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Abstract: We consider a fair authentication process where at each moment of the protocol execution each participant
has almost the same certainty about the identity of the other participant. We combine this property with
authentication with errors: each authentication bit may be replaced to the wrong value. Thereby, an observer
attempting to derive the secret key(s) used for authentication in a cryptanalytic way has substantially harder job
due to an unknown error pattern (learning secrets with errors). We show that the presented protocol satisfies
subtle requirements of the GDPR Regulation of data minimization in case of failure.

1 INTRODUCTION

Assume that Alice and Bob wish to mutually authen-
ticate themselves based on the fact that they are the
only parties that know a secret K. There are many
protocols based on cryptographic algorithms that en-
able both Alice and Bob to show that they hold a se-
cret without exposing it. Some of them have zero-
knowledge property – an observer has no advantage
from listening to Alice and Bob: if there is an at-
tack using information from interactions between Al-
ice and Bob, then the adversary can run an analogous
attack of almost the same complexity without eaves-
dropping communication between Alice and Bob.

Let us consider the following classical example of
mutual authentication where Alice and Bob share a
key K (this mechanism is used for Basic Access Con-
trol protocol for biometric passports (ICAO, 2015)):

Algorithm 1.
1. Bob chooses a nonce rB at random and sends it to

Alice,
2. Alice chooses a nonce rA at random and sends the

ciphertext EncK(rA,rB) to Bob,
3. Bob decrypts the ciphertext obtained from Alice

and aborts if the plaintext does not contain rB on
the second position,

4. Bob returns EncK(rB,rA) to Alice,
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5. Alice decrypts the ciphertext and aborts if the
plaintext is not (rB,rA).

If a party reaches the end of the protocol execution
without aborting, then it concerns the other party as
authenticated.

The main problem related to protocols of this kind
is as follows:

Problem 2. One of the parties (in this case Bob)
reaches the state in which he is sure about identity
of Alice, before Alice may judge whether she is inter-
acting with Bob. At this moment Bob can interrupt
the protocol prematurely or send invalid messages so
that Alice finally will have no idea if she is interacting
with Bob.

Indeed, it the above example Bob is sure about
Alice identity after step 3, while till this moment even
the shared secret has not been used by Bob. Until step
5, Alice has no proof that she is interacting with Bob.

Problem 2 occurs also at everyday situations. For
instance, if a call center of a bank is calling a bank’s
client, then both parties have to be authenticated.
Typically this is done by exchanging some data that
should be known by both parties. Whatever we do,
one party says this information first. In electronic
interaction the situation is difficult as well: first, it
would be extremely difficult to create something that
could be considered as really simultaneous exchange
of messages. Second, in many cases for various rea-
sons it is necessary to reduce the number of messages
exchanged. In this case asymmetry of knowledge dur-
ing protocol execution is inevitable.
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However, sometimes the technical reality is differ-
ent. A prominent example are distance bounding pro-
tocols (see (Avoine et al., 2019)), where communicat-
ing parties rapidly exchange many short messages. In
such a scenario one can design the following mutual
authentication algorithm:

Algorithm 3 (Bitwise Exchange). Assume that Alice
and Bob share a secret K.

1. Alice chooses a nonce NA at random, Bob chooses
a nonce NB at random,

2. Alice and Bob exchange NA and NB (in cleartext),
3. Alice and Bob compute PA = H(K,NA,NB,A) and

PB = H(K,NB,NA,B) where H is a cryptographic
hash function.

4. For i = 1 to k, the following steps are executed:
• Alice sends ai equal to the ith bit of PA,
• Bob checks that ai is correct; if not, then he

aborts the protocol execution,
• Bob sends bi, the ith bit of PB,
• Alice checks that bi is correct; if not, then she

aborts the protocol execution.

If a party reaches the end of execution without abort-
ing, then its interlocutor is regarded as successfully
authenticated.

The important property of Algorithm 3 is that the
number of correct authenticating bits revealed by Al-
ice and Bob is almost the same at each step of the
protocol execution. The difference is at most one.

