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Abstract: The Microservice architecture is increasingly becoming the preferred architecture of modern applications.
The logically distinct components that make up microservices make continuous delivery easier compared
to monolithic architectures. This feature however makes it difficult for engineers to control the underlying
services and properly adapt them at run-time. Designing our microservices as self-adaptive systems helps us
tackle this issue. Each microservice can then dynamically monitor and adapt its behavior to change certain
aspects of itself to achieve self-adaptive goals. The use of statistical and Machine Learning (ML) techniques
helps in this area in a lot of ways (e.g., predicting resource usage, anomaly detection, etc.). This paper aims to
provide a state of the art of the use of ML in microservice adaptation, the main goal is to provide an overview
of the field and identify the most frequent adaptation goals and the types of adaptation techniques used. In
order to carry out a comprehensive analysis, a well-defined method of systematic mapping is performed to
categorize, according to a detailed scheme, every paper relevant to this topic. The results can potentially shed
light on areas where further investigation might be warranted.

1 INTRODUCTION

Nowadays, modern applications are changing from
a monolithic architecture where the application is
constructed as a single entity, to a more distributed
architecture where complex applications are broken
down into logically recognizable components; mi-
croservices (Khazaei et al., 2018a). The Microser-
vice architecture is an architectural style in which
an application is designed as a set of small services
communicating with each other using a lightweight
mechanism (Fowler, 2014). The decoupling of com-
ponents that is characteristic of this type of architec-
ture makes continuous delivery safer and cheaper con-
trary to many other architectural styles (Junior, 2018).
However, several obstacles appear that make it dif-
ficult to manually manage applications at run-time
(e.g., resource optimization, granularity of services,
context, fault detection, etc.). A solution to this is to
design these microservices as self-adaptive systems
that can dynamically monitor and adapt their behav-
ior to change certain aspects of themselves to meet
certain goals (e.g., when operating conditions are not
stable and optimal (Mendonça et al., 2019), when ser-
vices need to be discovered in a changing context
(Wanigasekara, 2015a), etc.). Self-adaptation tech-
niques are known to be promising ways of tackling
and managing run-time uncertainties (Sanctis et al.,

2020a). We can distinguish four adaptation goals
in self-adaptive systems: self-configuration (i.e., sys-
tems that configure themselves automatically), self-
optimization (systems that are constantly looking for
ways to optimize performance), self-healing (systems
that detect and fix anomalies) and self-protection (sys-
tems that defend themselves from attacks) (Khazaei
et al., 2018a). An autonomic management system
contains the logic that tackles one or several of these
adaptation goals. The four elements: Monitor, Ana-
lyze, Plan, and Execute achieve the necessary func-
tions of any self-adaptive system. These elements
share common Knowledge therefore the model is usu-
ally referred to as the MAPE-K model (Kephart and
Chess, 2003). Applying statistical and ML techniques
in order to better any aspect of self-adaptive sys-
tems helps in bringing about adaptation without hu-
man intervention. ML algorithms for instance, can
be employed to predict resource usage patterns based
on historical data of an application’s microservices
and effectively anticipate changes (e.g., auto-scaling,
placement reconfiguration, etc.) (Junior, 2018).

The goal of this paper is to achieve a research area
overview, identifying the most common microser-
vices adaptation goals, techniques that are used in
accomplishing these goals and the frequency of us-
ing ML algorithms in carrying this out. We there-
fore choose to perform a systematic mapping of the
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existent literature. Generally, a systematic mapping
study structures the type of research, reports and re-
sults that have been published by classifying them and
generates a visual summary of its results (Kitchenman
and Charters, 2007). In this work, the discussion of
the findings focus on supporting the understanding of
what has been addressed by the research community
and eventually propose future research guidelines in
this field.

The remainder of this paper is structured as fol-
lows: section 2 details the research methodology used
for the mapping study accomplished in this work,
from establishing the research questions to the result-
ing systematic map. Then, in section 3 we provide
an analysis and a discussion of the results extracted
during the mapping study. In section 4 we discuss
the threats to validity of this paper. Section 5 spec-
ifies similar works and situates our contribution. Fi-
nally, section 6 outlines the main contribution of this
paper and considers some directions that could be po-
tentially investigated by the research community.

