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Abstract: The increasing complexity in automotive product development is forcing traditional manufacturers to 
fundamentally rethink. As a result, many companies are already investing in the development of methods to 
increase the controllability of their development processes. The use of data-driven approaches is a promising 
way to provide an early prediction of potential problems in the course of a project by learning from the past. 
In vehicle development, projects can be divided into two basic categories: new vehicle launches and model 
enhancement projects. The course of projects according to the above-mentioned categories can be based on 
different influencing factors. To verify this hypothesis and to determine the extent of the differences in the 
data, we carry out a data-driven classification of the project category. In contrast to the recognition of other 
time-dependent data (e.g., univariate sensor data courses), we use multivariate project information from the 
automotive industry. With this paper, which is of an application nature, we prove that a multivariate 
classification of automotive projects can be realized based on the underlying project’s progression. 

1 INTRODUCTION 

The automotive industry is facing unprecedented 
challenges. There are new, fresh competitors entering 
the world markets, technological advancements call 
for further developments and increasing customer 
requirements force the classic manufacturers to 
transform. At the same time, growing volumes of 
information processing, an increase in the number of 
interconnected features and electronic control units 
(ECU) in the vehicle as well as a simultaneous, 
steadily increasing focus on data-based business 
models are creating ever greater complexity in 
development, production and sales. In addition to 
classic purchasing criteria such as comfort, design 
and engine performance, high-quality software is 
becoming increasingly important (Simonazzi et al., 
2020). It has become a success factor for the 
reliability of the automotive product and its ability to 
succeed on the market. Product quality has an 
influence on the automotive company's reputation. 
For this reason, it is becoming increasingly important 
for automotive companies to develop methods that 
ensure the successful management of their product 
development.  

As described in Boehme and Meisen (2021) we 
therefore strive to develop a data-driven approach that 
focuses on a quantitative evaluation and prediction of 
the progress of vehicle development projects by using 
machine learning methods (Boehme and Meisen, 
2021). A system like that will help to predict risks of 
milestone shifts at an early stage of the project in 
order to develop measures to steer the project back on 
track.  

In the research area, vehicle development projects 
are mainly divided into two categories: New vehicle 
launches with regard to the start of production (SOP) 
and model enhancement project, that are managed 
and continuously improved along their life cycle 
(LC). When a vehicle manufacturer intends to 
develop a new vehicle or a new derivative of an 
existing vehicle, then it is an SOP project. In order to 
continuously improve the product, integrate new 
features or react to current technical changes in the 
vehicle environment, the vehicles are advanced 
throughout their product life cycle. Within the 
framework of further development, deadlines are also 
defined by which the hardware-software-compound 
is to be released. Projects whose product life cycle 
falls into this category are assigned to LC projects. 
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Based on the knowledge of the domain’s experts, 
which were interviewed by the authors, there is 
evidence that in many cases the course of SOP and 
LC projects appears to be differentiated. Hence, the 
aim of this paper is to validate, that the differences in 
the project’s courses can be recognized by a data 
driven classification approach. For this purpose, we 
apply machine learning methods to automatically 
recognize the project type and derive evidence for the 
hypothesis based on the model's performance. 
Therefore, a dataset is used that contains real-world 
data from the electrical/ electronics development 
department of an automobile manufacturer. In 
addition, common methods for the classification of 
time series are implemented. Finally, the results are 
compared and discussed.  

The remainder of this paper is structured as 
follows; Section 2 provides an overview of the 
current state of the art in time series classification 
methods. Section 3 describes the experimental setup. 
It introduces the dataset used and describes the 
development and optimization of the classification 
model. The results as well as the comparison of these 
results with those of common classification methods 
are presented in section 4. A summary of the goals, 
methodology and results are presented in section 5. 
Additionally, a recommendation for further work is 
given. Our vision is to predict the progress of vehicle 
development projects. For this paper, we aim to 
present an approach that is capable of classifying 
vehicle development projects based on various 
influencing factors. 

2 RELATED WORK 

As far as our own literature review showed, there are 
no approaches for the classification of project 
progressions. Considering this, we examine existing 
approaches from other industrial application areas 
and evaluate their adaptability.  

