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Abstract: Software applications often require the transformation of an input source program into a translated one for
optimization. In this process, preserving the semantics across the transformation also called equivalence
checking is essential. In this paper, we present ongoing work on a novel translation validation technique
for handling loop transformations such as loop swapping and distribution, which cannot be handled by state-
of-the-art equivalence checkers. The method makes use of a reduced size Petri net model integrating SMT
solvers for validating arithmetic transformations. The approach is illustrated with two simple programs and
further validated with a programs benchmark.

1 INTRODUCTION

Software applications often require the transforma-
tion of an input source program into a translated
version while preserving the semantics across the
transformation. These kinds of translation are per-
formed to efficiently utilize the intrinsic computer ar-
chitecture, such as multiple cores and vector regis-
ters. Researchers have developed various optimiz-
ing transformations such as code motions, common
sub-expression elimination, etc.(Bacon et al., 1994)
The task of performing these translations can be au-
tomated or be done manually by design experts. For
the case of safety-critical systems, these translations
need to be formally validated before they can be used
to certify system reliability and accuracy.

Checking the equivalence of the functional behav-
iors of source and translated programs is thus an im-
portant step. This process of verification by proving
the semantic equivalence between source and trans-
lated programs is called translation validation. The
conventional method for translation validation is to
symbolically check for computational equivalence be-
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tween the source and translated programs.
Instruction-level parallelism is one such transla-

tion that is widely used in high level synthesis during
the scheduling phase. Petri nets are a popular model-
ing paradigm that can capture and express instruction-
level parallelism. The classical Petri net model has
been extended in many different ways to better serve
the purpose of modelling different application sce-
narios. Colored Petri Nets (CPNs)(Jensen and Kris-
tensen, 2009) are one such extension that employ the
concept of distinct classes of tokens (named colors) in
the net.

Path-Based Equivalence Checking (PBEC) is a
popular method for translation validation, which is
based on graphical models/representations of code.
PBEC methods rely on capturing the computations
along the paths of a graph. The changes in data and
control flow when traversing from one node to an-
other along these paths represent the computations of
the program. Petri net PBEC methods have been pro-
posed in (Mittal et al., 2020; Bandyopadhyay et al.,
2018) but they are not able to validate code with com-
plex arithmetic expressions. CDFG PBEC (Banerjee
et al., 2014) methods are not able to validate paral-
lelizing transformations either.

Satisfiability Modulo Theories (SMT) solvers are
tools used to solve constraint satisfaction problems.
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They are used in verification as a means of analyzing
the symbolic execution and semantics of programs.
Z3 Theorem Prover is an industry-standard SMT
Solver developed by Microsoft Research to solve such
problems.

In this paper, we propose an approach for trans-
lation validation of several loop-involving code op-
timizing transformations. The approach, which is a
work-in-progress, has three major parts: a Petri net
model constructor, a Petri net path constructor, and an
equivalence checker which consists of a path analyzer
and the Z3 Theorem Prover (de Moura and Bjørner,
2008).

The major contributions of this paper are as fol-
lows:

• Approach to validate several transformations such
as loop swapping and distribution, and paralleliza-
tion which cannot be handled by state-of-the-art
CDFG-based equivalence checkers.

• Refinement and reduction in size of Petri net
model from that employed in (Mittal et al., 2020),
which enhances the efficiency of the equivalence
checking mechanism and helps with scalability is-
sues.

• Integration of SMT solvers in the approach to
check equivalence between two programs.

This paper is organized as follows: Section 2 presents
an overview of the entire workflow of the approach.
Through a motivating example, the workflow is ex-
plained in Section 3. Through a small set of ex-
perimentation, we have compared our method with
(Bandyopadhyay et al., 2017; Mittal et al., 2020)
and various other CDFG based equivalence checkers.
Section 4 compares the experimental results of our ap-
proach with these other equivalence checkers. Section
5 describes the state of the art. Finally, we conclude
our paper in Section 6.