2 RESEARCH METHODOLOGY

In order to achieve the goals set above, our system-
atic mapping study process followed Kitchenman’s
approach. This type of study is helpful when it is dis-
covered that very little evidence is likely to exist on a
certain topic (Kitchenman and Charters, 2007). Fig-
ure 1 represents the underlying steps of performing a
systematic mapping study. Each step of the process
has an outcome, the last step produces the systematic
map. In the upcoming section we will describe each
step in detail and apply it to our particular case.

2.1 Definition of Research Questions

Initially we must define the research scope by identi-
fying goals that are expressed in research questions.
We chose to follow structured criteria to frame our
questions (Kitchenman and Charters, 2007), the fol-
lowing questions were stated:
RQ1: What are the microservices adaptation targets
(i.e., sub-goals of those mentioned in the introduc-
tion) that the research community tackles?
RQ2: Are the adaptations on an application or an ar-
chitecture level?
RQ3: What adaptation techniques were used?
Based on a classification scheme that we detail later
on, we can answer more precise questions:
RQ4: If machine learning was used, what algorithms
were picked?
RQ5: What level of empirical evidence was attained
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Figure 1: Steps for performing a systematic mapping study.

by researchers?

2.2 Conduct Search for Primary Studies

In order to answer our questions, we must identify
the key studies by setting up a set of search strings
(Petersen et al., 2008). Multiple digital libraries were
chosen to extract relevant research using the two crite-
ria suggested by Kitchenman; Population (i.e. An ap-
plication area) and Intervention (a software method-
ology, tool, technology or procedure that addresses a
specific issue) (Kitchenman and Charters, 2007):

• Population: Microservices.

• Intervention: Adaptation, self-adaptation, self-
healing and context-aware.

Our Keywords can be deduced from each facet,
the population and intervention facets lead us to
a search string similar to this: (”microservices”
OR ”microservice” OR ”micro-service” OR ”micro-
services”) AND (”adaptation” OR ”adaptive” OR
”self-adaptation” OR ”self adaptation” OR ”self-
adaptive” OR ”self adaptive” OR ”context-aware”
OR ”context aware” OR ”self-healing” OR ”self
healing”).

The search query slightly varies from one digital
library to the other in order to comply with each li-
brary’s query rules.

The choice of what digital libraries to use was
based on (Breton et al., 2007)’s identification of the
most relevant digital libraries to software engineers.
The choice of the search string was made in order
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Table 1: Search queries used on different digital libraries
and their respective results.

Digital Library Number of results
ACM Digital Libray 16

IEEExplore 88
ScienceDirect 10
SpringerLink 149

Google Scholar 12

to select all papers that discuss the adaptation of mi-
croservices regardless of tools used (e.g. Artificial In-
telligence algorithms). We didn’t consider the com-
parison facet because it didn’t make sense in our case,
while the outcome facet would restrict our research
and wouldn’t allow us to paint a broad overview of
the research area. The results are accurate as of 10th
of January 2021, the number of total publications is
275. Table 1 shows the full results.

2.3 Screening of Papers for Inclusion
and Exclusion

Inclusion and exclusion criteria were used to only fo-
cus on papers that are relevant to answering our do-
main questions. A percentage of these criteria are
based on the fact that our main aim is microservice
architectures. Other criteria are based on practical is-
sues.
The inclusion criteria were:
IC1: publications produced in English.
IC2: publications that are peer-reviewed and pub-
lished in journals, conferences and workshops.
IC3: publications that explicitly mention our key-
words in the title, abstract and/or keywords.
These exclusion criteria were used:
EC1: publications where the authors focus on archi-
tectures other than microservices.
EC2: publications such as books, chapters of books
or similar ones.
EC3: publications that are not in the computer sci-
ence field.
Duplicates are automatically dealt with using the
merge duplicates feature on the open source research
tool Zotero. Initially criteria IC1 was applied for all
queries. No filters were used for IEEE. Criteria IC2,
IC3, EC2 and EC3 were applied using the built-in
filters of the mentioned digital libraries. ”Research
Article” and Computer Science filters were applied
for ScienceDirect and ACM Digital Library and fi-
nally ”Conference Paper” and ”Article” filters were
applied for SpringerLink. We then filtered through
the publications manually, reading abstracts and if
necessary introductions and conclusions. We ranked
the papers based on their relevance to our objectives

