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Abstract: With the Automatic Identification System installed on more and more ships, people can collect a large number 
of ship-running data, and the relevant maritime departments and shipping companies can also monitor the 
running status of ships in real-time and schedule at any time. However, it is challenging to compress a large 
number of ship trajectory data so as to reduce redundant information and save storage space. The existing 
trajectory compression algorithms manage to find proper thresholds to achieve better compression effect, 
which is labor-intensive. We propose a new trajectory compression algorithm which utilizes Convolutional 
Neural Network to perform points classification, and then obtain a compressed trajectory by removing 
redundant points according to points classification results, and finally reduce the compression error. Our 
approach does not need to set the threshold manually. Experiments show that our approach outperforms 
conventional trajectory compression algorithms in terms of average compression error and fitting degree 
under the same compression rate, and has certain advantages in time efficiency.

1 INTRODUCTION 

In recent years, with the continuous expansion of the 
scale of global trade, shipping has gradually become 
the main means of trade transportation among 
countries. In order to ensure the safety of the marine 
navigation vessel, position the vessel in real-time (G. 
Pallotta, M. Vespe, and K. Bryan, 2013), plan the 
channel for the management of maritime traffic, and 
improve the efficiency of the ship (Al-Zaidi R, Woods 
J. C., Al-Khalidi M., et al., 2018), the International 
Maritime Organization demands that ships with more 
than 300 tons must be equipped with Automatic 
Identification System (AIS) (Muckell J., Hwang J. H., 
Lawson C. T., et al., 2010), through which a ship 
sends its own position coordinates to nearby base 
stations. The shore-based equipment can generate the 
corresponding ship trajectory data based on these time 
series containing the real-time coordinates of the ship. 
However, due to the large number of ships, the daily 
generated data will be huge, and there are a lot of 
redundant data, which not only consume a great 

amount of memory space, but also increase the burden 
of server analysis and route data processing (Vries G., 
Someren M. V., 2012). Therefore, how to compress 
the AIS trajectory data effectively has attracted many 
researchers.  

Trajectory compression algorithms are mainly 
classified to offline algorithm and online algorithm. 
This paper focuses on the offline trajectory 
compression algorithm. An offline trajectory 
compression algorithm obtains a complete original 
track and then compresses it. Douglas Peucker 
algorithm (DP) is the most classical offline 
compression algorithm. It determines which points 
need to be eliminated by recursive segmenting of 
tracks, from whole to local, and gradually refining 
compression interval (Liu J., Li H. & Yang Z., et al, 
2019). Singh et al. (Singh A. K., Aggarwal V. & 
Saxena P., et al., 2017) proposed a SPM algorithm 
based on the DP algorithm. It adjusts the selection of 
baseline of error measurement and compares the error 
of trajectory points in turn using new error 
measurement methods. Long et al. (Long Hao et al., 
2018) proposed a Trajectory Compression algorithm 
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with Adaptive parameters (ATC), where the 
automatic threshold calculation is realized by 
inputting an expected compression rate λ by users. 
Kangasuan et al. (Hansuddhisuntorn K., Horanont T., 
2019) proposed Improvement of TD-TR Algorithm. 

Inspired by the success of deep learning in recent 
years, this paper aims to improve the performance of 
trajectory compressing by using Convolutional 
Neural Network (CNN). A new algorithm, named 
Trajectory Compression based on Convolutional 
Neural network (TC-CNN) is proposed, which 
utilizes CNN to perform points classification, and 
then obtain a compressed trajectory by removing 
redundant points according to points classification 
results, and finally reduce the compression error. The 
contributions of this paper are as follows: 

1 To the best of our knowledge, it is the first work 
to utilize deep learning technique on the problem 
of offline trajectory compression. The CNN-
based recognition of feature points and non-
feature points is leveraged to compress tracks.  

2 The designed CNN can classify the feature 
points and redundant points in the track with 
high precision, and significantly reduces the cost 
of labour-intensive threshold adjustments 
required by most of the existing trajectory 
compression algorithms; 

3 Experiments are conducted to compare the 
performance of the proposed approach with 
several benchmark algorithms. The results show 
the efficacy of the proposed approach. 