2 WORKFLOW

The workflow of the proposed approach is illustrated
in Fig. 1. Initially, a source program Ps, is subjected
to a series of semantic preserving transformations, ei-
ther manual or automated, that result in a translated
program Pt . To validate these transformations, we
need to express the code through a formal model. In
our approach, we have used Colored Petri Nets (CPN)
as the intermediary modeling paradigm. This task is
performed by the Model Constructor module which
outputs two CPNs: N0 and N1 corresponding to the
source and translated programs respectively.

To formally check behavioral equivalence be-
tween programs, there is a necessity to characterise
the computations. However, in the case of loop(s), we
do not know how many times the loop(s) will be exe-
cuted. To overcome this computational barrier (seem-
ingly infinite number of loop traversals), we represent
the CPN model computations as a finite set of paths.
A path is characterised by the data transformation
functions and their condition(s) of execution along the
path. This task of extracting the set of paths is per-
formed by Path Constructor module, which gives the
set π0 from N0 and π1 from N1.

Using the path-cover data, the process of equiv-
alence checking is carried out by the Path-Based
Equivalence Checking (PBEC) module that is com-
posed of the Path Analyzer and Z3 Theorem Prover.
We state the principle of equivalence checking as fol-
lows: “∀ paths ∈ N0, ∃ an equivalent path ∈ N1
=⇒ π0 ' π1 =⇒ Ps ' Pt”. The symbol ' rep-
resents asymptotic equivalence between the model-
s/nets. The equivalence checking process is dynam-
ically performed by the Path Analyzer through place,
variable, and transition correspondence.

This establishment of equivalence (or non-
equivalence) of the data-flow characteristics of the
two programs (rather, their corresponding path cov-
ers) is facilitated by the Z3 Theorem Prover. Z3 is a
powerful SMT Solver that can easily validate arith-
metic transformations. To enable Z3, the Path Ana-
lyzer module generates a set of Z3-compatible input
expressions from the path cover data (I0 from π0 and
I1 from π1).

Z3 return a Yes/No (Boolean) result to the PBEC
module. In the case of a ‘Yes’ answer, the paths
are equivalent. After all candidate paths have been
checked, a ’Yes’ answer from the Path Analayzer im-
plies equivalence but a ‘No’ answer is interpreted as
‘Can’t Say’, since the proposed equivalence check-
ing method is sound but not complete. The same
will be discussed in Section 4. In the case of ‘Yes’,
the Path Analyzer also returns the equivalent pairs of
paths from N0 and N1.

3 MOTIVATING EXAMPLE

In this section, we detail the major steps of the equiv-
alence checking workflow using a simple example
source program Ps and its transformed version Pt as
given in Listings 1 and 2 respectively.

The program Ps takes five inputs a, b, l, m, and n,
and computes the function:

k = (m×10l)+(n÷10l)+(a−b) (1)
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Figure 1: Workflow of proposed approach.

int i = 0,a,b,c,d,e,k,l,m,n;
scanf("%f,%f,%f,%f,%f",

&a,&b,&l,&m,&n);
while ( i < l ) {

m = m * 10;
n = n / 10;
i++;}

c = (a*a*a) - (b*b*b);
d = (a*a) + (b*b) + (a*b)
e = c / d;
k = m + n + e;

Listing 1: The source program Ps.

int i = j = 0,a,b,e,k,l,m,n;
scanf("%f,%f,%f,%f,%f",

&a,&b,&l,&m,&n);
#parbegin scop
while ( i < l ) {

m = m * 10;
i++;}

||
while ( j < l ) {

n = n / 10;
j++;}

#parend scop
e = a - b;
k = m + n + e;

Listing 2: The transformed program Pt .

The corresponding transformed program Pt is ob-
tained by loop distribution followed by thread level
parallelizing transformation of Ps; the independent
sub-expressions m× 10l and n÷ 10l are computed
separately in two parallelized loops.

In the following subsection, we introduce some
basic terminologies to describe the example through
which we will explain the equivalence checking
workflow.

3.1 Formalism

A Petri net model N, is a bipartite directed graph; one
subset P, say, of vertices comprises places and the
other subset T , say, comprises transitions. If there is
an arc (p, t) from a place p to a transition t, then p is
called a pre-place of t and the arc is called in-coming
arc of t. The set of all pre-places of t is denoted as ◦t.
If there is an arc (t, p′) from a transition t to a place
p′, then p′ is called a post-place of t; the set of all
post-places of t is denoted as t◦. The arc is called an
out-going arc of t.