In 2006, Yang & Wu identified time series 
classification as one of the ten most difficult problems 
in data mining research (Yang and Wu, 2006). Since 
then, it has been studied for several years (Esling and 
Agon, 2012). Research interest has grown with the 
increasing availability of existing time series datasets 
(Silva et al., 2018). Since 2015, hundreds of time 
series classification algorithms have been published 
(Bagnall et al., 2017). One of the most traditional and 
widely used approaches is Nearest Neighbor (Bagnall 
et al., 2017) (Lines and Bagnall, 2014). Recent 
contributions have therefore focused on methods that 

can go beyond k-NN (in conjunction with Dynamic 
Time Warping [DTW] as a distance metric). 

Baydogan et al. focused their research on the 
application of random forests (Baydogan et al., 2013). 
From 2015 onwards, different types of discriminative 
classifiers such as Support Vector Machines (SVM), 
became more focused on by the research community 
(Bagnall et al., 2016) (Bostrom and Bagnall, 2015) 
(Schäfer, 2015) (Kate, 2016). Most of the approaches 
developed have the common property of a data 
transformation phase, in which the time series are 
transformed into a new feature space (Bostrom and 
Bagnall, 2015) (Kate, 2016).  

Motivated by these considerations, an ensemble 
of 35 classifiers called Collective of Transformation 
based Ensembles (COTE) was created (Bagnall et al., 
2016). COTE was further developed by Lines et al. 
by adding a hierarchical system component to HIVE-
COTE by using a new hierarchical structure with 
probabilistic adjustment and by adding two additional 
classifiers to the ensemble (Lines et al., 2016) (Lines 
et al., 2018). In 2017 the authors stated that the 
method is considered state-of-the-art for time series 
classification (Bagnall et al., 2017). However, the 
method is not practicable in many areas of application 
because the calculation, optimisation and cross-
validation of 37 classifiers is computationally 
intensive (Bagnall et al., 2017) (Lucas et al., 2018). 

Due to the system limitations shown, some 
attempts have been made recently to apply deep 
learning approaches to time series classification 
problems. After the success of deep neural networks 
in the field of computer vision, a number of 
researchers have proposed different architectures for 
deep neural networks to solve time series 
classification tasks (NLP, machine translation, 
learning word embedding or document classification) 
(Sutskever et al., 2014) (Bahdanau et al., 2015) 
(Mikolov et al., 2013) (Mikolov et al., 2013) (Le and 
Mikolov, 2014) (Goldberg, 2016).  

In 2015 Ordonez and Roggen used Deep 
Convolutional and Recurrent Neural Networks for 
Human Activity Recognition (Ordonez and Roggen, 
2016). Similar research was carried out by Atzori et 
al. and successfully applied in the field of motion 
detection of prosthetic hands (Atzori et al., 2016).  

Cui et al. presented a multi-scale convolutional 
neural network (MCNN) in 2016 that could achieve 
state-of-the-art performance (Cui et al., 2016). A year 
later, Wang et al. evaluated the performance of eleven 
different classifiers on 44 UCR datasets. With 
significant improvements compared to NN-DTW and 
COTE, a fully convolutional network was able to 
establish itself as the most powerful classifier (Wang 
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et al., 2017). Bai et al. presented a generic 
convolutional network with dilations and residual 
connections in 2018 that showed more effective 
results than the common RNNs (such as LSTM) (Bai 
et al., 2018). At the same time, Karim et al. tested an 
enhancement of an FCN with LSTM submodules on 
85 UCR datasets, which provided the best accuracy 
on average (Karim et al., 2019).  

As it can be derived from the related work there is 
a wide range of classification methods for different 
fields of application. Furthermore, the literature 
research showed that no implementation in the 
automotive sector and the development of vehicle 
projects has been undertaken so far. Given this, we 
want to prove the applicability of the identified 
classification methods on the complexity of vehicle 
development projects in the next step. 

3 RESEARCH METHOD 

In this section the design and execution of the 
experiment is described. In addition, the experimental 
setup is explained. 

3.1 Dataset Description and Statistical 
Analysis 

The dataset used in this contribution was built by the 
authors and contains real-world data from the 
electrical/ electronics development department of an 
automotive manufacturer.  
 

 

Figure 1: Two-dimensional Visualization of the Data. 

It contains 302 examples, each of which is 
described with 20 attributes. One of the attributes 
indicates whether the vehicle project under 
consideration is an SOP or an LC project. Each 

 
1  For reasons of confidentiality, the dataset cannot be 

released at the moment. This will be done by the authors 
at the appropriate time. 

example is a time series representing the progress of 
a vehicle development project over 195 time stamps.  