by labeling each paper with a number (0 would be
irrelevant, 1 would be somewhat relevant and 2 as
in relevant). We double checked the somewhat rel-
evant papers a second time and discarded the irrel-
evant ones. Initially the number of relevant publi-
cations went from 275 to 129 based on reading ab-
stracts. Then the final result was reduced to 62 pub-
lications that are useful for our purposes. Figure 2
illustrates this process.

2.4 Keywording of Relevant Papers

Before going ahead and setting up a classification
scheme, the authors went through all the relevant pa-
pers and made sure they were all aligned with our ob-
jectives. We not only relied on reading the abstracts
but at times had to carefully read the full paper. In
order to properly cover all aspects of our research, the
papers were classified using the following classifica-
tion scheme:
Adaptation Targets (RQ1). In order to answer RQ1,
we classified papers based on what area of microser-
vices were adapted.
Adaptation Techniques (RQ2). To classify the tech-
niques used in each research and address RQ2.
Adaptation Level (RQ3). To tackle RQ3, we also
classified papers based on what level of adaptation
were the techniques aimed at.
Use of Machine Learning (RQ4). To classify papers
on whether they used machine learning in their adap-
tations and if yes, what type of algorithms were used
in their solution.
Evidence (RQ5). We chose an existing classifica-
tion of research approaches to classify our papers
(Wieringa et al., 2006) and address RQ5 on what type
of empirical evidence is provided by each paper:

• Validation Research: A paper where the tech-
niques that are examined are innovative and are
not yet applied in practice.

• Evaluation Research: A paper where the tech-
niques discussed were implemented in practice
and an evaluation of these techniques are con-
ducted.

• Solution Proposal: A paper where a solution to a
given problem is presented. It can be either new or
built on top of existing approaches. The solution
is also illustrated by a specific example.

• Philosophical Papers: Papers where a novel per-
spective is proposed by structuring a given field.

• Opinion Papers: Papers where the author express
a personal opinion on the validity of a certain
technique or how it should be implemented.
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Figure 2: Inclusion and exclusion criteria process.

• Experience Papers: Papers where an explanation
of how a technique has been done in practice is
given. It relies on the personal experience of the
authors.

2.5 Data Extraction and Mapping
Process

We conclude our review with the data extraction step.
All 64 papers relevant to us were fully read. Based
on the research questions defined, an Excel data ex-
traction table was developed to document the data ex-
traction process. Thanks to the produced graphs, we
are now able to have a proper overview of what the re-
search community focuses on the microservices adap-
tation research area. Table 3 illustrates the detailed
scheme.

3 MAIN FINDINGS

All articles were published between September 2015
and January 2021. Figure 3 shows an increase in the
number of published articles on the the topic of Mi-
croservice adaptation. The decrease between 2020
and 2021 is due to the fact that the results were as
of the first month of 2021.

Figure 3: The number of published papers per year since
2013.

3.1 RQ1: Adaptation Targets

Of all the texts that were reviewed, 42% (24 papers)
tackled Resource Scheduling or Utilization and Place-
ment, followed by discussions involving Auto-scaling
and Elasticity at 21.0% (17 papers), then Context at
11.1% (9 papers), Fault/Anomaly Detection and Ex-
ception Handling at 9.9% (8 papers) and Granular-
ity of Services at 3.7% (3 papers). Finally The Other
section with 12.3% (11 papers) constitutes solutions
tackling Orchestration/Collaboration, Task Work-
flow/Scheduling, Data Transfer/Filtering/Acquisition,
Security/Fire-walling, Configuration/Recovery, La-
tency and Network Resource Consumption. Figure
4 illustrates the distribution of goals. Table 2 details
each goal, its definition and the number of relevant
papers.