The set Pin ⊂ P is designated as the set of in-ports
of the model. It comprises all places that are not post-
places of any transition. Similarly, another set Pout ⊂
P is called the set of out-ports, which comprises the
places that are not pre-places of any transition.

A place can hold an entity called token. A token
is a set of variable-value pairs that can hold the values
for multiple associated program variables. The mark-
ing of a net is a particular distribution of tokens over
the net.

Each out-going arc is associated with a set of func-
tions. This f unction-set F , say, is a set of arithmetic
expressions over (a subset of) the program variables.
Each transition t is associated with a guard condition
gt , which is a Boolean function over (a subset of) the
program variables. A transition t is said to be enabled
when all its pre-place(s) have token(s) and they are as-
sociated with set(s) of values which satisfy gt . Conse-
quent to the firing of an enabled transition t, token(s)
is(are) removed from all p ∈ ◦t and token(s) is(are)
placed in all p ∈ t◦. The value vector of the token(s)
in the post-place(s) depends respectively, on the asso-
ciated function-set F .

Each place p ∈ P is associated with a vector of
program variables Vp, say. For places that are in-
ports, the vector consists of no variables. For places
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Figure 2: CPN model N0 corresponding to the source pro-
gram in Listing 1.

Table 1: Informal transformation mapping.
Control Flow Graph Petri net

state place
transition in-coming arc, transition, out-going arc

transition condition guard condition associated with transition
transition function function-set associated with out-going arc

that are neither in-ports nor out-ports, there are two
kinds of such variables: changed variables and un-
changed variables. Changed variables are those vari-
ables whose values are changed from when the token
was last in the place. Similarly, unchanged variables
are those whose values don’t change. The partition
between changed and unchanged variables for each
place, is defined dynamically during the computations
of the Petri net and the same will be illustrated in the
next subsection. Out-ports have no changed variables
in the associated variable vector.

3.2 Model Construction

Using compiler internal infrastructure, the program
can be transformed into an intermediate representa-
tion. This representation can be transformed to a Con-
trol Flow Graph (CFG) using the fdump process of the
GCC compiler. In Table 1, we present an informal
mapping from CFG to the proposed Petri net model.

3.3 Computation Methodology

Fig. 2 depicts the CPN model N0 for the source pro-
gram in Listing 1. The program is initialized with a

token in place p1, which is the in-port. The transition
t1 is now enabled and consequently fired. For exam-
ple, the user inputs values a = 4, b = 2, l = 3, m = 1
and n = 7425. The token is removed from ◦t1 = {p1},
and moved to t◦1 = {p2}. The function-set F1 con-
tains the arithmetic expressions that initialize the vari-
ables i,a,b,c,d,e,k, l,m,n. The variable vector is
an ordered pair, the first element represents the set
of changed variables, and the second element repre-
sents the set of unchanged variables. When a place is
marked for the first time, all associated variables are
considered as unchanged variables. The variable vec-
tor Vp2 at this point is 〈{},{a,b,c,d,e, i,k, l,m,n}〉.

Now, the guard conditions of t2 and t3 are evalu-
ated. Since initially gt2 (i.e. i = 0 < l = 2) is true,
it is fired and the token moves from p2 back to p2,
but with values changed according to the expressions
in F2 (now i = 1, m = 10, n = 742). Consequently,
since the values of i,m,n differ from their value as-
sociated previously with p2, they are considered as
changed variables. The variable vector is updated to
Vp2 = 〈{i,m,n},{a,b,c,d,e,k, l}〉.

