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Abstract: To solve the problem of low model accuracy under noisy data sets, a filtered weighted correction training 
method is proposed. This method uses the idea of model fine-tuning to adjust and correct the trained deep 
neural network model using filtered data, which has high portability. In the data filtering process, the noise 
label filtering algorithm, which is based on the random threshold in the double interval, reduces the 
dependence on artificially set parameters, increases the reliability of the random threshold, and improves the 
filtering accuracy and the recall rate of clean samples. In the calibration process, to deal with sample 
imbalance, different types of samples are weighted to improve the effectiveness of the model. Experimental 
results show that the propose method can improve the F1 value of deep neural network model. 

1 INTRODUCTION 

In recent years, machine learning has played an 
important role in computer vision, information 
retrieval, speech processing, and other scenarios. In 
the field of machine learning, a common type of 
scenario is to use labeled data to train neural networks 
for classification, regression, or other purposes. This 
method of learning potential laws through training 
models is called supervised learning. In supervised 
learning, the learning effect of the model is closely 
related to the quality of data labels. Due to the 
structural characteristics of the neural network, to 
obtain a better learning effect, the amount of training 
data needs to reach a certain scale, that is, a large 
amount of data, to avoid over-fitting for a small 
number of training samples, which leads to the lack 
of generalization of the model. 

When collecting data, considering the cost factor, 
researchers often use methods such as crowdsourcing 
tagging, crawling, and external information analysis. 
However, the different job occupations and technical 
knowledge levels of the marking personnel have led 
to uneven marking quality. In addition, external 
information analysis methods such as analyzing CDR 
information, because the information is easily 

tampered with, the reliability cannot be guaranteed, 
and the label quality cannot be guaranteed, resulting 
in label noise in the data set. These data sets that 
cannot guarantee quality and contain label noise are 
called noisy data sets. 

To sum up, due to the contradiction between the 
demand for the amount of data by the neural network 
and the cost of manual labeling, the generation of 
noisy data sets is an inevitable result of the massive 
data collection process (Algan G & Ulusoy I. 2019). 
The research on training a more accurate deep neural 
network model under the labeled noise data set has 
great practical value. 

In the past five years, the main research papers on 
label noise have increased by multiples (Song H et al. 
2020), and the content of these papers covers 
theoretical and application research, which reflects 
the theoretical research value and practical 
application value of label noise learning. 

According to the research object, the existing 
research can be divided into the following three types. 
The first is optimization processing based on training 
data, which filters or relabels suspected wrong labels 
through clustering, multi-classifier voting, etc., and 
uses the cleaned data to train the model to improve 
model accuracy (Nicholson B, Sheng SV, Zhang J, 
2015); In optimize the processing based on the 
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network structure, the model is robust to noise by 
optimizing the network structure, such as setting two 
identical neural networks to guide each other, 
learning the loss value of each other to avoid falling 
into overfitting and increasing robustness (Han B, 
Yao Q, Yu X. 2018); The third is the optimization 
processing based on the loss function, which 
constructs a loss function that is robust to label noise, 
and reduces the influence of label noise through the 
robustness of the loss function itself (Zhang Z, 
Sabunc M. 2018; Wang Y, Ma X, Chen Z, et al. 
2019). Among them, the optimization of network 
structure and loss function is to increase the 
robustness of the model. Since it is impossible to 
judge whether the data used contains label noise 
during modeling, the performance of the model 
cannot be guaranteed. Therefore, optimization 
processing based on training data is more common 
(Zhang ZZ, Jiang GX & Wang JW, 2020). 