Figure 1 shows a two-dimensional visualisation of 
the data, where the Y-axis represents the total number 
of errors in the project at the time of the respective 
time stamp. By calling errors, we understand 
hardware and software errors appeared over the 
development of each project. Each time stamp 
represents a weekly snapshot of the project status, in 
terms of the current total number of errors, 
considering project meta- and environmental factors.  

Table 1 shows an overview, description and 
statistical evaluation of the different features. The 
mean, median, standard deviation, maximum and 
minimum values are shown. The two classes are 
represented in our data in a ratio of 65% (LC) to 35% 
(SOP).1 

3.2 Experimental Setup 

The experiments are carried out using Python version 
3.7. In order for our dataset to become a suitable input 
for our learning models, the original structure had to 
be pre-processed. Before splitting the dataset into a 
train- and test set, the input data was normalised. With 
normalisation, we strive to transform the values in our 
columns to a common scale. The split percentage was 
chosen at 30/70, since that has been suggested in 
several literatures in the field of machine learning 
(Khosla, 2015). Finally, train and test data were 
transformed into numpy arrays for efficiency reasons. 

The classifiers used are the SKLEARN 
implementations of AdaBoost, Decision Tree 
classifier, Discriminant Analysis, Gaussian Process 
classifier, MLP classifier, Support Vector Machine 
(SVC, Linear SVC, SGD classifier), Random Forest 
classifier and K-NN. In addition, by using Tensorflow 
and Keras we implemented a baseline LSTM-
classifier. Except for the LSTM, each classifier was 
optimised based on its individual (hyper-)parameters 
using GridSearch. 
The LSTM was designed with a first embedded layer 
that uses vectors of the length of the trainings data 
shape to represent each vehicle project. The next four 
layers are bidirectional LSTM layers with 100 
memory units. Since it is a classification problem, we 
use a dense output layer with a single neuron and a 
sigmoid activation function to make 0 or 1 predictions 
for the two classes (SOP and LC) in the classification 
problem. Due to the fact that it is a binary 
classification problem, the logarithmic loss is used as  
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Table 1: Features of the Automotive Dataset. 

 
 
the loss function. In addition, the efficient ADAM 
optimisation algorithm is used. The model is fit for 50 
epochs. The batch size of 32 reviews is used to 
distribute the weight updates.  

For comparable results we also used 5-fold cross 
validation for each algorithm. To determine the best 
model, we used the F1-Score, since it is the harmonic 
mean of respective recall and precision values 
(Tatbul, 2018). For further details on the 
implementation and for the purpose of further use we 
published our code.2 

4 RESULTS 

In Table 2 we show a comparative evaluation of all 
methods applied to the dataset presented. The MLP 
classifier showed the lowest performance at 79.1%. 
The second neural network approach, LSTM, also 
performed only 0.4 percentage points higher. The 
Discriminant Analysis (79.5%) and the Gaussian 
Process classifier (79.7%) also ranked on 
approximately the same level. With 80.9%, K-NN is 
in the midfield of the comparative evaluation. In 
contrast, AdaBoost, Decision Tree and Support 
Vector Machine showed a slightly better 
performance, achieving a F1-Score between 82.4% 
and 82.5%. The Random Forest classifier showed the 
best performance with a F1-Score of 85.7%. 

 
2 https://github.com/tmdt-buw/carclass 

Compared directly with the neural network 
approaches, it achieved over 6 percentage points 
better.  

To further analyse the performance of the models, 
we divided the time series into three equal periods. 
The following is a simplified explanation of the 
choice of the three periods. As can be seen in Figure 
1, the differentiation of the time series based on the 
total number of errors in the first period cannot yet be 
measured consistently. This is due to the fact that this 
phase is usually used for function build-up and 
therefore only minor testing can be carried out over 
this period. In the second period, testing the functions 
at vehicle level is one of the main tasks in terms of 
integration and ensuring product quality. In this 
phase, it is crucial to find all the errors possible. 
Finally, the third phase describes the reduction of 
errors. In this phase, it is decided whether the quality 
and deadline targets can be kept. Afterwards, again a 
comparative evaluation is carried out for each period. 
Figure 2 shows the performance of the algorithms 
measured by the F1-Score for the shapelets and the 
whole series. 

Once again, the Ada Boost, Decision Trees and 
Random Forest were able to confirm their 
performance. In relation to the first third, Decision 
Tree showed the best performance with an F1 score 
of 85%. This demonstrates the algorithm's robustness 
to errors and shows that it can handle categorical and 
continuous data well at the same time.  
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Table 2: Comparative Evaluation on the implemented 
Classifiers. 