1.0.1 Authentication with Errors

A frequent technique used for weak devices limited
to lightweight cryptography is sending authentication
data with a certain number of errors. A good exam-
ple is the HB protocol and its variants: the underlying
algebraic mechanisms of linear algebra are too weak
from cryptographic point of view, but the messages
exchanged contain a significant fraction of erroneous
bits (see e.g. (Boureanu et al., 2017)). Thereby, an at-
tacker is no more faced with a straightforward linear
algebra problem, but with a kind of learning secrets
with errors task. Learning with errors is one of the
paradigms that results in designs not lomited to au-
thentication – see e.g. (Bettaieb et al., 2018). This
principle is also the foundation of the whole strain
of cryptographic research based on the LPN problem
and lattices (see e.g. lectures (Chi et al., 2015)).

Once the bits exchanged during the execution of
Algorithm 3 are not necessarily correct in every case,
then one could substantially reduce the requirements
for the function H used. Like in case of HB-protocols,
it is not necessarily a cryptographically strong hash

function. This is a big advantage, since computing a
hash value might be too complex for the simplest IoT
devices.

One can propose the following version of Algo-
rithm 3 where the authentication bits are partially
false:

Algorithm 4 (Naive Algorithm). The algorithm is the
same as in case of Algorithm 3 apart from the bits
exchange steps: For i = 1 to k, the following steps are
executed:

• Alice sends ai, where ai equals the ith bit of PA
with probability p and its negation with probabil-
ity 1− p,

• Bob checks that ai is correct;
• Bob sends bi, the ith bit of PB, if ai was correct,

otherwise he sends its negation,
• Alice checks that bi is correct iff ai is correct; if

not, then she aborts the protocol execution.

Bob accepts if the number of correct bits ai exceeds
a threshold p · k−∆ where ∆ is a parameter related to
standard deviation.

For Algorithm 4, an observer has no idea which
bits are correct and correspond to the strings PA and
PB. So we would like to claim that any brute force
attack will have to guess the location of incorrect bits.
Unfortunately, this is not true. Let αi and βi denote
the ith bits sent, respectively, by Alice and Bob. Then
of course αi⊕βi = ai⊕bi, where⊕ denotes the XOR
operation. So the adversary may focus on finding a
K such that the first k bits of PA⊕PB are the same as
αi⊕βi for i = 1, . . . ,k.

As we see we have to combine the following goals
that to some extent are contradictory:

• a certain fraction of authentication bits sent by ei-
ther party should be wrong (to confuse an adver-
sary trying to retrieve the shared secret), while a
sufficient majority must be correct (in order to en-
able reliable authentication),

• at each moment of protocol execution both au-
thenticating parties should have almost the same
level of certainty about the identity of the other
party,

• the locations of erroneous bits on the side of Alice
and on the side of Bob should be to some extent
independent.

1.1 GDPR

There are many practical issues concerning discrep-
ancy between technical reality and idealistic require-
ments of the the European GDPR regulation (The
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European Parliament and the Council, 2016) on per-
sonal data protection. There are many cases where
this dilemma has been revealed (see e.g. (Spindler
and Schmechel, 2016), (Kutyłowski et al., 2020)), but
pragmatic solutions to these problems are still miss-
ing.

Authentication protocols should be particularly
carefully analyzed from the point of view of GDPR.
Of course, electronic authentication is not performed
directly by physical persons, but quite frequently the
devices are attributed to their owners and indirectly
provide data about them. It does not matter whether
these data have any significance regarding informa-
tion security of the holder, as the requirements of the
GDPR regulation concern processing of personal data
regardless of their significance.

If Alice executes a mutual authentication protocol
with a party that declares to be Bob, then the permis-
sion to process the authentication data is given im-
plicitly to Bob: executing the protocol is a form of
consent of Alice, as it is a clear affirmative act. The
addressee of this consent is definitely Bob, as long as
the data sent by Alice depends on the identity of her
interlocutor Bob. If we talk about privacy-by-design,
almost no information should be delivered to a third
party.

In case of algorithms such as Algorithm 1 no prob-
lem arises from the point of view of GDPR, when
the protocol terminates in an accepting state on both
sides. However, this cannot be claimed if, as de-
scribed above, Bob interrupts the protocol execution
or pretends not to be Bob by providing a false answer
to the challenge of Alice. While Bob becomes sure
about identity of Alice, the consent given by proto-
col execution has concerned a mutual authentication
and not two one-way authentication protocols. From
the legal point of view, a mutual authentication pro-
tocol would strictly follow the ideas of GDPR if the
following properties are fulfilled:

Property 5 (GDPR Fully Compliant Mutual Authen-
tication). A mutual authentication protocol executed
by Alice and Bob should terminate on an accepting
state on the side of Alice iff it terminates in an accept-
ing state on the side of Bob. Moreover, if a protocol
terminates in a state where Alice and Bob have only
partial knowledge and cannot accept the interlocutor,
then their degree of certainty should be comparable.

