We put particular interest in providing meth-
ods of detecting DeepFakes feasible for consumer
grade devices allowing anyone to verify, with reason-
able probability, if the video is legitimate. Our con-
tribution is twofold – we investigated the efficacy of
a shallow neural network MesoNet, with various ac-
tivation functions. Aside experimental verification of
previously introduced function, we presented a novel
one – Pish, that achieves results competitive to top-
performing ones. We achieve over 1% increase over
the original solution in both average test accuracy and
maximal test accuracy with Swish and Pish activation
functions, respectively. Such increase is substantial,
as even short DeepFake video (1 minute in length)
consists of 1500 images. This allows the user to in-
crease his certainty about the authenticity of a video
on his own personal computer.

Moreover, we present an evaluation of perfor-
mance of Pish under some well known networks. The
tests show that the new activation function may be an
interesting alternative. Further research in the aspect
of activation function should focus on providing op-
timized implementation of its calculation, so that it
generates lower overhead, moreover evaluation of the
function on other networks may provide interesting
applications resulting in high accuracy.
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