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Abstract: The paper deals with predicting a discrete target variable described by the Poisson distribution based on the
discretized Gaussian explanatory data under condition of the multimodality of a system observed. The dis-
cretization is performed using the recursive mixture-based clustering algorithms under Bayesian methodology.
The proposed approach allows to estimate the Gaussian and Poisson models existing for each discretization in-
terval of explanatory data and use them for the prediction. The main contributions of the approach include: (i)
modeling the Poisson variable based on the cluster analysis of explanatory continuous data, (ii) the discretiza-
tion approach based on recursive mixture estimation theory, (iii) the online prediction of the Poisson variable
based on available Gaussian data discretized in real time. Results of illustrative experiments and comparison
with the Poisson regression is demonstrated.

1 INTRODUCTION

This paper deals with predicting a discrete variable
described by the Poisson distribution. This task is
highly desired in various application fields, which
deal with modeling a number of random indepen-
dent events observed with a constant intensity per
time unit, for example, social sciences, engineering,
medicine and many others (Guenni, 2011). Exam-
ples of specific applications of the Poisson models in-
clude, e.g., the description of the number of bankrupt-
cies (Jaggia and Kelly, 2018), customer arrivals (Don-
nelly, 2019; Anderson et al., 2017), network failures
(Levine et al., 2011), aircraft shutdowns, patients with
specific diseases, file server virus attacks (Doane and
Seward, 2010), boarding passengers (Petrouš et al.,
2019), etc.

In this paper, the model of the Poisson target vari-
able conditioned by continuous explanatory data is
considered. In this area, traditionally, the use of the
Poisson regression models (Heeringa et al., 2010;
Falissard, 2012; Armstrong et al., 2014; Agresti,
2018) as well as their zero-inflated versions (Long
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and Freese, 2014; Diallo et al., 2018) can be met.
In some sources, the application of linear regression
techniques to Poisson-distributed count data due to
the high number of their possible realizations is also
mentioned, see, for instance, (Agresti, 2012).

As regards the description of multimodal Poisson-
distributed data, the publications dealing with mix-
tures of Poisson distributions (Congdon, 2005), mix-
tures of Poisson regressions (Lim et al., 2014; Počuča
et al., 2020) as well as Poisson-gamma models
(Agresti, 2012) can be found in this area. The
Gaussian-Poisson mixture models capturing the re-
lationship between the Poisson-distributed and Gaus-
sian variables are described in the papers of (Perrakis
et al., 2015; Yu et al., 2016; Zha et al., 2016; Silva et
al., 2019). The parameter estimation of the mentioned
mixture models is solved primarily using the iterative
expectation-maximization (EM) algorithm, see, e.g.,
(Gupta and Chen, 2011).

The studies of (Li et al., 2010; Bejleri and Nan-
dram, 2018; Petrouš and Uglickich, 2020) consider
the Poisson prediction problem close to that discussed
in this paper. In the presented paper, the prediction
approach is based on the description of the relation-
ship between the target Poisson distributed variable
measured for a limited period of time and continu-
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ous explanatory multidimensional Gaussian variable
observed permanently. Their joint model is estimated
and used for the construction of the Poisson predictive
model. The presented solution is based on the three
key points: (i) the discretization of the Gaussian ex-
planatory data, (ii) construction of local models of the
Poisson target variables on the discretization intervals
on explanatory data (i.e., their clusters), and (iii) pre-
diction of the target variable with the help of actual
discretization. The discretization of the continuous
explanatory measurements is proposed with the help
of the recursive mixture-based clustering (Kárný et
al., 2006; Nagy and Suzdaleva, 2017) under Bayesian
methodology. The similar issue was discussed, e.g.,
in the papers of (Gupta et al., 2010; Kianmehr et al.,
2010; Dash et al., 2011; Sriwanna et al., 2019). The
aim of the discretization is a search for clusters in the
explanatory data space for the further construction of
the Poisson local models on them. The real-time dis-
cretization is used for finding the actual learnt models
to be used for the prediction.

The layout of the paper is organized as follows:
Section 2 represents the preliminary part. It intro-
duces necessary denotations and reminds the basic
facts about the maximum likelihood parameter esti-
mation of the Poisson distribution and Bayesian re-
cursive estimation of the Gaussian probability den-
sity function. Section 3 is the main emphasis of the
paper. Section 3.1 formulates the prediction prob-
lem in general. Sections 3.2 presents the discretiza-
tion and prediction approach for the case of a scalar
Gaussian variable, while Section 3.3 generalizes it for
multidimensional variables. Section 3.4 summarizes
the main steps of the solution in the form of the al-
gorithm. Results of illustrative experiments can be
found in Section 4. Section 5 provides conclusions
and future plans.