Note that any deviation from the second require-
ment from Property 5 would lead to an asymmetry:
the party having higher knowledge could interrupt the
protocol and have an advantage over the other party.
Property 5 should cover all cases of protocol execu-
tion: each participant may deviate from the protocol,
including a malicious behavior.

1.2 Related Research

The problem discussed in this paper is closely related
to fair exchange of information: in case of such a pro-
tocol Alice and Bob exchange some data, and neither
of them should be advantaged to get the data before
the other party. Research on these issues has been ini-
tiated decades ago. Already in 1980 it has been indi-
cated (Even and Yacobi, 1980) that it is impossible to
exchange data so that no party gets advantaged. How-
ever, it does not mean that one cannot create a proto-
col where at each moment of execution one party can
be only slightly advantaged over the other party in the
protocol – say by knowledge of one more information
bit or even a fraction of it. In the protocols concerned
the participants release their data gradually. For in-
stance, the seminal paper (Blum, 1983) concerns ex-
change of private keys for two RSA numbers. The in-
formations are exchanged bit by bit, interleaving the
data sent by Alice and Bob.

While in the 80’s the interest on fair exchange pro-
tocols have been more of a theoretical nature, these is-
sues became extremely important due to the progress
in electronic trade, where one party provides an elec-
tronic payment (e.g. with means of a cryptocur-
rency) and the other party provides a digital contents.
In most practical business cases, the problem is re-
solved with a trusted arbiter. For example, an opti-
mistic fair exchange protocol has been proposed in
(Asokan et al., 1997). In this setting, once fairness
is somehow broken, then a trusted party is involved
and can resolve the issue at least pointing to the dis-
honest party. Somewhat related problems are solved
by means of smart contracts, where the payment is
unlocked by delivery of the purchased data and re-
flected in a blockchain. The application case that we
are focusing on is of a different nature. Not only a
third party would be cumbersome in most of technical
settings, it would also create the problem of possible
tracing the users, thereby breaking the fundamental
principles of GDPR.

2 MARKOV FAIR MUTUAL
AUTHENTICATION

For the rest of this paper we shall consider the fol-
lowing mutual authentication protocol that will en-
sure that each party shows at most one more correct
bit than the other party at any moment of a protocol
execution.

Algorithm 6 (Markov-Fair-MA). Assume that Alice
and Bob share a secret K. We describe this distributed
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algorithm from the point of view of Alice. The inter-
locutor of Alice should follow analogous steps – how-
ever in a distributed environment Alice controls only
herself and the interlocutor – allegedly Bob – may be-
have in an arbitrary way.

Initialization:
1. Alice chooses a nonce NA at random and sends it

in cleartext to Bob,
2. Alice receives NB from Bob,
3. Alice computes PA = H(K,N,“Alice”, “Bob”)

and PB = H(K,N,“Bob”, “Alice”), where N =
NA‖NB and H is a cryptographic hash function.
Let ai and bi stand for, respectively, the ith bit of
PA and PB.

Main Part - Bit Exchange: There are k
rounds, at each round Alice sends one bit to Bob and
receives one bit from Bob.
Let ∆i = δA

i−1− δB
i−1, where δA

j is the number of cor-
rect bits am sent by Alice before step j and δB

j is the
number of correct bits bm sent by Bob before step j.
Alice can be either in the normal state or in the
failure state. The initial state is normal.
In round i the following steps are executed by Alice,
if she is in the normal state:

• if ∆i =−1, then Alice sends ai,
• if ∆i = 0 or ∆i = 1, then Alice sends ai with prob-

ability p and ¬ai otherwise,
• if ∆i > 1, then Alice enters the failure state and

sends a random bit.

Once Alice enters the failure state, then she remains
in this state until the end of the protocol execution and
at each remaining step sends a bit chosen at random.

Decision:
If Alice terminates the execution in a normal state,
then she regards authentication as successful.