Figure 4: The distribution of the adaptation goals in relevant
papers.

We notice from the extracted data that there is a
huge focus on optimizing for performance. A com-
bined 63.0% between resource optimization and elas-
ticity. We believe this might be due to the fact that
industry professionals are mainly interested in opti-
mizing resources and researchers follow through by
proposing solutions for their concrete optimization is-
sues.

3.2 RQ2: Adaptation Level

Looking at the distribution of the adaptation level of
papers, we notice that the majority of papers (37 at
59.7%) present a solution acting exclusively on an ap-
plication level (i.e., solutions dealing with services,
containers and applications). Followed by papers (16
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Table 2: The different definitions of adaptation goals and the number of papers discussing them.

Adaptation Target Definition Number of Papers

Resource Scheduling/Utilization,
Placement

Optimizing the use of resources
(e.g., CPU, memory, bandwidth, etc.)

and the adaptive placement of containers.
34

Auto-scaling and Elasticity Automatically adjusting the capacity
to insure steady performance. 17

Context
The ability to collect data about

a system’s surrounding environment
(e.g., Location, Temperature, etc.).

9

Fault/Anomaly Detection,
Exception Handling

Detecting anomalies and errors in
the faulty microservices and

handling exceptions.
8

Granularity of Services Identifying the optimal microservice
boundaries. 3

Orchestration/Collaboration Automatic coordination of containers. 2
Task Workflow/Scheduling Assigning tasks to the proper resources. 2

Data Transfer/Filtering/Acquisition The ability to manipulate data. 2
Security/Fire-walling Protection against malicious attacks. 2

Configuration/Recovery
Having the proper system configuration

(e.g., reliability, availability, performance, etc.)
and the ability to recover after failing.

2

Latency The delay for data to go
from its source to its destination. 1

Network Resource Consumption The underlying network’s resource
consumption. 1

at 25.8%) with both an application and architectural
(i.e., solutions dealing with how to design and archi-
tect your system) approach then purely architectural
solutions with 9 papers (14.5%). Figure 5 illustrates
this.

Figure 5: The distribution of the adaptation level in relevant
papers.

Since 53 papers (85.5%) have an application level
approach, we conclude that most research focuses on
solutions that tackle issues on the level of services, ap-
plications or containers. This makes sense since there
is a wide variety of possible contributions to have con-
trary to presenting solutions from an architectural and

design optic.

3.3 RQ3: Adaptation Techniques

From the present study, we believe that custom
techniques are the preferred approach for most re-
searchers. In addition, ML algorithms (i.e., classi-
cal machine learning and deep learning) are the tech-
niques of choice for numerous researchers in achiev-
ing adaptation targets. 10 papers employ a classical
machine learning algorithm in their solution. Rein-
forcement learning, Deep learning and heuristics are
used in 5 papers each. In 4 papers, researchers extend
the existing Kubernetes tools. A modified autoscaler
is introduced in 2 papers and so is the Non-Dominated
Sorting Genetic Algorithm (in order to make a con-
tainer allocation strategy and automatically manage
elasticity). The remaining papers (19) have the fol-
lowing techniques:

• Description language: A custom language and an
appropriate platform to aid in the implementation
of self-adaptive microservices,

• Resource scheduling algorithms: Policies used to
assign resources accordingly for energy efficiency
purposes,
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• External services: In-house developed software
and delegating run-time management to the cloud,

• Extended Berkeley Packet Filter: Used to inter-
cept key Linux system calls for efficient monitor-
ing,

• Scaling policy derivation tool: Used to design and
evaluate 5 auto-scaling policies,

• Cloud-Edge-Dew architecture: A custom archi-
tecture that optimizes the advantages of Cloud and
Edge Computing to contribute microservices for
end user devices,

• Custom orchestrator: A custom orchestrating tool
for microservices,

• Horizontal offloading mechanism: A custom
mechanism based on the OpenFog reference ar-
chitecture where fog nodes can horizontally of-
fload computations to multiple less loaded nodes,

• Hierarchical scalable adaptive cloud monitoring
architecture: Custom architecture that monitors
physical and virtual infrastructure, realizes scal-
ability of monitoring based on microservices and
adjusts the monitoring interval and data transmis-
sion strategy (Wang et al., 2020).