Training data optimization processing can be 
divided into two categories based on processing 
methods, namely noise sample removal (Sluban, B., 
Gamberger, D. & Lavrač, N, 2014) and noise sample 
relabeling (Y. Wei, C. Gong, S. Chen, T. Liu, J. Yang 
& D. Tao, 2020). Considering the operational 
efficiency, the method of sample removal is more 
common than the method of sample relabeling 
(Frénay B, Verleysen M, 2014). However, the 
problem of excessive removal may occur in the 
sample removal process, that is, the number of noise 
samples removed is much larger than the original 
noise samples. Therefore, when measuring noise 
sample removal methods, in addition to considering 
the proportion of clean samples after removal, it is 
also necessary to consider the recall rate of clean 
samples. 

In the process of sample processing, the 
classification method based on confidence is mostly 
used (Chen QQ, Wang WJ, Jiang GX, 2019), but the 
method based on confidence needs to obtain the result 
after the model learning is completed, so the time 
consumption is relatively large. At the same time, the 
method based on confidence will lead to a higher 
degree of correlation between the classification result 
and the reliability of the training sample. The 
traditional way of classification is mostly a single 
fixed threshold to classify the sample (Chen QQ et al. 
2019). However, this method is prone to the problem 
of prediction deviation near the threshold. In this 
regard, Zhang Zenghui et al. (2020) proposed a local 
probability sampling method based on confidence, 
but this division method uses a single interval for 
threshold sampling, which is overly dependent on the 

artificially set interval, and the performance under 
different noise rates is quite different. 

Taking model training as a node, the entire model 
construction process can be divided into the following 
three stages: data processing before model training, 
network construction during model training, and 
other optimization operations after model training. 
Data processing mostly occurs in the first stage, that 
is, before model training, and then put the processed 
data into different models for training. Data 
processing in the first stage means that the second and 
third stages of the model building process cannot 
touch the original data set. In particular, when the 
removal method is used to process suspected noise 
samples, the size of the data set will be relatively 
reduced, and the size of the data set will have an 
impact on the training of the model (Lei SH, Zhang 
H, Wang K, et al. 2019). Therefore, training the 
model after the data is preprocessed by the noise 
filtering algorithm does not guarantee the 
improvement of the model classification accuracy. 

This paper proposes a training method for 
weighted correction after filtering for data containing 
label noise. The main contributions of the proposed 
method are: 

1.  Propose a random threshold label noise filtering 
algorithm in the double interval based on the 
loss value, which improves the sample filtering 
accuracy and recall rate while reducing time 
loss. 

2. Based on the filtered data, a weighted correction 
training method is proposed. Through secondary 
training, the weight of the correct sample and 
the weak sample category is increased, thereby 
improving the accuracy of the model. 

3. Analyze the influence of noise ratio and model 
depth on the proposed method based on 
experiments, and provide reference data for 
subsequent applications. 

2 FILTERED WEIGHTED 
CORRECTION TRAINING 
METHOD 

The processing flow of weighted correction with filter 
data (WCF) is mainly divided into two parts, which 
are based on the noise label filtering algorithm of the 
double interval. The purpose is to process the original 
data set and the weighted correction training method. 
The purpose is to apply the filtered data to the 
correction training of the model. 
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2.1 Noise Label Filtering Algorithm 
based on Double Interval 

The single fixed threshold division method is prone 
to forecast deviation problems near the threshold. 
However, the method of multiple random threshold 
extraction can blur the threshold boundary and avoid 
the problem of misclassification caused by clear 
boundaries. The selection of the random threshold 
here needs to be set according to the characteristics of 
the data to be classified. The interval is set to ensure 
the reliability of the threshold in the random process. 
The single interval refers to a single interval obtained 
by artificial setting or calculation, and the random 
threshold is any value in the interval; the double 
interval refers to the modification of the boundary 
value of the single interval by artificial setting or 
calculation, and the boundary value of the single 
interval is modified. Based on this, the value range is 
reduced to increase the reliability of the random 
threshold. 