Note 7. It may not happen that Alice is in the
normal state after step i and ∆i < −1. Indeed,
note that ∆0 = 0 and at each step the value of ∆

may change by at most 1. So if ∆ drops below −1,
then ∆ j = −1 for step j immediately before. How-
ever, then Alice sends the correct value a j+1 at step
j+1. If Bob at this moment sends the correct bit b j+1,
then ∆ j+1 =−1. If Bob sends an incorrect bit, then
∆ j+1 = 0, contradiction.

Corollary 8. If Alice in a normal state after step i,
then ∆i ∈ {−1,0,1}.

An execution of the protocol can be described by
means of a Markov chain, with states corresponding

to the value of ∆i =−1,0,1 and the failure state F .
If Bob honestly follows the protocol, then the com-
putation state from the point of view of Alice is de-
scribed by the Markov chain MC with the following
state transition matrix

C =


p 1− p 0 0

(1− p)p (1− p)2 + p2 (1− p)p 0
0 1− p p 0
0 0 0 1

 (1)

(the rows 1, 2, 3, 4 correspond to, respectively, transi-
tion from the state−1, 0, 1 and F). The initial state of
this Markov chain is 0. As long as Bob is following
the protocol, then the state F is unreachable.

Figure 1: The Markov chain MC describing the state transi-
tion when Alice is interacting with Bob honestly following
the protocol.

The situation changes, if Alice is interacting with Eve
impersonating Bob. As long as Eve does not know
the shared secret K, then Eve cannot say which bit to
be sent at round i will be regarded as correct by Alice.
We make the following assumption that describes the
situation for reasonable functions H:
Assumption 9 (forward security of H). Given the bits
a1, . . . ,ai, and b1, . . . ,bi−1 Eve can guess the value of
bi with probability 1

2 + ε, where ε≈ 0 is negligible.
In this situation, the state of the computation from

the point of view of Alice can be described by the
Markov chain MF with the following state transition
matrix

F =


1
2

1
2 0 0

1−p
2

1
2

p
2 0

0 1−p
2

1
2

p
2

0 0 0 1

 (2)

It is important that the transitions of MF are biased
towards the state F , if p > 1

2 . For example, in the
state 1 it is more likely to change to state F than to
go to the state 0. So, from the point of view of the
chain MF the value of p should be as big as possible.
On the other hand, for MC the values of p close to 1
mean that it is hard to leave any state and therefore for
the transmitted values αi,βi we have αi⊕βi = ai⊕bi
with a high probability. So, the right choice for p is
somewhere in the middle between 1

2 and 1.
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Figure 2: The Markov chain MF describing the state tran-
sition when Alice is interacting with Eve unaware of the
secret K shared by Alice and Bob.

3 BEHAVIOR OF Markov-Fair-MA

We will consider a general case of an arbitrary p ∈
(0,1) used for the Markov-Fair-MA scheme. In Sub-
sect. 3.3, we will check its properties for p = 2

3 .

3.1 Correct Executions

When confined to the states−1,0,1 the chain MC has
a stationary distribution π. Let D be transition matrix
C after deleting the 4th column and the 4th row, i.e.

D =

 p 1− p 0
(1− p)p (1− p)2 + p2 (1− p)p

0 1− p p

 (3)

Then π ·D = π, so one can immediately derive that

π(−1) = π(1) = p
2p+1 , π(0) = 1

2p+1 . (4)
The stationary distribution indicates what is the ex-
pected difference of the number of correct bits ai and
correct bits bi. We see that the probabilities of the
differences −1,0 and 1 are not substantially different
provided that neither p ≈ 1

2 nor p ≈ 1. It shows that
the process is not biased to some state and therefore
the adversary should be confused about which bits
are correct. However, the problem is that the process
starts in the state 0 and the probability distribution of
the states only converges to the stationary distribution.
It is crucial to show that the distribution after round i
converges quickly to the stationary distribution.