This cycle is repeatedly traversed until i = 3 (and
m = 1000, n = 7) and the guard condition gt2 ceases
to be true. This captures the while loop in the pro-
gram that calculates the values of m and n while in-
crementing the value of i. The termination of the
loop is captured by transition t3 with the guard con-
dition i ≥ l. Now that t2 is disabled and t3 is en-
abled, t3 is fired, and the token is moved from p2
to p3. The value vector of the token is changed ac-
cording to the expressions in F3. The variable vector
for p3, Vp3 = 〈{},{a,b,c,d,e, i,k, l,m,n}〉 This sig-
nals the termination of the program since no more
transitions are enabled. Finally, c = 56, d = 28, e = 2,
k = 1009

Fig. 3 depicts the CPN model N1 for the trans-
lated program in Listing 2. As before, t ′1 is fired and
the token is removed from p′1 and added to p′2 and p′3
simultaneously. This is how the Petri net modelling
paradigm captures parallelism. At this point, the vari-
able vectors Vp′2

= Vp′3
= 〈{},{i, j,a,b,e,k, l,m,n}〉.

Now, gt ′2
, gt ′3

, and gt ′4
are simultaneously evaluated.

Since gt ′2
and gt ′3

are satisfied, transitions t ′2 and t ′3 are
both fired simultaneously.

The value vectors in the tokens are updated ac-
cording to the respective associated functions-sets,
and sent back to the respective places. Since the val-
ues of i,m have changed for p′2 and j,n have changed
for p′3, the variable vectors for these places are up-
dated as follows: Vp′2

= 〈{i,m},{ j,a,b,e,k, l,n}〉
and Vp′3

= 〈{ j,n},{i,a,b,c,d,e,k,m}〉 respectively.
These loops are traversed simultaneously until both
gt ′2

and gt ′3
are false.
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Figure 3: CPN model N1 corresponding to program in Listing 2.

At this point, to evaluate gt ′4
, we have two sources of

values for the three variables i, j, l coming from the
tokens in p′2 and p′3. In such cases of conflict, the vari-
able value from the place which has the variable as a
changed variable in its variable vector is given prece-
dence. That is, since i is a changed variable for p′2, the
value for i is selected from p′2. Similarly, the value of
j is selected from p′3. In the case of l, since it is an un-
changed variable in both the places, its value in both
tokens is compared. If equal (which is the case), there
is no conflict; if unequal, an error is thrown. Since
t ′4 is now enabled, it is fired, and as before, p′4, now
has the token with a value vector updated according
to the function-set F ′5. The values of the variables are
the same as that in the source Petri net N0.

A computation µpout in a Petri net is defined as the
sequence of markings from in-port to out-port. So the
computations in the above examples can be written
mathematically as:

µp3 = 〈{p1},{p2}4,{p3}〉

3.4 Notion of Path on CPN Model

In the previous section, we have seen a set of com-
putations involving loops. In a general program, the
number of loop traversals is unbounded. Therefore,
we cannot characterize the set of computations and
we cannot establish computational equivalence be-
tween two models. From the classical program veri-
fication techniques, we introduce the concept of finite
paths such that any computation can be represented in
terms of a finite set of paths. To construct the path, we
need to introduce the notion of cut-points. Using (at

least one) cut-points we ‘cut’ each loop to construct
a finite number of paths. The notion of cut-points in
our CPN model is as follows:
1. All in-ports, ∀p ∈ Pin, are cut-points.
2. All out-ports, ∀p ∈ Pout , are cut-points.
3. All places that have back-edges are cut-points.

A path is a sequence of out-going arcs from a set of
cut-points to a cut-point, while having no cut-point in
between. Through the backward cone of foci method,
we construct the paths in the Petri net model. The
detailed discussion of the path construction algorithm
is given in (Bandyopadhyay, 2016). It is to be noted
that if an out-going arc is covered in one path, it need
not be considered in another path.

From the above rules for cut-points, the set of cut-
points in the source model N0 in Fig. 2 is {p1, p2, p3}.
Starting from p1, we obtain the path α1 = 〈(t1, p2)〉
from p1 to p2. Similarly, we obtain two more paths:
α2 = 〈(t2, p2)〉, from p2 back to p2 and α3 = 〈(t3, p3)〉
from p2 to p3.

In the translated model N1 in Fig. 3 the set of
cut-points is {p′1, p′2, p′3, p′4}. Starting from p′1, we
can construct two paths β1 = 〈(t ′1, p′2)〉 to p′2 and
β2 = 〈(t ′1, p′3)〉 to p′3. Now, from p′2, we obtain two
paths: β3 = 〈(t ′2, p′2)〉 which captures the loop from
p2 back to p2 and β4 = 〈(t ′4, p′4)〉 from p′2 and p′3 to
p′4. Similarly, we obtain the path β5 = 〈(t ′3, p′3)〉 from
p′3 back to p′3.