2 RELATED WORK 

2.1 Trajectory Compression Algorithm 

Douglas–Peucker (DP) (Singh A K, Aggarwal V & 
Saxena P, 2017) is the most classic algorithm in the 
off-line trajectory compression algorithm. It needs to 
set a distance thresholdε , and then calculate the 
maximum vertical distance between the other points 
in the track and the starting and ending points of the 
track. If the distance is less than the threshold, then all 
the points except the starting and ending points of the 
track will be removed as redundant points. If the 
distance is greater than the threshold, the trajectory is 
split from the point, and then the sub trajectory is 
recursively processed. DP is used widely as a 
benchmark of trajectory compression algorithm. 

Trajectory compression algorithm with adaptive 
parameters (ATC) (Long Hao et al., 2018) abandoned 

the compression threshold in the traditional trajectory 
compression algorithm by setting the compression 
ratio λ, and used the compression ratio to calculate the 
threshold automatically. At the same time, the 
compression algorithm is divided into three stages. 

Firstly, the synchronous Euclidean distance of 
each trajectory data point is calculated, and the 
maximum value is selected. 

Secondly, the compression threshold ε is 
calculated according to the preset compression ratio λ 
and the maximum synchronous Euclidean distance. If 
the current Trajectory compression ratio is greater 
than the preset value λ, the current Trajectory 
compression threshold will be adjusted to 90% of the 
previous compression threshold each time except for 
the first time to achieve the purpose of automatic 
calculation of the threshold until the compression 
ratio is less than λ. 

Finally, the first point whose synchronous 
Euclidean distance is greater than ε will be found as 
the dividing point. At the same time, all the track 
points whose synchronous Euclidean distance is less 
than ε will be eliminated. According to the dividing 
point, the track composed of the remaining points will 
be divided into two new tracks, and then the ATC 
algorithm will be used recursively to compress until 
the compression ratio is less than or equal to λ. 

ATC achieves a relatively high fitting degree, but 
incurs a low execution efficiency. 

2.2 Trajectory Compression Evaluation 
Metric 

The widely used evaluation metric is Trajectory 
Compression Ratio (TCR). The main purpose of 
trajectory compression algorithm is to fit the original 
trajectory with as few data points as possible, so as to 
reduce the memory occupation of trajectory while 
reducing the distortion of trajectory as much as 
possible. Therefore, TCR is usually an important 
metric for measuring the effectiveness of a trajectory 
compression algorithm. TCR is defined as the 
percentage of the number of track points Pc after 
compression and the number of track points Pu before 
compression, as shown in Eqn. (1). 

u

c
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p=λ  (1)

Another metric is Average Compression Error 
(ACE). It is the difference between the original track 
and the compressed track in geometry. The 
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calculation of ACE is as follows. First, label the 
original track in time order. Second, calculate the 
vertical Euclidean error of each removed point in the 
compressed track. Third, use the reserved point label 
in the current track and its closest two points as the 
reference point to calculate the vertical Euclidean 
distance of the datum line. Finally, the sum of all 
calculated values is divided by the number of original 
trajectory points to obtain ACE. An ACE δ can be 
calculated by Eqn. (2)： 
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where m is the number of original trajectory points; ri 
(i = 1, ..., n) is a removed point; The subscript i is the 
label of the point in the original trajectory; xi and yi 
are the front and back points of ri ; d is the vertical 
Euclidean distance between ri and the line 
determined by xi and yi. 

3 PROBLEM DEFINITION 

In this section, the trajectory compression related 
definitions are provided. 

Define 1. Trajectory. The AIS data generated by a 
ship on the sea can be regarded as a two-dimensional 
coordinate point with time dimension and 
geographical location dimension (Ti,Gi). The line 
segment formed by the same ship in order of time 
coordinates is the ship's navigation track in a period 
of time. The trajectory includes the location, time, 
direction, route, and geographical area of the ship. 
The two most important attributes are time and 
geographical coordinates, so the ship's moving 
trajectory can be regarded as a mapping relationship 
from time to space M：Ti→Gi. Among them, M is a 
continuous function based on time change, and its 
independent variable time t belongs to Ti. Through 
this function and a certain time value, a two-
dimensional coordinate corresponding to the ship at 
this time point can be obtained(xi,yi). 