• Latency aware microservice mashup algorithm:
A custom service mashup approach that focuses
on network resource consumption in edge net-
work in addition to efficient service mashup,

• Micro-controllers: A controller that can be com-
posed or configured at run-time based on the
adaptation goals of the target system,

• Model based approach: A custom method called
Microservices Recovery Action Selection that
adapts to frequent microservices changes without
the need for historical data of previous failures,

• Microservice ambients using aspects: A model-
ing concept that considers microservice bound-
aries as an adaptable first-class entity, it is also
based on the aspect-oriented architectural meta-
modeling approach of ambients (Hassan et al.,
2017),

• Architecture and planning engine at run-time: An
interactive and iterative planning engine that pro-
vides insight into which granularity adaptation
strategy is adequate at run-time (Hassan, 2019),

• Custom framework: A self-adaptive root cause
diagnosis framework in order to analyze several
metrics collected from given microservices,

• Event processing techniques: Used as an inte-
grated part to an appropriate architecture to better
smart decision-making,

• Application partitioning and task offloading algo-
rithm: Which comes up with an application parti-
tioning decision at run-time,

• Application-infrastructure co-programming
model and architecture: Which provides a
controllable environment for the creation of
application logic and enable reconfigurability of
computing resources at run-time according to the
needs of a specific application (Štefanič et al.,
2019) and

• Vehicular-OBUs-As-On-Demand-Fogs: A custom
framework that efficiently uses clusters of vehi-
cles to benefit from on-board units in order to op-
timize resources.

3.4 RQ4: Use of Machine Learning

Here we notice that although small, there is a decent
interest in using Artificial Intelligence in order to bet-
ter microservice adaptation. 40.3% (25 papers) of pa-
pers utilize either classical machine learning or deep
learning algorithms, the remaining 37 papers (59.7%)
use other techniques mentioned in section 3.3. The
following algorithms were used:

• Data Classification algorithms,

• Support Vector Machine,

• Bayesian Network,

• Decision Tree,

• Naive Bayes classifier,

• Contextual Bandit Reinforcement Learning,

• Stacked Long Short-Term Memory Networks,

• K-means,

• Planning algorithms,

• Extreme Learning Machine,

• Deep Q-Learning,

• Fuzzy Lattice Reasoning,

• Artificial Neural Network and

• Gaussian Process Regression.

Figure 6 illustrates the distribution of what targets
researchers go to when utilizing ML as an adaptation
technique. We notice that resource optimization is
predominately the most common one with 53.1% of
total papers that use ML.

3.5 RQ5: Evidence

The level of empirical evidence in the relevant pa-
pers is dominated by solution proposals at 54 papers
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Figure 6: Distribution of the most commonly tackled targets
when using ML.

Figure 7: The distribution of types of papers.

(87.1%), followed by 4 (6.5%) opinion papers, 2 eval-
uation papers and 2 validation research papers (3.2%).
Figure 7 shows the distribution.

This means that the research community is mainly
focused on solving concrete microservice adaptation
problems and supporting their solutions with real ex-
amples. The small number of papers (6 at 9.7%)
where practical applications are not provided (i.e.,
validation research, philosophical, opinion and expe-
rience papers) indicates that there is virtually no to
little to no interest in discussions that do not present a
valid practical example.