3.5 Validity of PBEC

To prove the validity of the path-based equivalence
checker, we show that any computation can be repre-
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sented as a concatenation of parallel paths.
As an example, taking the translated model N1 in

Fig. 3, we can express the computation as follows:

µp′4
= 〈{p′1},{p′2, p′3}l+1,{p′4}〉

We can express the same computation in terms of the
sequence of transitions that are fired. In order to do
so, the ith element of the computation in terms of the
transitions, is(are) the transition(s) that fire(s) when
moving from the ith to i+1th marking. Following this
principle, we obtain the computations for the trans-
lated model as:

µp′4
= 〈{t ′1},{t ′2, t ′3}l ,{t ′4}〉

We can now express the computation in terms of the
out-going arcs. To do this, we can simply replace
each transition with its corresponding set of out-going
arc(s):

µp′4 = 〈{(t
′
1, p′2),(t

′
1, p′3)},{(t ′2, p′2),(t

′
3, p′3)}l ,{(t ′4, p′4)}〉

For any computation µpout of an out-port pout of a
CPN model N with path-cover π, there exists a reor-
ganized sequence µr

p, of paths in π, such that µp ' µr
p.

The set of paths of N1, π1 = {β1,β2,β3,β4,β5}.
Initially, µr

p′4
= φ. The last member of µp′4

is (t ′4, p′4).

The path β4 has (t ′4, p′4) as its last member. So β4
is prepended to µr

p′4
, and all the out-going arcs in β4

(only (t ′4, p′4)) are removed once from µp′4
.

Now, the last member of µp′4
is {(t ′2, p′2),(t

′
3, p′3)}.

(t ′2, p′2) is the last member of β3 and (t ′3, p′3) is the
last member of β5. So {β3||β5} is prepended to µr

p′4
and all the out-going arcs from β3 and β5 are removed
once from µp′4

. This step will be repeated l−1 times
until the only element left in µp′4

is {(t ′1, p′2),(t
′
1, p′3)}.

Since (t ′1, p′2) is the last element of β1 and (t ′1, p′3) is
the last element of β2, {β1||β2} is prepended to µr

p′4
.

The algorithm is now terminated since µp′4
is empty.

Therefore

µr
p′4
= 〈{β1||β2},{β3||β5}l ,{β4}〉

3.6 Equivalence Checking Mechanism

There are two entities associated with every path

1. Condition of Execution, Rα, which is associated
with the guard conditions gt , of the transitions as-
sociated with the path.

2. Data Transformation, rα, which is associated with
the function-set F of the transitions associated
with the path.

Two paths α and β are considered equivalent when
Rα ' Rβ and rα = rβ. The equivalence checking
mechanism is based on the principle: “∀ α ∈ π0,
∃ β ∈ π1 and ∀ β ∈ π1, ∃ α ∈ π0 | α ' β =⇒
π0 ' π1 =⇒ N0 ' N1”. During checking, the al-
gorithm constructs correspondence relationships be-
tween the places, variables, and transitions, respec-
tively. To check two arithmetic or logical expres-
sions, we integrate the Z3 Theorem Prover with the
equivalence checker, to further extend the equivalence
checking capability. Following are the informal al-
gorithmic steps for checking equivalence between N0
and N1:

In our motivating example, the set of paths in N0
and N1 are {α1,α2,α3} and {β1,β2,β3,β4,β5} re-
spectively. Also, Rα1 = gt1 , Rα2 = gt2 , Rα3 = gt3 and
rα1 = F1, rα2 = F2, rα3 = F3. Similarly, Rβ1 = Rβ2 =
gt ′1

, Rβ3 = gt ′2
, Rβ4 = gt ′4

, Rβ5 = gt ′3
and rβ1 = F ′1,

rβ2 = F ′2, rβ3 = F ′3, rβ4 = F ′5, rβ5 = F ′4.