Define 2. Redundant Points and Feature Points. In 
a track with multiple points, if some of them are 
removed, only the remaining points can fit the 
original track well, and the information loss is within 
the acceptable range, the removed track points are 
called redundant points, and the remaining points are 
called feature points. 

Define 3. Precursor Point and Successor Point. 
Hypothesis pi is a point on the trajectory T = {pi-2, pi-

1, ..., pi+n}, of the same ship in a continuous time series, 
Then the two points adjacent to each other in the time 
series are the adjacent points of the trajectory. The point 
earlier than pi is called the precursor point of pi, and the 
point later than pi  is called the successor point of pi. 

Definition 4. Synchronous Euclidean distance 
(Singh A K, Aggarwal V & Saxena P, 2017). Hypothesis 
pi is a point in the original trajectory，Connect the 
starting and ending points of the datum of pi (which 
can be the precursor and successor points of the point). 
If the ship is regarded as moving at a constant speed 
during this period, the distance between pi` and the 
projection point pi` of its synchronous position on the 
starting and ending line of the datum is its 
synchronous Euclidean distance, which is greater than 
or equal to the vertical distance from pi` to the starting 
and ending line of the datum. As shown in Fig. 1. 

 
Figure 1: Illustration of synchronous Euclidean distance. 

The solid line segment is a track from point A to 
point E, AE is the connecting line segment composed 
of the datum starting and ending points A and E of G, 
the perpendicular foot of point G on the AE 
connecting line is point G, and the time interval 
between A and G is t1, The time interval of AE is t2, 
and AE can be regarded as a function of time interval 
td, Where 0 ≤ td ≤ t2, Then the coordinate point of 
projection point C of G on AE should be 
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In AIS trajectory processing, in order to facilitate 
practical use, improve calculation accuracy and 
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reduce errors, the longitude and latitude coordinates 
in AIS data are usually converted to their 
corresponding Mercator coordinates (Walkenhorst B T, 
Nichols S,2020). Eqn. (6-9) are used to calculate 
Mercator coordinate, where r0 is the radius of the 
datum latitude circle, a is the radius of the major axis 
of the earth's ellipsoid, q is the equivalent dimension, 
and e is the first eccentricity of the earth's ellipsoid (Li 
Houpu, Li Haibo & Tang Qinghui., 2019). Suppose that 
the longitude and latitude coordinates of G are

),( ii yx , and its corresponding Mercator coordinates 
are (φ,ω). 
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Suppose that the coordinate of point G is
),,( iii tyx . The coordinate of projection point C of 

its synchronous position is ),,( 、、、

iii tyx  . Then the 
coordinate calculation of C is： 
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From the Mercator coordinates (φ,ω) of G and the 
Mercator coordinates (φ`,ω`) of the projection point 
C of its synchronous position, the synchronous 
Euclidean distance of G can be obtained by Eqn. (12). 

22 )`()`(sed iiii ωωφφ −+−=  (12)

Eqn. (12) is the length of the GC segment, as 
shown in Fig. 1. 

4 TC-CNN 

The proposed approach TC-CNN consists of two part: 
the point classification CNN and the trajectory 
compression algorithm, which are elaborated as 
follows. 

4.1 Point Classification CNN 

We use an 8-layer CNN to classify the track points 
into redundant points and feature points, whose 
architecture is shown in Fig. 2. The input layer is 
followed by a fully connected layer, and then a 
flattening layer is connected to transform the input 
into data with appropriate dimension. The third layer 
is a convolution layer, which is followed by a max 
pooling layer. After the data are reshaped by another 
flatten layer, they are feed into two fully connected 
layers one after another. Finally, the data are classified 
by the output layer into two categories. 

 
Figure 2: Architecture of the Point Classification CNN. 

In the training phase the CNN, the epoch is 150, 
the optimizer is Adam, the batch size is 64, the initial 
learning rate is 0.005, and the cross entropy function 
is used as the loss function.  