2 PRELIMINARIES

The algorithms presented in this paper are based on
the parameter estimation of the Poisson and Gaussian
distributions. To specify the used denotations, the es-
timation approaches are briefly recalled below.

A single Poisson distribution describing the scalar
discrete variable y has the form of the probability
function (denoted by the pdf along with the proba-
bility density function)

f (y = yt |λ) = e−λ λy

y!
(1)

with the parameter λ and realizations yt ∈
{0,1, . . . ,Ny} at time t = 1, . . . ,T . The maxi-
mum likelihood estimate of the parameter λ is known

to be the average of the measured realizations, see,
e.g., (Sinharay, 2010)

λ̂ =
1
T

T

∑
t=1

yt . (2)

A single Gaussian pdf describing the scalar con-
tinuous variable x has the form

f (x|θ,r) = (2πr)−
1
2 exp{− 1

2r
(x−θ)2} (3)

with the expectation θ, variance r and realizations
xt ∈ R at time instants t. In this paper, the variance
r is assumed to be known. The unknown expectation
θ is estimated recursively according to the Bayesian
methodology (Peterka, 1981), where the posterior pdf
of θ is evolved in time as follows:

f (θ|x(t)) ∝ f (xt |θ) f (θ|x(t−1)), (4)

which uses the denotation of the form x(t) =
{x0,x1, . . . ,xt} with the involved prior knowledge x0.
f (θ|x(t − 1)) denotes the conjugate prior Gaussian
pdf. The recursion starts with the expertly chosen
prior pdf, enabling the update of the Gaussian pdf
statistics (Peterka, 1981) for the case of the known
variance in the following way:

Vt = Vt−1 + xt , (5)
κt = κt−1 +1, (6)

where the initial statistics V0 and κ0 can be set with
the help of prior or expert knowledge. The point es-
timate of the expectation θ giving the average of the
measured realizations xt is re-computed at each time
instant t

θ̂t =
Vt

κt
. (7)

3 POISSON PREDICTION BASED
ON DISCRETIZED GAUSSIAN
DATA

3.1 Problem Formulation

Let us observe a system, which changes its behavior
in different working modes. The set of observations
on the multimodal system includes realizations both
of the variables yt and xt up to the time t = T , and only
xt for t > T . The task is to describe the relationship
between the Poisson target variable yt and Gaussian
explanatory variable xt and predict realizations yt for
the time t > T recursively in real time based on the
permanently measured data xt only.

An example of such system can be a bus or tram
station, where the number of boarding passengers can
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be described by the Poisson distribution. It naturally
impacts the passenger demand on the stations, which
is an importation issue in the transportation data ana-
lysis. However, collecting the data sets of the num-
ber of boarding passengers is an expensive task under
the conditions of the missing infrastructure. Hence,
the solution is seen in constructing and estimating
the model linking the number of passengers and vari-
ables observed around the individual stations under
assumption of their normality. The developed model
can be then used for predicting the number of passen-
gers.

3.2 Scalar Gaussian Data

First, for the more transparent presentation, the scalar
case of the Gaussian explanatory variable xt will be
considered. Here, the denotations for random vari-
ables and their realizations will be identical for the
simplicity.

The relationship between the Poisson variable yt
and Gaussian variable xt is generally assumed in the
form of the joint pdf

f (yt ,xt |λ,θ) = f (yt |xt ,λ) f (xt |θ), (8)

which is decomposed according the chain rule (Pe-
terka, 1981) and assuming the mutual independence
of yt and θ as well as xt and λ. The marginal pdf
f (xt |θ) in (8) is the Gaussian model (3) of the ex-
planatory data xt , which can be estimated recursively
in real time. The main problem appeared here is the
pdf f (yt |xt ,λ) conditioned by the continuous data xt ,
which needs a solution of the task close to the classi-
fication of the data xt among the values of yt . From
this point of view, the relationship between yt and xt
can be described by the Poisson regression (Heeringa
et al., 2010), multinomial logit regression (Tang et al.,
2012; Agresti, 2012) or negative binomial regression
models (Agresti, 2018). However, this would require
analysis of the entire data set, which is not suitable for
the recursive real time performance of the prediction
algorithm to be developed.