Step 1). Taking the first element of π0, i.e. α1,
we look at its pre-place p1. Places p1 and p′1 cor-
respond to each other since they are in-ports. Since
p′1 is a pre-place for paths β1 and β2, these two paths
are candidate paths for α1. The SMT solver tells us
that Rα1 ' Rβ1 (i.e. gt1 = gt ′1

) and Rα1 ' Rβ2 (i.e.
gt1 = gt ′2

). The SMT solver also tells us that rα1 =
rβ1 (i.e. F1 = F ′1) and rα1 = rβ2 (i.e. F1 = F ′2). Hence,
α1 ' β1 and α1 ' β2.

From this information we also infer that the post-
places of these paths correspond to each other, i.e. p2
corresponds to p′2 and p′3.

Step 2). Taking the next element of π0 i.e. α2.
The pre-place of α2 is p2, which corresponds to p′2
and p′3. Since β3 and β5 have the two places respec-
tively as their pre-place, they are candidate paths for
α2. Checking for equivalence between these paths
results in a ‘No’ answer from the SMT solver. So,
we go for path merging. The paths β3 and β5 can
be merged parallelly, due to place, variable, and tran-
sition correspondence. The SMT solver tells us that
Rα2 ' Rβ3‖β5 . Similarly, rα2 = rβ3‖β5 . Hence, α2 '
(β3 ‖ β5).

Step 3). Finally, taking the path α3, it’s pre-place
is p2 which has correspondence to p′2 and p′3, which
are the pre-places of β4. Similarly, the post-place
of α3 corresponds to the post-place of β4 since they
are out-ports in their respective nets. Hence, β4 is a
candidate path for α3. The SMT solver tells us that
Rα3 ' Rβ4 and rα3 = rβ4 . Hence, α3 ' β4. So,

α1 ' β1,β2 ; α2 ' {β3 ‖ β5} ; α3 ' β4

Since “∀ α ∈ π0 ∃ β ∈ π1 | α ' β =⇒ π0 ' π1
=⇒ N0 ' N1”. That is, the programs in Listing 1 and
Listing 2 are semantically equivalent.
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In the following subsection, we briefly describe
the Z3 Theorem Prover, it’s internal equivalence
checking mechanism, and how it will be integrated
with the path analyzer.

3.6.1 Z3 Theorem Prover

For two candidate paths α and β , the Z3 Theorem
Prover (Z3) receives the conditions of execution, Rα

and Rβ, and the data transformation, rα and rβ, from
the path analyzer. All the program statements are en-
coded as Static Single Assignments to preserve the or-
der of execution. The sub-scripts ‘ s’ and ‘ t’ are ap-
pended for variables of Ps and Pt respectively. The
input to Z3 consists of:

1. Variables and corresponding type declarations.
2. Functions in the form of assert statements
3. Test statements asserted as negations. Z3 returns

a sat (true) answer if it finds even one case (from
the entire model space) that satisfies equivalence.
Using the negation, we can test that equality is
satisfied over the entire model space. Mathemat-
ically: for ξ (the model space) and c (the cases),
by De Morgan’s Law, ¬(

⋃
c∈ξ

c) =
⋂

c∈ξ

¬c.

So, an unsat output from Z3 actually corresponds to
equivalence and a sat output implies non-equivalence.
Also, the test statements check for equality only be-
tween the common variables of Ps and Pt . In case of
multiple assignment of the same variable, only the last
executed variable is considered (i.e. the variable with
highest numerical suffix).

As an example, in Step 3) for checking equiva-
lence between the paths α3 and β4, the Z3 input is as
follows:

1(declare-const g_t3_s Bool)
2(declare-const g_t4_t Bool)
3(declare-const i_0_s Int)
4(declare-const i_0_t Int)
5(declare-const j_0_t Int)
6(declare-const l_s Int)
7(declare-const l_t Int)
8(assert (= g_t3_s(>= i_0_s l_s)))
9(assert (= g_t4_t(and(>= i_0_t l_t)
10(>= j_0_t l_t))))
11(assert (= l_s l_t))
12(assert (= i_0_s i_0_t))
13(assert (= i_0_t j_0_t))
14(assert (not(= g_t3_s g_t4_t)))
15(check-sat)

Listing 3: Checking equivalence of Rα3 and Rβ4
.