Let πt denote the probability distribution of the
state of MC after t transitions of the chain, if the ini-
tial state is 0. A matrix D has three eigenvalues: 1, p
and p(2p−1), so using simple linear algebra we get:
Fact 10. For any t we have

πt( j) =

{ p
1+2p −

p
1+2p (p(2p−1))t for j =−1,1

1
1+2p +

2p
1+2p (p(2p−1))t for j = 0

(5)

From this equations we can directly derive the total
variation distance

‖π−πt‖TV = 1
2 ∑

j=−1,0,1
|π( j)−πt( j)| (6)

between the stationary distribution π and the distribu-
tion πt :

Corollary 11.

||π−πt ||TV = 2p
2p+1 |p(2p−1)|t (7)

As |p(2p− 1)| < 1 for p ∈ (0,1), we see that the to-
tal variation distance to the stationary distribution is
decreasing exponentially. Note that the rate of con-
vergence is nevertheless slow from the practical point
of view, if p approaches 1. On the other hand, it is
very high when p approaches 1

2 .

3.2 Execution with a Party
Impersonating Bob

3.2.1 Convergence to the Absorbing State

The analysis of the Markov chain MF is similar to the
analysis of MC. The eigenvalues of the matrix F are

1, 1
2 ,

1
2 (1−

√
1− p2), and 1

2 (1+
√

1− p2) . (8)

This yields general formulas for the probability distri-
bution πt of the chain MF after step t.
Fact 12.

πt( j) =



1−p
2
√

1−p2
(bt −at) if j =−1,

p
2
√

1−p2
(bt −at) if j = 0,

1
2 (b

t +at) if j = 1,
1− 1√

1−p2
(bt+1−at+1) if j = F,

(9)

where a = 1
2

(
1−
√

1− p2
)

and b = 1
2

(
1+
√

1− p2
)

.

Let Y be a random variable denoting the first step
when the process MF reaches the absorbing state F .
Noting that Pr[Y = t] = Pr[Y ≤ t]− Pr[Y ≤ t − 1] =
πt(F)−πt−1(F) and using equations 9 we get:

Fact 13. For t ≥ 1 we have

Pr[Y = t] = (bta−atb) · 1√
1−p2

(10)

As a result of direct calculations we get:

Corollary 14. The expected value and variance of Y
have the following values

E[Y ] = 4p−2 (11)

Var[Y ] = 16p−4−12p−2 (12)

Corollary 14 explains why too small values of p
should be avoided. Namely, if p≈ 1

2 , then E[Y ]≈ 16.
So it takes quite a long time until Alice will start to
send purely random bits. In the meantime Alice may
provide a partial proof of her identity.
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3.2.2 Number of Visits in the State −1

The most critical moment from the point of informa-
tion leakage when Alice interacts with an alleged Bob
not knowing the shared key K, is the number of vis-
its in the state −1 of MF . Indeed, in this case Alice
must send the correct value of the corresponding bit
at . In case of the states 0 and 1 there is only a bias
to send the correct bit: so as the number of steps until
the chain reaches the absorbing state F is small, it is
hard to derive a meaningful statistical information.

Let Z be the random variable denoting the number
of visits of the state −1 during an execution of the
chain MF . Some computations involving equations 9
yield the following formulas:

Fact 15. E[Z] = 2(1−p)
p2 .

Var[Z] =
2(1− p)

(
3p2−2p+2

)
p4 (13)

Fact 13 shows that the expected number of visits in
the state −1 is quite small for any reasonable choice
of p. Also variance has relatively small values for
p ∈ (0.5,1) (see Subsec. 3.3).

3.3 Example Choice: p = 2
3

We have already noticed that neither the values of p
close to 1

2 nor the values values of p close to 1 is the
right choice, so let us see what happens in the middle.

Honest Execution. In the case when Alice is Bob
follows honestly the protocol, then the stationary dis-
tribution is given by vector π = ( 2

7 ,
3
7 ,

2
7 ). The total

variation distance between distribution πt of MC and
its stationary distribution is

‖π−πt‖TV = 4
7 ·
( 2

9

)t
. (14)

So ‖π−π5‖TV ≈ 0.0003, ‖π−π10‖TV ≈ 0.00000017,
‖π−π32‖TV ≈ 10−21.

Execution with Eve impersonating Bob. From
Equations 11 and 12 we get that the expected time
to reach the state F where Alice starts to send purely
random bits is E[Y ] = 9 and Var[Y ] = 54, so the stan-
dard deviation is approximately 7.35.

By Fact 15 and Equation 13 we deduce that the
number of visits of the state −1 before the process
reaches the absorbing state F we have E[Z] = 3

2 and
Var[Z] = 27

4 , and the standard deviation is ≈ 2.6.
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