The idea is to express the relationship of yt and
xt through the discretization of the continuous data,
i.e., discretize the explanatory variable xt so that the
Poisson model (1) of the variable yt exists for each
discretization interval of xt . This will allow to replace
the discussed pdf f (yt |xt ,λ) in (8) by the Poisson pdf
(1) in the form

f (yt |λx̃t ), (9)

where x̃t is the new discretized random variable such
that

x̃t ∈ {1,2, . . . ,Nx̃} (10)

and its values label the discretization intervals of the
explanatory data xt . The pdf (9) conditioned by the
parameter λx̃t exists for each value of x̃t , i.e., for each
discretization interval.

This means that the unknown variables are the pa-
rameters θ and λ of the involved pdfs along with the
values of the discretized variable x̃t at each time in-
stant, which would indicate the current discretization
interval where the data item xt belongs to. These vari-
ables have to be estimated in order to use the obtained
learnt model describing the relationship of yt and xt
for the prediction of yt .

In this paper, the task specified above is proposed
to be divided in three parts: (i) the discretization of
the explanatory data xt , which focuses on the estima-
tion of the Gaussian pdf f (xt |θ) and resulting in the
estimates of θ and x̃t , (ii) the estimation of the local
Poisson models f (yt |λx̃t ) on the obtained discretiza-
tion intervals of the explanatory data giving the es-
timates of λ and (iii) the prediction of the variable
yt based on the actually measured and discretized ex-
planatory data xt . These parts of the approach are pre-
sented below.

3.2.1 Explanatory Data Discretization

This part of the approach deals with the explanatory
data xt available up to the time t = T only. Here, the
Gaussian data discretization using the mixture-based
clustering (Nagy and Suzdaleva, 2017) inspired by
(Kárný et al., 1998; Kárný et al., 2006) will be used.
It is explicitly suitable for the mentioned task, as it
(i) runs recursively online based on permanently mea-
sured data and (ii) allows to set the number of clusters
expressing intervals for the discretization of xt before-
hand.

The scheme of the recursive discretization leading
to the estimation of the required variables θ and x̃t at
each time instant includes the following steps:

The joint pdf construction The Bayes rule, see e.g.,
(Gelman et al., 2013), is applied to the joint pdf
of the unknown variables θ and x̃t according to
(Kárný et al., 1998; Kárný et al., 2006) in the fol-
lowing way:

f (x̃t ,θ|x(t)) ∝ f (xt , x̃t ,θ|x(t−1))

= f (xt |θ, x̃t) f (θ|x(t−1)) f (x̃t |x(t−1)), (11)

where the pdf f (xt |x̃t ,θ) is supposed to have
a form of f (xt |θx̃t ) conditioned by θx̃t existing
for each value of x̃t , i.e., θ = {θx̃t}

Nx̃
x̃t=1, the

pdf f (θ|x(t − 1)) is the prior Gaussian pdf and
f (x̃t |x(t − 1)) is a prior vector uniform distribu-
tion.
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The discretized variable posterior distribution The
posterior distribution of x̃t based on the current
data is derived by marginalizing (11) over the pa-
rameters θ, i.e.,

f (x̃t |x(t)) =
∫

θ∗
f (xt |θ, x̃t) f (θ|x(t−1))

× f (x̃t |x(t−1))dθ, (12)
where θ∗ denotes the entire definition space. The
posterior pdf of x̃t is just a vector distribution of
the dimension Nx̃, where each of its entries pro-
vides the probability of the membership of the
current data item xt to each of the Nx̃ discretization
intervals at time t. These probabilities are called
the proximities of the data value xt to the models
f (xt |θx̃t ), see (Nagy et al., 2016; Nagy and Suz-
daleva, 2017; Jozová et al., 2021). The point esti-
mate of the variable x̃t is a trivial argument of the
maxima of the discussed distribution (12), i.e.,

x̃t = argmax
i

f (x̃t |x(t)), i ∈ {1,2, . . . ,Nx̃}. (13)

To compute the proximities to be used in (12), the
realization of the explanatory variable xt at time
t is substituted along with the last available point
estimate of the expectation (7) into each Gaussian
pdfs (3) for all values of x̃t under assumption of
the known variance and then normalized (Nagy
and Suzdaleva, 2017).

The statistics update Similarly to the recursive mix-
ture estimation (Kárný et al., 1998; Kárný et al.,
2006), the normalized proximities are used for the
update statistics (5)–(6)

Vi;t = Vi;t−1 +mi;txt , (14)
κi;t = κi;t−1 +mi;t , (15)

where mi;t denotes the i-th normalized proximity
from f (x̃t |x(t)) for x̃t = i. The updated statistics
are used to re-compute the point estimates (7) of
the parameters θ for each x̃t . The recursive com-
putations are repeated until the time t = T , while
the observations xt are available.