4.2 Trajectory Compression Algorithm 

The flowchart of the proposed trajectory compression 
algorithm is shown in Fig. 3. The process of the 
algorithm consists of five phases. 

 
Figure 3: Flow chart of the proposed algorithm. 

The first phase is coordinate transformation. 
Because the coordinates of original trajectory data are 
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longitude and latitude coordinates, in order to ensure 
the accuracy of feature calculation, it is necessary to 
convert longitude and latitude coordinates into 
Mercator coordinates. 

The second phase is feature calculation and 
normalization. For each point in the track, the 
synchronous Euclidean distance of the corresponding 
reference starting and ending points (i.e., the original 
track or the split sub-track starting and ending points) 
and the deflection angle, adjacent time difference and 
adjacent speed difference based on the precursor point 
and the successor point are calculated, respectively. 
Then, the normalization operation is carried out, after 
which the four features form a vector of features 
corresponding to the trajectory point. 

The third phase is track point classification. The 
feature vector sequence corresponding to each point 
of the original trajectory is input into the trained point 
classification CNN, where each point is classified into 
either redundant or feature points. 

The fourth phase is sub-trajectory splitting. Based 
on the output of the point classification CNN, the 
original trajectories are divided into sub-trajectories 
by using Alg. 1. The sub-trajectories are further 
processed through the second and third phase. Then, 
the redundant points in the sub-trajectories are 
identified and removed. 

The fifth phase is the optimization of sub-
trajectory compression results. According to the 
classification results and Alg. 2, the compressed sub 
trajectory is optimized, and the optimization results 
are combined into a complete compression track. 

4.2.1 Sub-trajectory Compression 

The feature of each point in a preprocessed original 
trajectory T0= {t1, t2, …, tn} requires to be calculated.  

Firstly, the synchronous Euclidean distance of the 
rest points in the trajectory is calculated based on the 
global view, with the starting point t1 and the ending 
point tn as the reference points. At the same time, the 
deflection angle, adjacent time difference and 
adjacent speed difference are calculated based on the 
precursor and successor points of each point 

Secondly, the calculated feature sequence is input 
into the trained network model for trajectory point 
classification. The maximum synchronous Euclidean 
distance of one or more trajectory points classified as 
redundant points are used as the threshold, with which 
the original track is split. The specific splitting 
process is as follows: if the maximum synchronous 
Euclidean distance of the track points except t1 and tn 

is less than the threshold, the synchronous Euclidean 
distance of other points in the sub-track is updated 
with the starting and ending point of the current sub-
track as the reference point, and then the sub-track is 
split. The trace is compressed. If the maximum 
synchronous Euclidean distance of the point except t1 
and tn is greater than the threshold, the track is split 
from the point. 

Finally, the synchronous Euclidean distance of the 
sub-trajectory is calculated with its start and 
endpoints again.  

The above process is carried out recursively, and 
summarized as Alg. 1. 

Algorithm 1: SubTrajCompress. 

 

4.2.2 Compression Error Reduction 

It is possible to further reduce the compression error 
of the obtained trajectory. 

Firstly, the data points in the original trajectory are 
labeled according to their time order, and the intervals 
are divided according to the trajectory splitting results 
of Alg. 1.  

Secondly, the original trajectory is divided into 
optimized intervals according to the split sub 
trajectory, and then the two trajectory points 
belonging to different categories are replaced by 
categories, so as to ensure that the compression ratio 
will not be changed, After each transformation, the 
average compression error and Hausdorff distance 
between the current trajectory segment and the 
original trajectory segment are calculated, and the 
result with the smallest error is retained as the 
optimization result of the current trajectory segment. 

Finally, the optimized compressed trajectory can 
be obtained by combining the optimization results of 
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each trajectory segment.  
The above process is summarized as Alg. 2. 

Algorithm 2: ReduceCompressErr. 

 

5 EXPERIMENTS 

5.1 Data Set for CNN Training 

The training data are from AIS records. The sample of 
feature points and redundant points are obtained by 
using several conventional trajectory compression 
algorithms, e.g. SPM algorithm based on synchronous 
Euclidean distance, improved top-down time ratio 
compression algorithm, ATC algorithm based on an 
adaptive threshold. In the end, we build a training data 
set with 18,000 feature points and 18,000 redundant 
points. 