 
 

Ada Boost was able to classify the vehicle projects 
with respect to the period in the middle with an almost 
perfect F1 score (98%). Due to the small number of 
training samples, this demonstrates on the one hand 
the adaptability to the complex time series in the 
vehicle development environment. The high accuracy 
(96.8%) in this phase also confirms this result. The 
good performance with so few training samples could 
be an indicator that the factors influencing project 
performance depend on the type of project. This 
supports the hypothesis that for a holistic multivariate 
prediction of project progress, differentiation in terms 
of predictors may be useful to maximise the 
performance of the prediction model.  
However, the measurement results of the algorithm 
for the third period point to the known disadvantages 
such as its sensitivity to noisy data and outliers. This 
means that it is always more difficult to achieve good 
performance with Ada Boost without overfitting 
when the data cannot be easily assigned to a particular 
separation plane. With only 58.8% F1 score, 
AdaBoost represents the worst result in the method 
comparison here. Among other things, this can be 
attributed to the fact that the AdaBoost reacts very 
sensitively to noise and outliers, both of which can be 
triggered by the different project ends. Despite the 
high heterogeneity of the data in the last period, the 
Random Forest was still able to achieve an F1 score 
of 77.8%. This confirms the algorithm's robustness 
against outliers and its good handling of non-linear 
data. 

The linear SVC shows the worst result in period 1 
with only 69.8 %. In particular, with reference to the 
class distribution (ratio 1:2), this performance is only 
significantly above a random classification. In terms 
of ranking, again we see the same pattern for period 

2. However, the lowest F1 score achieved is 87.3%, 
which is still a very good result considering the 
number of training samples.  

Furthermore, the LSTM has to be seen as one of 
the weaker classifiers. The deep neural network 
performs only slightly better than the weakest 
classifier in each case. It should be emphasised that 
the LSTM is only available in its baseline variant and 
has therefore not yet been fully optimized. In 
addition, it is to be expected that the performance will 
improve considerably with an increasing amount of 
data. 
 

 
Figure 2: Segment-wise Comparison regarding F1-Score. 

5 CONCLUSIONS 

Our aim was to investigate, whether the common 
methods for multivariate classification can be applied 
to the recognition of the project type of vehicle 
development projects. We aimed to prove the 
hypothesis that the project types "SOP" and "LC" are 
subject to different influencing factors. For this 
purpose, we implemented current state-of-the-art 
methods from the field of machine learning as well as 
deep neural networks (baseline classifiers) and 
compared them with respect to their performance. 
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Our results have shown that multivariate time 
series classification of vehicle development projects 
is feasible. Even with a small number of training 
samples and a comparatively high number of features, 
an F1 score of 85.7% (at 78% accuracy) could be 
achieved. Considering the class distribution, this is a 
promising result. By dividing the time series into 
three periods, these results could be considerably 
increased again with an F1 score of 98% (at 96.8% 
accuracy).  

Ensemble methods such as Ada Boost and 
Random Forest stood out in particular. Along with 
decision trees, these two methods not only showed 
very good applicability for the given problem, but 
also outperformed the neural networks (likely due to 
a lack of training data). In addition, these white box 
models offer the advantage of transparency, 
interpretability and lower computing time. Due to this 
definite assignability of the project type, we see our 
hypothesis confirmed. 

For similar problems, we therefore recommend 
the use of ensemble methods, considering the 
classification results, the implementation effort and 
the computing time. However, it can be assumed that 
the performance of the neural networks will increase 
with an increasing number of training samples. 

Further work will therefore consist in adding 
additional training samples to the dataset. 
Furthermore, for having a complete picture, besides 
considering the approach presented in this paper, a 
comparative evaluation of the results with other 
classification methods focusing on optimised neural 
networks (e.g. FCN, CNN, LSTM) and ensemble 
methods (e.g. HIVE-COTE) should be performed. 
We will also consider different fold sets in our 
training and testing.  

In our future work, we will also conduct detailed 
considerations for a better understanding of feature 
importance. In order to address the curse of 
dimensionality, the relevance of the individual 
features will be determined, compared and evaluated 
depending on the respective project phases. Finally, 
the implementation of prediction models is planned, 
enabling the prediction of the progression from any 
point in time within the project. 
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