In Listing 3, the first two lines define the guard con-
ditions as Boolean functions. Lines 3-7 define the
associated variables. The next two lines 8-10 define

gt3 s = i ≥ l and gt4 t = i ≥ l & j ≥ l . To facilitate
equivalence checking, equivalence between variables
is asserted in lines 11-13. i 0 t = i 0 s is infered from
F ′1 and F ′2. Next is the assert statement for equivalence
checking defined as a negation. In the last statement
we check equivalence. Z3 returns unsat which im-
plies Rα3 = Rβ4 . Similarly, to check the data transfor-
mation equivalence between the two paths, the corre-
sponding code is given in Listing 4.

1 (declare-const a_s Int)
2 (declare-const a_t Int)
3 (declare-const b_s Int)
4 (declare-const b_t Int)
5 (declare-const c_s Int)
6 (declare-const d_s Int)
7 (declare-const e_s Int)
8 (declare-const e_t Int)
9 (declare-const k_s Int)

10 (declare-const k_t Int)
11 (declare-const m_1_s Int)
12 (declare-const m_1_t Int)
13 (declare-const n_1_s Int)
14 (declare-const n_1_t Int)
15 (assert (= a_s a_t))
16 (assert (= b_s b_t))
17 (assert (= m_1_s m_1_t))
18 (assert (= n_1_s n_1_t))
19 (assert (= c_s (-(* a_s (* a_s a_s))
20 (* b_s (* b_s b_s)))))
21 (assert (= d_s (+(* a_s a_s) (+(* b_s b_s)
22 (* a_s b_s)))))
23 (assert (= e_s (div c_s d_s)))
24 (assert (= k_s (+ m_1_s (+ n_1_s e_s))))
25 (assert (= e_t (+ a_t b_t)))
26 (assert (= k_t (+ m_1_t (+ n_1_t e_t))))
27 (assert (not (and (= a_s a_t)
28 (and (= b_s b_t)
29 (and (= m_1_s m_1_t)
30 (and (= e_s e_t)
31 (and (= n_1_s n_1_t)
32 (= k_s k_t))))))))
33 (check-sat)

Listing 4: Checking equivalence of rα3 and rβ4
.

In Listing 4, the lines 1-14 declare the associated vari-
ables. Lines 15-18 assert the equivalence for a,b,m,n
between the source and translated program. Lines 19-
24 serve as an assertion for the computations in F1
and lines 25-26 assert the computations in F ′5. Finally,
lines 27-30 comprise the assertion statement in nega-
tion for equivalence checking between all the corre-
sponding defined variables and the statement in line
31 checks for equivalence. Z3 gives the result unsat
for the check, which implies that rα3 = rβ4 .
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Table 2: Model size for different Petri-net PBEC.

Example ST-1 ST-2 Proposed
p t p t p t

BCM 34 28 6 6 3 2
MINMAX 31 27 7 7 4 6
PETERSON 11 9 4 2 6 8
DEKKERS 19 14 6 4 6 8
LUP 28 21 6 4 10 16

Table 3: Capabilities of different PBEC.
Example FSMD-VP FSMD-EVP ST-1 ST-2 Proposed
BCM X X X X X
MINMAX X X X X X
PETERSON X X X X X
DEKKERS X X X X X
LUP X X X X X

4 EXPERIMENTAL RESULTS

We have manually tested our equivalence checking
algorithm on five examples, where parallelising trans-
formations are applied using Pluto (Bondhugula et al.,
2008) and Par4All (Amini et al., 2012) compilers.
BCM is a toy code for validating Basic Code Motion
technique, where some polynomial arithmetic oper-
ations are applied in the basic blocks. PETERSON
and DEKKERS are implementations of classical so-
lutions to the mutual exclusion problem of two con-
current processes. In the critical section, some poly-
nomial expression computation is present. LUP com-
putes the LU-decomposition with Pivoting, for a ma-
trix. We have only taken the pivoting routine which
does not contain any array. The details for LUP are
given in the PLuTo example suite (Bondhugula et al.,
2008). MINMAX computes the sum of the maximum
of four numbers (n1,n2,n3,n4) and the minimum of
four numbers (n1,n5,n6,n7). The programs and their
descriptions can be found in (Bandyopadhyay, 2016).