Using the different performance of clean samples 
and noise samples in the training process is a common 
way to distinguish sample categories, such as 
confidence distinction (Chen QQ et al. 2019). The 
training process of the network model generally 
transitions from the under-fitting state to the over-
fitting state. In the early stage of training, the network 
can fit clean samples well (J. Huang, L. Qu, R. Jia & 
B. Zhao, 2019), so the loss value of noise samples will 
be larger than the loss value of clean samples (Zhang 
CY, Samy Bengio, Moritz Hardt, et al.  2017). In the 
later stage of training, the network tends to fit each 
sample, so the loss value gap between the noise 
sample and the clean sample is no longer obvious, and 
it is not strongly separable. Therefore, by recording 
the loss value of the sample in the early training stage, 
the sample category can be distinguished, that is, it 
can be judged that the sample is a noise sample or a 
clean sample. In particular, the method of using the 
loss value to distinguish samples can be compatible 
with any network model and is equivalent to the wide 
availability of the model using the confidence method. 
At the same time, the method can reduce the number 
of model training rounds and reduce time loss. 

It should be noted that, unlike the method of using 
confidence, the range of loss values is different during 
different rounds of training. Therefore, proportional 
thresholds should be used instead of numerical 
thresholds in processing. The threshold value range is ሾ0,1ሿ, that is, the relative position of the value in the 
entire numerical range. Therefore, it is necessary to 
sort the sample loss values according to the absolute 
value first. 

Let the threshold of random extraction be r, r is 
any value in the interval ሾ0,1ሿ , and the one-fold 
interval refers to setting a filtering interval ሾm, nሿ 
from the theoretical interval [0,1], that is, 0 ൏ m ൏ n ൏ 1, r is any value in the interval ሾm, nሿ. Among 
them, samples with a ratio value less than r are 
regarded as clean samples Dc, and samples with a 
ratio greater than or equal to r are regarded as noise 
samples Dn. When the value of m is too small, the 
probability that the value of r is too small increases. 
At this time, the number of suspected clean samples 
screened is less, and the accuracy rate is higher. When 
the value of m is too large, the probability that the 
value of r is too large increases. At this time, the 
number of suspected clean samples screened is large, 
and the reliability is relatively low. 

In the above one-fold random sampling, the value 
of r depends on the setting of hyperparameters m and 
n. When the difference between m and n is large, the 
probability that the value of r is close to the 
reasonable boundary value becomes low. Therefore, 
this paper constructs the double interval ሾp, qሿ, which 
is based on the single interval ሾm, nሿ, as shown in 
Figure 1.ሾp, qሿ is a subinterval of ሾm, nሿ, which means m ൏ p ൏ q ൏ n. p is the position of the sample with 
the second largest difference between adjacent 
samples in the ordered loss value array in the entire 
ordered array, q is the position of the sample with the 
largest difference between adjacent samples in the 
ordered loss value array in the entire ordered array. j 
represents any classification experiment.  

 
Figure 1: Schematic diagram of random threshold data 
division in the double interval. 

Because the loss value of the noise sample is 
relatively large, the difference in the loss value 
between different noise samples is also relatively 
large. In order to avoid the maximum and second-
largest value of 𝑑௜ from being concentrated on 
samples with larger loss values, this paper sets a new 
size strategy, which is regarded as the value of 𝑑௜ାଵis 
larger than 𝑑௜  when 𝑑௜ାଵ ൐ 2𝑑௜ .Through this 

Filtered Weighted Correction Training Method for Data with Noise Label

179



constraint, the reliable values of p and q are restricted, 
and the algorithm flow is shown as follows. 

Algorithm 1: getPQ. 