The results of this part of the approach are the values
of x̃t denoting the discretization intervals of continu-
ous data at each time instant along with the estimated
models of xt .

3.2.2 Poisson Local Model Estimation

The second part of the solution is aimed at the con-
struction of the Poisson models (9) for each dis-
cretization interval locally. Here, it should be re-
minded that the observations of the multimodal sys-
tem contain the data sets of yt and xt at each time in-
stant up to the time t = T . Having the pre-set num-
ber of the discretization intervals Nx̃ and point esti-
mates of x̃t at time t, the parameters λx̃t of the Poisson

pdfs (9) are estimated according to (2) such that to
obtain the average of only those realizations yt that
were measured simultaneously with the xt discretized
to the interval labeled by x̃t .

The result of this part of the solution is the esti-
mated Poisson models (9) for each discretization in-
terval of the Gaussian explanatory data.

3.2.3 Poisson Prediction

For the time t > T the realizations of yt are no longer
available and should be predicted. For this aim, the
learnt models f (xt |θx̃t ) and f (yt |λx̃t ) are used for each
value of x̃t . The advantage of the approach is the pos-
sibility to determine the value of x̃t in real time. This
is done according to (13) using the actually measured
continuous data xt and computing their proximities to
the discretization intervals. Finally, the point predic-
tion of the Poisson target variable is given by

ŷt = argmax
j

f (yt |λx̃t ), j ∈ {0,1, . . . ,Ny} (16)

for the current value of x̃t denoted the discretization
interval, where the actually measured data item xt be-
longs.

Learning the models f (xt |θx̃t ) can be used in this
part of the approach as well using the relations (14)-
(15) and (7).

3.3 Multidimensional Gaussian Data

This section focuses on a multidimensional
case of the Gaussian explanatory variable
xt = [x1;t , x2;t , . . . xn;t ] in the joint pdf (8),
which is much more desired from a practical point
of view. Here, the individual variables of the vector
xt should be discretized. The common discretization
for all of them will lead to the loss of information
in case each of them requires its own discretization
intervals. This means that they should be treated
separately, each with its own individual variable
x̃l;t ∈ {1, . . . ,Nx̃l}, l = {1, . . . ,n}.

The individual discretization suggests that the ap-
proach based on the mixture-based clustering (Nagy
and Suzdaleva, 2017) described in Section 3.2.1
should be applied to each Gaussian variable xl;t sep-
arately under assumption of mutual independence of
the observations in their discretization intervals. The
local Poisson models according to Section 3.2.2 are
estimated individually for each variable xl;t as well.

During the Poisson prediction part of the solution
according to Section 3.2.3, the normalized proxim-
ities to the discretization intervals are computed in-
dividually using the current data of each Gaussian
variable xl;t . Further, for all of these variables, the
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weighted average of the pdfs from all their discretiza-
tion intervals is calculated

f (yt |λx̃l;t ) =

Nx̃l

∑
i=1

mi f (yt |λi), ∀l = {1, . . . ,n}, (17)

where i∈ {1, . . . ,Nx̃l} is equal to the value of the indi-
vidual discretized variable x̃l;t , which can be different
for each Gaussian variable xl;t . The result of this step
is n pdfs f (yt |λx̃l;t ), which express the relationship be-
tween yt and each xl;t .

Now, using the naı̈ve Bayes principle (Forsyth,
2019) and the Bayes rule, it can be shown that under
condition of the assumed independence of individual
explanatory variables xl;t , it holds (see derivations in
Appendix)

f (yt |λx̃t ) ∝
∏

n
l=1 f (yt |λx̃l;t )

( f (yt))n−1 , (18)

i.e., the product of n obtained pdfs divided by the
value of the marginal distribution of yt raised to the
power of n− 1 gives the resulting predictive model
taking into account all the entries of the vector xt . The
denotation x̃t as the subscript on the left side of the re-
lation (18) means a set of all x̃l;t .

Finally, the point prediction of the Poisson vari-
able yt is obtained again via (16).

The presented solution of the multidimensional
case is summarized as an algorithm below.