4 THREATS TO VALIDITY

Assessing Threats to Validity is clinical in order to en-
sure quality empirical studies in Software Engineer-
ing (Zhou et al., 2016).
Construct Validity: The discussion surrounding our
main findings in section 3 is only valid for the pa-
pers provided. We therefore made sure to include all
the possible relevant papers. In order to realize this,
we used all the databases that are relevant to software
engineering research mentioned in section 2.2. We
made sure to answer the appropriate research ques-

tions and deduce the adequate complete search terms,
we for instance considered all the possible variations
of our facets (e.g., microserices, self-adaptation). We
also avoided the threat of inappropriate inclusion and
exclusion criteria in our screening by considering the
tile, abstract and keywords. In addition, we decided
as an initial safety measure not to exclude papers that
haven’t been fully investigated until there has been an
exhaustive reading.
Internal Validity: In order to alleviate the issues sur-
rounding data extraction and classification, we took
the proper time-frame to, at times, read introductions
and conclusion and some times the entirety of a given
paper if it wasn’t possible to extract data initially from
the abstract. We also used an Excel table to properly
store the extracted data to generate relevant statistics:
External Validity: We made sure not to restrict the
time span of the resulting studies. To improve exter-
nal validity in the future it is perhaps advised to have
full access to all relevant papers by contacting their
respective authors.
Conclusion Validity: The study’s replicability is pos-
sible thanks to the search method details provided in
section 2. The threat of primary study duplication was
also avoided by using the open search tool Zotero and
always double checking our data.

5 RELATED WORK

Numerous systematic reviews tackled self-adaptation.
One paper outlines the machine learning techniques
used to approach self adaptation based on the con-
cerns, aspects and purposes of choice (Saputri and
Lee, 2020), although exhaustive we believe it wasn’t
applied to a specific type of architecture. Multiple
papers discuss self-adaptation through the lens of a
specific context (e.g., mobile app (Grua et al., 2019),
cyber-physical system (Muccini et al., 2016), etc.).
Although there is a discussion of self-adaptation in
Service Oriented Architecture (Romay et al., 2011)
there are no equivalent for the Microservices Archi-
tecture. To the best of our knowledge there were no
Systematic Mapping Reviews discussing the use of
ML techniques for the adaptation of microservices.

6 CONCLUSIONS

In this paper, we provide the results concerning the
systematic mapping study of the use of ML in Mi-
croservice adaptation. this paper outlines important
observations:
• recognizing the most focused on microservices
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adaptation targets in the research community;
• highlighting the techniques of choice that authors

go to;
• figuring out the level of empirical evidence

achieved by the researchers’ presented solutions;

Our study, with the help of the developed classi-
fication scheme, provides the most commonly tack-
led issues in microservice adaptation targets; resource
optimization and elasticity. It also indicates that
although many authors decide to develop a unique
adaptation technique, there is also a growing inter-
est in using ML algorithms as techniques to achieve
adaptation targets. Our findings also reflect that the
majority of researchers provide practical solutions to
concrete issues.

Our objective was to provide a comprehensive
mapping of the use of ML in microservices adap-
tation. We intend to go more in depth and specify
the strengths and weaknesses of specific techniques in
specific contexts, explore opportunities where adapta-
tion techniques can intersect and be more efficient at
general self-adaptation and finally add to the growing
discussion by introducing concepts that might help us
make abstractions to adaptation targets and build self-
adaptive microservices that comprise of all the main
goals (i.e., self configuration, self-optimization, self-
healing and self-protection), which will be our future
work.
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APPENDIX

As mentioned in section 2.5, table 3 represents the
detailed scheme we used to conduct our SMR.
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Table 3: The Systematic Mapping Review’s detailed scheme.
Number Paper Year Target Technique Evidence Use of

ML
Architecture

level
Application

level

1 (Zang et al., 2018) 2018 Fault detection Multi-factor self-adaptive
heartbeat detection algorithm

Solution
proposal No No Yes

2 (Chegini and Mahanti, 2019) 2019

Context, orchestration
and collaboration, task workflow
and scheduling, data transfer and

filtering

Knowledge or rule-based component,
Data classification algorithms (ML) and

data science and feature engineering

Evaluation
paper Yes No Yes

3 (Zhang et al., 2019) 2019 Service and instance numbers Microservice self-adaptation description
language and adaptive K8 (Extending Kubernetes)

Solution
proposal No No Yes

4 (Wang et al., 2019) 2019 Data acquisition Big Data processing Solution
proposal No Yes No