 
The experimental results of a single sample 

classification may be accidental, leading to errors. 
Therefore, it is more reliable to construct different 
data division combinations by randomly extracting 
thresholds multiple times in the interval, and the 
intersection of them is more reliable. After N random 
selections in the interval ሾm, nሿ, a total of N sets of 
data divisions are obtained, which can be expressed 
as Equation 1, where 𝐷𝑐௜  and 𝐷𝑛௜  are arrays of 
indefinite length. D = 〈ሺ𝐷𝑐ଵ, 𝐷𝑛ଵሻ ⋯ ሺ𝐷𝑐௡, 𝐷𝑛௡ሻ〉   (1)

Consensus voting and majority voting are two 
commonly used strategies in ensemble learning. The 
main difference lies in the strength of consensus. In 
the confidence method, voting can be regarded as the 
matching degree between the predicted label and the 
actual label. In this method, voting refers to the 
number of times that the sample 𝑑௜ appears in the 𝐷𝑐௜ 
data set in 𝐷. Majority voting refers to the number of 
times that 𝑑௜  appears in the 𝐷𝑐௜  data set in N  data 
division groups, and the count is greater than the set 
threshold. See  Formula 2. When 1 ൏ c ൑ 2 , count 
can represent the majority. If you want a more 
detailed definition of the majority, you can set it by 
adjusting the value of c. In particular, when c =1,count = N, it represents the consensus vote. 𝑐𝑜𝑢𝑛𝑡 ൐ 𝑁𝑐     (2)

Consistent voting is equivalent to taking the 
intersection of each division result. This screening 

method will cause the voting result to be excessively 
dependent on each data division situation. It is more 
sensitive to any abnormal classification and has poor 
robustness. The traditional majority voting method, 
that is, the count counting method when c = 2, will 
increase the unreliability of the final voting result. 
Therefore, this paper adjusts the value of c to achieve 
the purpose of mixed consensus voting and majority 
voting. In the course of the experiment, c is assigned 
a value of 1.25, which is based on the same voting 
situation of 80% and above. Increase the reliability of 
voting results by reducing the influence of abnormal 
samples on the classification situation. 

In summary, the complete noise tag filtering 
algorithm (RTD, Random Threshold in Double 
Interval) based on the random threshold in the double 
interval can be summarized as the steps. 

Algorithm 2: RTD algorithm. 

 

2.2 Weighted Correction Training 
Method 

The network model tends to learn simple samples in 
the early stage of training, and learns the more 
difficult noise samples in the later stage of training (J. 
Huang et al. 2019). Therefore, the model can still 
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learn clean sample features through early training on 
the basis of noisy data. The reason for the decrease in 
model accuracy is often the over-learning of noise 
samples in the later stage of training. Therefore, this 
article adds an early stopping mechanism to the 
network model training to reduce the impact of noise 
samples in the later stage of training by reducing the 
number of rounds, and then use the filtered data for 
weighted correction training to guide the fine-tuning 
of the trained model. 

 
Figure 2: Flow chart of weighted correction training method 
after filtering. 

Let W be a weighted vector, as shown in Equation 
3, where w௜  is the weighted value of the i-th tag 
category. 𝑊 = 〈𝑤ଵ, 𝑤ଶ, 𝑤ଷ ⋯ , 𝑤௡〉 (3)

Assuming that the sample prediction vector is Y, 
the loss value of different types of samples can be 
modified by the dot product operation between the 
weighting vector W and the sample prediction vector Y, so that the correction network generates different 
loss values for different label categories. The loss 
value plays a role in guiding the adjustment of various 
parameters of the neural network during the back 
propagation process. When misclassification occurs, 
when the original loss value is the same, the label 
category with a larger weight value has a greater 
impact on the adjustment of each parameter of the 
neural network than the label category with a smaller 
weight value. This way of constructing the loss value 
can encourage the model to learn more sample 
characteristics of the label category with a large 
weight value. In the calibration training stage, this 
way of controlling the optimization direction of the 
model can make the model pay more attention to the 

samples that perform poorly during the training 
process. 