5.2 Experimental Results 

In this section, the run time, TCR and ACE of TC-
CNN are evaluated and compared with the DP and 
ATC.  Due to the large amount of AIS data, only part 
of the ship data is randomly selected as experimental 
data to verify the algorithm model effect. In order to 
ensure the preciseness of the experimental results, all 
the experimental results are based on the compression 
ratio of the proposed approach. The threshold or 
compression ratio of the compared algorithms are 
tuned to be close to each other with a variance of no 
more than 2%. The database is MongoDB, the GPU 
card is gtx1060ti, the memory is 16GB, the CPU is 
3.4GHz Core i7 7700hq.  

5.2.1 Comparison of Run Time and TCR 

The time complexity of the considered algorithms are 
all O(nlogn). In order to compare the actual time 
performance of each algorithm, we use 1200 AIS 
trajectories (including 1657647 data points) to test the 
time cost of each algorithm under different 
compression rates, and the results are shown in Table 1. 

Table 1: Run Time under different TCR. 

Algorithm TCR RunTime/ms 

DP  0.859 371,348.00 

ATC  0.876 762,596.00 

TC-CNN  0.872 621,574.00 

It can be seen from table 1 that ATC algorithm has 
the largest time cost, DP algorithm has the lowest time 
cost, and TC-CNN algorithm is in between the time 
cost of TC-CNN algorithm is higher than that of DP 
algorithm because of the time consumption of data 
preprocessing. If the ideal trajectory data is 
compressed, the time performance cost of TC-CNN 
algorithm will be close to that of DP algorithm. 
Therefore, compared with the ATC algorithm, TC-
CNN algorithm has some advantages in running time. 

5.2.2 Comparison of ACE 

The author randomly selected 10, 50, 100, 200 and 
500 ship trajectories from AIS actual data to carry out 
the average compression error experiments 
(compression rate ranges are [0.914,0.928], 
[0.938,0.954], [0.851,0.869], [0.925,0.942], 
[0.872,0.889]). The results are shown in Table 2. 

Table 2: Comparison of ACE. 

#traj. 10 50  100  200  500  

DP 3.51 3.01 4.86 3.34 4.35 

ATC  3.09 2.66 4.18 2.97  3.82 

TC-CNN 3.18 2.47 3.64 2.85  3.23 

As can be seen from Table 2, the average 
compression error of DP algorithm is the highest. Due 
to the introduction of synchronous Euclidean distance 
to measure the time and space characteristics of the 
trajectory, the compression error of ATC algorithm is 
lower than that of DP algorithm. The average 
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compression error of TC-CNN algorithm is close to 
that of ATC algorithm. Although the average 
compression error of TC-CNN algorithm is slightly 
higher than that of ATC algorithm when the number 
of experimental samples is small (10 data), with the 
increase of the number of experimental samples, the 
average compression error of TC-CNN algorithm is 
gradually lower than that of ATC algorithm. 
Considering that there may be some specific 
trajectories in the experiment of a small number of 
data samples, which have better agreement with some 
algorithms, the average compression error of TC-
CNN algorithm is higher than that of ATC algorithm 
This part of the algorithm performs better, so a large 
number of data sample experiments can better reflect 
the overall effect of the algorithm, so on the whole, 
the average compression error of TC-CNN algorithm 
is the lowest. The results show that the accuracy of 
TC-CNN algorithm is higher. 

6 CONCLUSIONS 

This paper proposes a trajectory compression 
approach based on convolutional neural network 
Trace compression algorithm can not only eliminate 
the blindness of threshold determination, but also has 
better applicability. It can improve the compression 
accuracy of the network model by using a training set 
with better feature differentiation or adding training 
set data. The experimental results show that the 
proposed approach can retain the key features of the 
original trajectory and fit the original trajectory well, 
and its compression effect is better than some 
traditional offline trajectory compression algorithms. 
But the algorithm still has some shortcomings, such 
as the time cost is still large, in addition, how to obtain 
typical data sets for model training, in order to 
improve the accuracy of model compression results, 
this is the direction of the next step. 
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