Table 2 presents a comparative study of the model
size of our proposed approach with the models of two
other Petri net-based equivalence checking tools ST-1
(Bandyopadhyay et al., 2017) and ST-2 (Mittal et al.,
2020). It is to be noted that the model size of the
current method is comparable with ST-2.

Table 3, presents several parallelizing and arith-
metic transformation verification capabilities of the
proposed approach, compared with ST-1, ST-2 and
two CDFG (Control Data Flow Graph) based PBEC
namely, FSMD-VP (Finite State Machine with Datap-
ath and Value Propagation) (Banerjee et al., 2014) and
FSMD-EVP (Finite State Machine with Datapath and
Extended Value Propagation) (Chouksey et al., 2019).
It is to be noted that both FSMD based PBEC can-
not handle the parallelizing transformations because
FSMD is a sequential model of computation. ST-1

and ST-2 cannot handle arithmetic transformations.
They have their own normalizer, which affects their
limitations. These limitations are overcome by Z3.

5 RELATED WORK

Translation validation was introduced in (Pnueli et al.,
1998) and was demonstrated in (Necula, 2000) and
(Rinard and Diniz, 1999). The approach was further
enhanced in (Kundu et al., 2008) where they veri-
fied the high-level synthesis tool named SPARK. All
these techniques are bisimulation based methods. A
loop parallelizing transformation validation method
comprising rewrite rules has been reported in (Bell,
2013). A bisimulation method for parallel programs
is also reported in (Milner, 1989). Another equiv-
alence checking method is the inductive-inferencing
based technique reported in (Felsing et al., 2014). The
method only works for scalar handing programs. It
compares the coupling predicates between two pro-
grams.

A major limitation of these methods is that the ter-
mination is not guaranteed. To alleviate this short-
coming, a path based equivalence checker for the
FSMD model was proposed for uniform and non-
uniform code motions, code motion across loop and
loop invariant code optimizations in (Karfa et al.,
2012; Banerjee et al., 2014; Chouksey et al., 2019).
However, these methods cannot handle loop swapping
transformations and many thread-level parallelizing
transformations because FSMDs cannot capture par-
allel behaviors easily.

The literature records no significant attempts for
devising formal equivalence checking methods using
Petri net based models which is essentially a paral-
lel model of computationm; although, there are sev-
eral works on property verification using Petri net
modelling paradigm (Lime et al., 2009; Charron-Bost
et al., 2013; Corradini et al., 2013; Westergaard,
2012). In (Bandyopadhyay et al., 2018), the valida-
tion of loop swapping and thread level parallelising
transformations using Petri net based models of pro-
grams was reported. However, the model size of the
method is not tractable. The major limitation of this
method is it cannot handle loop invariant code motion
as well as polynomial arithmetic transformations. To
overcome the limitations, a modification in the model
construction as well as equivalence checking was re-
ported in (Mittal et al., 2020). However, the method
cannot handle polynomial arithmetic transformations.
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6 CONCLUSION

In this paper we presented our ongoing work on devel-
oping an approach to check the equivalence of soft-
ware programs using a novel translation validation
technique for handling loops. In addition, our ap-
proach makes use of SMT solvers to validate arith-
metic transformations. Such constructions cannot be
handled by state-of-the-art equivalence checkers.

We presented an initial validation of the approach
for a standard benchmark. Currently this valida-
tion was performed manually. Therefore, our future
work is to implement a tool-chain supporting the ap-
proach and validate it on a larger benchmark. For
this, we will reuse existing compiler front-ends (e.g.
GCC) and automatically construct the Petri Net mod-
els from the generated intermediate code representa-
tion so that the approach can be tested on different
programming languages, potentially including exist-
ing architecture description languages such as UML,
SysML and AADL. This will also allow us to fur-
ther characterize the domain of applicability of the ap-
proach; i.e. which language constructions and trans-
lations are handled by our approach and to evaluate
scalability for large programs.
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