Assuming that the sample prediction vector Y is 
Equation 4, the situation after weighting calculation 
is shown in Equation 5, which is adding category 
weight to the corresponding label category. 𝑌 = 〈𝑦ଵ, 𝑦ଶ, 𝑦ଷ ⋯ , 𝑦௡〉 (4)𝑌ᇱ = 〈𝑤ଵ𝑦ଵ, 𝑤ଶ𝑦ଶ, 𝑤ଷ𝑦ଷ ⋯ , 𝑤௡𝑦௡〉 (5)

Since the filtered data is used in the weighted 
correction training stage, a loss function with strong 
fitting ability, such as a cross-entropy loss function, 
should be used. At this time, the process of 
calculating the loss value can be expressed as 
Equation 6, if and only if 𝑦௜ is 1, the loss value is 𝑤௜ 
times the original value. 

𝑙𝑜𝑠𝑠 = െ ෍ 𝑦௜ᇱ log 𝑦ො௡
௜ୀଵ = െ ෍ 𝑤௜𝑦௜ log 𝑦ො௡

௜ୀଵ  (6)

From the above analysis, it can be known that the 
weight vector W is related to the model performance 
after the preliminary training, that is, before the 
correction training. Assuming that the accuracy of 
each label category before correction training is 
vector A, where the classification accuracy of the i-th 
label category is 𝑎𝑐𝑐௜, then the weighted value 𝑤௜ of 
the i-th label category can be expressed as Equation 
7. 𝑤௜ = 𝑡1 + 𝑎𝑐𝑐௜ (7)

Among them, the parameter t is responsible for the 
adjustment of the weighted value of each label 
category. The recommended value is ሾ2,4ሿ. Too small 
value makes the samples indistinguishable, and too 
large value will cause the model learn too much from 
the samples under the label category with a larger 
weight. Over-optimization reduces overall 
performance. In particular, when the sample accuracy 
rate is 0, such as when the sample data of this category 
does not exist in the training process, etc., the 
weighted value 𝑤௜ still has a mathematical meaning 
under Formula 7. When the sample accuracy rate is 1, 
if the predicted value of the sample of this category is 
100% correct, if the value of t is 2 at this time, the 
corresponding 𝑤௜  value is 1, that is, no weighting 
operation is performed. 

In summary, the overall process of the filtered 
weighted correction training method can be shown as 
Figure 2. 
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3 RESULTS AND ANALYSIS 

In order to verify the effectiveness of the WCF 
training method, the current commonly used data 
preprocessing methods are selected for comparison, 
including a random threshold in a single interval, a 
fixed threshold, and the RTD tag noise filtering 
algorithm proposed in this paper. The mircoF1 of the 
model is used as a measurement index, and each 
experiment is repeated 5 times with the average value 
as the final effect to reduce chance. 

The CIFAR10 data set was randomly modified 
with label values from 10% to 60% to construct noise 
data to explore the performance of the WCF training 
method under different noise ratios r. In the selected 
label filtering algorithm, the first interval is set to 
[0.4, 0.8], the loss function is the cross-entropy loss 
function, and the noise label filtering data is the first 
10 rounds of training results, that is, the 10 division 
results are used for ensemble learning. 

Use the three-layer convolutional neural network 
(called CNN3), VGG16 and ResNet50 to conduct 
experiments to explore the performance of the WCF 
algorithm in different depths and different scales of 
network models. 

Use the precision rate P defined by Equation 8 and 
the recall rate R defined by Equation 9 to measure the 
performance of the RTD noise filtering algorithm. 𝑃 = TP

TP + FP (8)

𝑅 = TP
TP + FN (9)

Where TP represents the number of clean samples 
classified as clean samples, FP represents the number 
of noise samples classified as clean samples, FN 
represents the number of clean samples classified as 
noise samples, and TN represents the number of noise 
samples classified as noise samples Number. 

3.1 Effectiveness Analysis of Noise 
Filtering Algorithm 

The experiment in this section mainly explores the 
performance of the RTD algorithm relative to the 
random threshold division method in the one-fold 
interval and the fixed threshold division method for 
clean sample extraction. This section discusses the 
effects of different methods from the two perspectives 
of precision and recall of the extracted clean samples. 
In addition, considering that the noise rate of the data 
set is unknown in actual production and life, it is also 
meaningful to integrate the performance of the 
method under different noise rates. The experimental 
models all use ResNet50, and the experimental results 
are recorded in Table 1. 