5 (Xu et al., 2020) 2020 Resource scheduling
Resource scheduling algorithms, SVM to predict

solar irradiation or PV power output for the availability
of renewable energy

Solution
proposal Yes No Yes

6 (Ravandi and Papapanagiotou, 2018) 2018 Resource utilization Bayesian network, decision tree, Naive bayes
and Support Vector Machine

Solution
proposal Yes No Yes

7 (Wanigasekara, 2015b) 2015 Context Contextual Bandit Reinforcement Learning algorithms Solution
proposal Yes No Yes

8 (Casalicchio, 2019) 2019 Resource utilization, scaling KHPA-A algorithm (Extending Kubernetes’s autoscaling
algorithm based on CPU usage)

Solution
proposal No No Yes

9 (Khazaei et al., 2018b) 2018
Security, configuration,

fault detection and resource
optimization

Adaptation as external services Solution
proposal Yes Yes No

10 (Keni and Kak, 2020) 2020 SLA based resource allocation Optimal containerization framework using
mathematical representations

Solution
proposal No No Yes

11 (Coulson et al., 2020) 2020 Resource allocation
and auto-scaling Stacked Long Short-Term Memory Network Solution

proposal Yes No Yes

12 (Pahl and Aubet, 2018) 2018 Anomaly detection
and fire-walling Grid-based algorithm, k-mea,s Solution

proposal Yes No Yes

13 (Rychener et al., 2020) 2020 Anomaly detetion Machine learning Opinion
paper Yes Yes Yes

14 (Bellur et al., 2017) 2017 Context, application
requirement Service-oriented middleware Solution

paper No Yes Yes

15 (Meixner et al., 2019) 2019 Resource and placement NFRs based on user defined rules for placement
and data-driven automatic deployment

Solution
proposal Yes Yes No

16 (Donca et al., 2020) 2020 Resource and auto-scaling Kubernetes auto-scaler and Raspberry Pi Solution
proposal No Yes No

17 (Neves et al., 2020) 2020 Adaptive placement Extended Berkeley Packet Filter Solution
proposal No No Yes

18 (Ramirez et al., 2019) 2019 Auto-scaling Scaling Policy Derivation Tool Solution
proposal No No Yes

19 (Klinaku et al., 2018) 2018 Resource and auto-scaling Heuristics Solution
proposal No No Yes

20 (Wang et al., 2018) 2018 Exception handling AI Planning algorithms Solution
proposal Yes No Yes

21 (Sanctis et al., 2020b) 2020 Resource Machine Learning, Q-learning, AI Planning Validation
research Yes Yes Yes

22 (Tefera et al., 2019) 2019 Latency Cloud-Edge-Dew Architecture Validation
Research No Yes No

23 (Kumar and Singh, 2020) 2020 Resource Extreme Learning Machine Solution
proposal Yes No Yes

24 (Magableh, 2016) 2016 Anomaly detection Deep Q Learning,
Reinforcement Learning

Solution
proposal Yes Yes Yes

25 (Barna et al., 2017) 2017 Auto-scaling Self-tuning performance model
and custom autonomic management system

Solution
proposal No Yes No

26 (Abdullah et al., 2020) 2020 Resource Deep Learning Solution
proposal Yes No Yes

27 (Jiménez and Schelén, 2019) 2019 Resource Custom orchestrator; DOCMA Solution
proposal No Yes Yes

28 (De Sanctis et al., 2020) 2020 Resource Architecture Solution
proposal Yes Yes No

29 (Orsini et al., 2019) 2019 Context Machine Learning Solution
proposal Yes No Yes

30 (Houmani et al., 2020) 2020 Resource Custom auto-scaler, scale-up/down and
load shedding algorithm

Solution
proposal No Yes Yes

31 (Podolskiy et al., 2018) 2018 Auto-scaling, resource Machine Learning, ARIMA,
GARCH SSA, SVR

Solution
proposal Yes No Yes

32 (Guerrero et al., 2018a) 2018 Resource, container allocation
and elasticity management Non-dominated Sorting Genetic Algorithm II Solution

proposal No No Yes

33 (Florio and Nitto, 2016) 2016 Auto-scaling, resource Autonomic manager, MAPE-K Solution
proposal No No Yes