3.4 Algorithm

{Algorithm initialization for t = 1}
for all l ∈ {1,2, . . . ,n} do

1. Set the numbers of discretization intervals Nx̃l
for each Gaussian variable using prior or expert
knowledge.
for all i ∈

{
1,2, . . . ,Nx̃l

}
do

1. Set the initial statistics Vi;t−1, κi;t−1 for each
discretization interval of each Gaussian vari-
able using prior or expert knowledge.
2. Compute the point estimates of the expecta-
tions with the help of (7) and initial statistics.

end for
end for
{Gaussian data discretization)}
for t = 2,3, . . . ,T do

for all l ∈ {1,2, . . . ,n} do
1. Measure the value of xl;t .
for all i ∈

{
1,2, . . . ,Nx̃l

}
do

1. Substitute the previous point estimate of
the expectation θ̂i;t−1 and the actual value
of xl;t into the scalar Gaussian pdf (3) of the
corresponding explanatory variable, com-
pute the proximity mi;t of this data value to

the i-th discretization interval and normal-
ize it.
2. Update the statistics Vi;t , κi;t according to
(14) and (15).
3. Re-compute the point estimates of the
expectation θ̂i;t via (7).
4. Obtain the point estimate of the dis-
cretized variable x̃l according to (13), which
labels the current discretization interval of
each Gaussian variable.

end for
end for

end for
{Poisson local model estimation}
for all l ∈ {1,2, . . . ,n} do

for all i ∈
{

1,2, . . . ,Nx̃l

}
do

1. Compute the point estimates of the Pois-
son pdfs applying (2) to the measurements yt
corresponding to each discretization interval
of each explanatory variable xl;t .

end for
end for
{Poisson prediction}
for t = T +1,T +2, . . . do

for all l ∈ {1,2, . . . ,n} do
1. Measure the value of xl;t .
for all i ∈

{
1,2, . . . ,Nx̃l

}
do

1. Compute the proximities mi;t using the
final point estimates of the expectations and
normalize them.

end for
2. Compute the weighted average of the Pois-
son pdfs from all the discretization intervals of
each Gaussian variable according to (17).
3. Obtain the predictive Poisson pdf via (18).
4. Compute the point prediction of yt accord-
ing to (16).

end for
end for

The algorithm was tested in a free and open source
programming environment Scilab (www.scilab.org).
The illustrative experiments are presented below.

4 EXPERIMENTS

The aim of the experiments was to verify the pro-
posed approach and demonstrate the prediction of the
Poisson variable using the learnt models and available
Gaussian data only.

To test the presented algorithm, the simulated data
sets containing 3000 values of the Gaussian vector
xt = [x1;t , x2;t , x3;t , x4;t ] and the Poisson scalar vari-
able yt were used. The simulations were prepared so
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that to have the discretization intervals close to each
other for some of the explanatory variables and far
from each other for others.

For the experiments, 2800 data items from the ran-
domized data sets were utilized during the discretiza-
tion part according to Section 3.2.1 as well as the
Poisson local model estimation from Section 3.2.2.
The rest of 200 simulations were used for the predic-
tion part, see Section 3.2.3.

One of the significant benefits of the proposed
approach is a possibility to use the individual prior
knowledge of each explanatory variable for the ini-
tialization of the mixture-based clustering used for the
discretization part of the solution. This prior knowl-
edge is obtained from histograms of the correspon-
ding variables and substituted into the initial statistics
Vi;t−1 with t = 1, which were then recursively updated
according to Section 3.2.1. All of the four Gaussian
explanatory variables had three initialized discretiza-
tion intervals. For the illustration, the histogram of
data of one of them used up to the time t = 2800 is
presented in Figure 1.

Figure 1: Histograms of one of the explanatory variable.

Three hills with the centers around -2, 19 and 32
respectively can be guessed in the figure. These val-
ues are then substituted into the initial statistics Vi;t−1
and indicate the centers of the three clusters for the
discretization part. For the initialization of the counter
statistics κi;t−1, the initial number of data, i.e., the
value of 1, is used for all of the intervals of the vari-
ables.

The expectations of the Gaussian models are esti-
mated using the known fixed variance, which has been
set equal to 5 for all of them. This choice of the vari-
ance value allows to have the clusters of simulated
data partially overlapping, which makes them closer
to reality. The estimation provides twelve discretiza-
tion intervals in the form of clusters located around

their initially guessed and gradually updated centers.
This means that twelve Poisson pdfs are estimated
according to Section 3.2.2 on the obtained intervals
using the data yt measured at the same time instants
as the Gaussian data belonging to the discretized in-
tervals. The illustrative example depicting the XY
graph of the data of the variable x1;t and yt is demon-
strated in Figure 2. In this figure, the point estimates
of the Poisson pdfs obtained locally on each of the
discretization intervals of x1;t are denoted by ’•’.