It can be seen from Table 1 that the average effect 
of the RTD algorithm is the best. Compared with the 
filtering method of a single interval random 
threshold, the RTD algorithm not only improves the 
accuracy rate by nearly 1%, but also improves the 
recall rate by 5%. This means that under the same 
 

Table 1: The performance of different noise filtering algorithms under different noise rates. 

noise 
rate RTD(our method) random threshold in 

the one-fold interval 
fixed threshold 

0.4 
fixed threshold 

0.6 
fixed threshold 

0.8 

 P R P R P R P R P R 

0.1 0.998 0.626 0.998 0.418 0.994 0.033 0.999 0.440 0.995 0.816 

0.2 0.989 0.678 0.992 0.429 0.988 0.052 0.993 0.511 0.965 0.899 

0.3 0.965 0.675 0.963 0.526 0.961 0.096 0.971 0.620 0.879 0.942 

0.4 0.920 0.665 0.909 0.548 0.899 0.142 0.900 0.678 0.764 0.950 

0.5 0.823 0.516 0.803 0.574 0.791 0.178 0.786 0.696 0.650 0.946 

0.6 0.633 0.475 0.616 0.537 0.606 0.171 0.605 0.639 0.510 0.913 

0.7 0.428 0.465 0.418 0.431 0.406 0.157 0.424 0.585 0.373 0.873 

0.8 0.266 0.329 0.265 0.474 0.271 0.187 0.264 0.518 0.236 0.794 

0.9 0.103 0.380 0.101 0.381 0.097 0.167 0.102 0.434 0.101 0.716 

Average 0.681 0.534 0.674 0.480 0.668 0.131 0.672 0.569 0.608 0.872 
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accuracy rate, the RTD algorithm can identify more 
clean samples. Compared with other fixed threshold 
methods, the RTD algorithm can increase the average 
accuracy rate by 1.5% to 7.3%. 

When the noise rate is low, that is, r≤0.3, the 
filtering method with a single threshold of 0.6 has a 
higher recognition accuracy for clean samples, but the 
performance is not much different from other 
methods. This is caused by the large difference in loss 
between clean samples and noise samples at low 
noise rates. Large numerical differences lead to 
strong distinguishability, which ultimately leads to a 
higher overall level of accuracy at low noise rates. 
Under the same circumstances, the RTD method can 
increase the recall rate while ensuring high accuracy, 
and screen out more samples, which is more 
conducive to the retention of clean samples. 

When the noise rate is high, that is, r≥0.8, the 
accuracy of each method is not much different. Except 
for the filtering method with a single threshold of 0.8, 
the difference in accuracy of other methods is within 
1%. This is because when the threshold is set to a fixed 
value of 0.8, most of the samples will be retained, and 
the number of retained samples far exceeds the actual 
number of clean samples. Therefore, the filtered data 
contains a lot of noise data, which leads to a decrease 
in accuracy. In real life, the data set with too high noise 

rate should be cleaned first, and a batch of obvious 
noise samples should be deleted according to the data 
logic to reduce the noise rate before putting it into noise 
label filtering. 

When the noise rate is 0.4≤r≤0.7, the RTD 
algorithm has a 0.4%~17.3% improvement in 
accuracy compared with other methods. In particular, 
compared with the one-fold interval random 
threshold method, the accuracy is improved by 
1.1%~2%. This is because the setting of the double 
interval reduces the range of possible values of the 
random threshold, so that under the unknown noise 
rate, the proportion of clean samples is reasonably 
estimated to increase, and the probability of the 
effective threshold is increased to improve the 
recognition accuracy. 

3.2 Effectiveness Analysis of the 
Weighted Correction Training 
Method after Filtering 

In this section, the experimental results of the WCF 
training method proposed in this paper and the 
common method preprocessed by the label noise 
filtering algorithm under different noise rates and 
different model scales are recorded in Table 2. 