34 (Sahni and Vidyarthi, 2017) 2017 Auto-scaling Heuristics Solution
proposal No No Yes

35 (Rossi et al., 2020a) 2020 Elasticity, Auto-scaling Custom Auto-scaler, Kubernetes extension,
RL based scaling

Solution
proposal Yes No Yes

36 (Mostafa and Khater, 2019) 2019 Context Horizontal offloading mechanism Solution
proposal No Yes Yes

37 (Wang et al., 2020) 2020 Resource HSACMA (Hierarchical Scalable Adaptive
Cloud Monitoring Architecture)

Solution
proposal No Yes Yes

38 (Sampaio et al., 2019) 2019 Resource, placement REMap (custom adaptation mechanism) Solution
proposal No No Yes

39 (Zhou et al., 2020) 2020 Network resource consumption Latency aware microservice mashup algorithm Solution
proposal No No Yes

40 (Imdoukh et al., 2020) 2020 Auto-scaling, resource LSTM on different data types Solution
proposal Yes No Yes

41 (Siqueira et al., 2020) 2020 Context Micro-controllers Solution
proposal No No Yes

42 (Wu et al., 2020) 2020 Recovery Model based approach Solution
proposal No No Yes

43 (Hassan et al., 2017) 2017 Granularity of services MS Ambients using Aspects Solution
proposal No Yes No

44 (Rodrı́guez-Gracia et al., 2019) 2019 Context, energy consumption ML for decision making, Fuzzy
Lattice Reasoning (FLR)

Solution
proposal Yes Yes Yes

45 (Hassan and Bahsoon, 2016) 2016 Granularity of services Modified MAPE-K Opinion
paper No No Yes

46 (Yang et al., 2019) 2019 Resource Reinforcement Learning Solution
proposal Yes No Yes

47 (Hassan, 2019) 2019 Granularity of services Architecture and planning engine for insight at runtime Solution
proposal No Yes Yes

48 (Nguyen and Nahrstedt, 2017) 2017 Resource, scheduling Artificial Neural Network for system identification Solution
proposal Yes Yes No

49 (Ma et al., 2019) 2019 Anomaly detection Custom framework, algorithm Solution
proposal No No Yes

50 (Nabi and Ahmed, 2021) 2021 Resource and Task scheduling Heuristics Solution
proposal No No Yes

51 (Ortiz et al., 2019) 2019 Context Event processing techniques Solution
proposal No Yes No

52 (Guerrero et al., 2018b) 2018 Resource Non-dominated Sorting Genetic Algorithm Evaluation
paper No No Yes

53 (Kang and Lama, 2020) 2020 Resource Probabilistic Machine Learning based models;
Gaussian Process Regression

Solution
proposal Yes No Yes

54 (Rossi et al., 2020b) 2020 Auto-scaling, resource Reinforcement Learning to calculate threshold Solution
proposal Yes No Yes

55 (Yudong et al., 2020) 2020 Resource Heuristics Solution
proposal No No Yes

56 (Zheng et al., 2019) 2019 Resource, auto-scaling Heuristics Solution
proposal No Yes Yes

57 (Štefanič et al., 2019) 2019 Resource, auto-scaling Architecture Solution
proposal No Yes Yes

58 (Herrera and Moltó, 2020) 2020 Resource, auto-scaling Bio inspired algorithms Solution
proposal No No Yes

59 (Wang, 2019) 2019 Resource, auto-scaling Architecture Opinion
paper No Yes Yes

60 (Lakhan and Li, 2020) 2020 Resource, auto-scaling Custom Algorithm; application partitioning
task offloading algorithm

Solution
proposal No No Yes

61 (Rovnyagin et al., 2018) 2018 Container orchestration ML Engine for metrics analysis Opinion
paper Yes Yes Yes

62 (Sami et al., 2020) 2020 Resource, Context Architecture, custom algorithm Solution
proposal No Yes Yes
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