Figure 2: The Poisson local model estimation on the dis-
cretization intervals of the Gaussian variable x1;t .

In the prediction part, the discretization intervals
are determined using the real-time Gaussian data. Us-
ing their proximities, the local Poisson pdfs are united
into the final predictive pdf according to Section 3.2.3.
An example of the obtained prediction results is given
in Figure 3.

Figure 3: The Poisson variable prediction using the dis-
cretization of Gaussian explanatory data.

For a comparison, the prediction based on the
Poisson regression described in (Petrouš et al., 2019)
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was chosen. The mentioned method includes two
parts: (i) the Poisson mixture model recursive estima-
tion and (i) the least square Poisson regression estima-
tion, which was applied for the prediction of the Pois-
son variable. For this algorithm, the histogram-based
initialization was set for the Poisson components. For
a better visibility, a fragment of the algorithms com-
parison is presented in Figure 4. It can be seen that
the compared results are very close visually.

Figure 4: A fragment of the Poisson variable prediction
based on the discretization of Gaussian explanatory data
compared with the Poisson regression.

To evaluate the prediction accuracy for 200 tested
data, the root-mean-square error was computed

RMSE =

√
∑

200
t=1(yt − ŷt)2

200
, (19)

where ŷt denotes the prediction at time t. The values
of the RMSE averaged over 100 random simulated
datasets can be seen in Table 1.

Table 1: Average RMSE.

Average RMSE
The proposed approach 0.2838133
The Poisson regression 0.2974521

4.1 Discussion

The main aim of the presented study was to verify the
algorithm of the prediction of the Poisson variable us-
ing real-time continuous data for the estimated mod-
els. The aim was successfully achieved. The predic-
tion results look promising and show slight improve-
ments in the comparison with the Poisson regression
as one of the theoretical counterparts.

To highlight advantages brought by the proposed
approach, it is worth noticing the modeling of the

explanatory variables and estimation of the Poisson
model conditioned by the results of this modeling in
the form of values of the discretized variable. This al-
lows to use available explanatory data for the Poisson
prediction in real time recursively, unlike the Poisson
regression estimating the entire explanatory data set
offline. The use of the individual prior knowledge for
the initialization of the algorithm is another signifi-
cant benefit.

The potential application of the proposed predic-
tion approach can be expected in the area of trans-
portation passenger demand modeling.

The limitations of the approach are concerned
with the assumption of the data multimodality nec-
essary for the discretization with the help of the mix-
ture based clustering as well as using the reproducible
statistics of the involved pdfs.

5 CONCLUSIONS

The presented paper focused on the task of predict-
ing a discrete target variable described by the Pois-
son distribution based on the discretized Gaussian ex-
planatory multimodal data. For the discretization, the
recursive mixture-based clustering algorithms under
Bayesian methodology was used. The Poisson and
Gaussian models were estimated on each of the dis-
cretization intervals using available data in order to
construct the predictive Poisson model, which is used
online for the prediction based on the real-time Gaus-
sian data. The prediction results compared with the
Poisson regression demonstrated minor improving in
the prediction accuracy.

The future work regarding the testing of the al-
gorithm will include (i) experiments with real data,
(ii) setting the higher numbers of the discretization
intervals, which would help not to loss the informa-
tion during the discretization, as well as (iii) setting
the different numbers of the intervals corresponding
to different explanatory variables. The case studies
with other continuous distributions will be also ex-
plored.
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APPENDIX

Using the naı̈ve Bayes principle (Forsyth, 2019)
and the assumption of the independence of the mea-
sured random variables x1 and xt , it holds

f (y|x1,x2) ∝ f (x1,x2|y) f (y)
= f (x1|y) f (x2|y) f (y). (20)

According to the Bayes rule, it can be written

f (x1|y) =
f (y|x1) f (x1)

f (y)
, (21)

f (x2|y) =
f (y|x2) f (x2)

f (y)
. (22)

Substituting (21) and (22) into (20), it is obtained

f (y|x1,x2) ∝
f (y|x1) f (x1)

f (y)
f (y|x2) f (x2)

f (y)
f (y)

=
f (y|x1) f (x1) f (y|x2) f (x2)

f (y)

=
f (y|x1) f (y|x2)

f (y)
f (x1) f (x2), (23)

where f (x1) f (x2) is a constant value for the measured
data items x1 and x2.
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