Table 2: F1 values of WCF combined optimization schemes under different models under different noise rates. 

noise rate 0.1 0.2 0.3 0.4 0.5 0.6 

CNN3 38.92% 33.20% 30.40% 28.57% 26.47% 22.65% 

CNN3+WCF(Method of this article) 40.95% 34.77% 32.42% 31.67% 30.49% 29.49% 

CNN3+RTD 33.56% 32.12% 31.66% 30.87% 29.35% 27.57% 

CNN3+ fixed threshold in the one-fold interval 30.46% 30.63% 28.60% 27.15% 24.49% 20.97% 

CNN3+ fixed threshold 0.6 33.25% 32.27% 28.69% 27.68% 25.36% 24.03% 

VGG16 77.71% 67.84% 60.16% 49.82% 39.46% 28.81% 

VGG16 +WCF(Method of this article) 84.24% 71.23% 62.95% 52.30% 41.82% 29.93% 

VGG16+RTD 79.38% 68.23% 61.14% 50.56% 38.16% 27.70% 

VGG16+ fixed threshold in the one-fold interval 77.24% 65.45% 52.47% 47.06% 37.54% 27.37% 

VGG16+ fixed threshold 0.6 77.95% 62.54% 48.51% 46.26% 35.85% 29.08% 

ResNet50 77.98% 60.88% 54.07% 46.74% 36.36% 26.02% 

ResNet50 +WCF(Method of this article) 80.53% 62.41% 56.70% 49.80% 39.67% 28.89% 

ResNet50+RTD 79.02% 61.56% 54.71% 46.44% 37.69% 26.49% 

ResNet50+ fixed threshold in the one-fold interval 75.05% 61.15% 53.22% 41.49% 34.65% 25.59% 

ResNet50+ fixed threshold 0.6 75.61% 60.79% 52.96% 44.32% 35.42% 26.43% 
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It can be seen from Table 2 that the WCF method 
proposed in this article performs best at any noise 
rate. Compared with other methods, the F1 value of 
the model is improved by 0.76%~14.44% under 
different noise rates and different network depths. 

The model obtained by the RTD preprocessing 
data is better than other methods. Compared with 
other filtering methods, the RTD method blurs the 
threshold boundary while reasonably narrowing the 
threshold value range and increasing the accuracy of 
the division. The experimental results demonstrate 
the effectiveness of the filtering algorithm used in the 
WCF method. 

Using filtering algorithms to preprocess the data 
does not necessarily increase the model F1 value 
significantly. This is because the filtering algorithm 
reduces the size of the data set while improving the 
accuracy of the data set. While filtering out noise 
samples, a large number of clean samples do not enter 
the training process. The WCF method retains the 
initial training process to avoid the decrease in model 
accuracy caused by the reduction of sample size. In 
addition, increasing the proportion of clean samples 
can achieve almost the same effect as using the 
original data, but the reduction in the amount of data 
can significantly reduce the time and space loss of 
training the model. 

Compared with single training, the WCF method 
can increase the model F1 value by 1.12%~6.84%. 
The effect is better under low noise, deep networks, 
and the best effect is for simple networks under high 
noise conditions. In VGG16, as the noise rate 
increases, the gain between the WCF optimization 
method and the original training method gradually 
decreases. The main reason is that the deeper network 
learns the model more thoroughly, so the noise in the 
filtered sample is deeper in the weighted correction 
process. 

In summary, the WCF training method has better 
model performance than single training and data pre-
processing before training. 

4 CONCLUSIONS 

This paper proposes a filtered weighted correction 
training method for the data set with noise label. The 
accuracy of the model is improved by adding a 
weighted correction stage after the model training. 
The data used in the correction training is filtered by 
a random threshold algorithm in the double interval 
sample. The proposed method performs well in 
models of different depths. 
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