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Abstract: The Common Vulnerabilities and Exposures (CVE) database is the largest publicly available source of 
structured data on software and hardware vulnerability. In this work, we analyze the CVE database in the 
context of IoT device and system vulnerabilities. We employ and compare support vector machine (SVM) 
and neural network (NN) algorithms on a selected subset of the CVE database to classify vulnerability records 
in this framework. Our scope of interest consists of records that describe vulnerabilities of potential IoT 
devices of different types, such as home appliances, SCADA (industry) devices, mobile controllers, 
networking equipment and others. The purpose of this work is to develop and test an automated system of 
recognition of IoT vulnerabilities to test two different methods of classification (SVM and NN) and to find 
an optimal timeframe for training (historical) data. 

1 INTRODUCTION AND 
BACKGROUND 

1.1 IoT Applications and Architecture: 
An Outline 

IoT can be most broadly defined as an interconnection 
of various uniquely addressable objects through 
communication protocols. It can also be described as a 
communication system paradigm in which the objects 
of everyday life (or industrial devices), equipped with 
microcontrollers, network transmitters, and suitable 
protocol stacks that allow them to communicate with 
one another and (via ubiquitous cloud infrastructure) 
with users, become an integral part of the Internet 
environment (Atzori et al., 2010). The scope of IoT 
deployments is wide and covers areas such as (Da Xu 
et al., 2014; Al-Faquaha et al., 2015) home appliances 
("smart homes"), smart cities, smart environments 
(monitoring), smart agriculture and farming, smart 
electricity grids, smart manufacturing and industrial 
security and sensing as IIoT (Industrial IoT), and smart 
healthcare. In this work, we will consider an IoT model 
compatible with the reference architecture model 
proposed by the EU FP7 IoT-A project (EU FP7, 2007) 
and the IoT-A tree structure (Bauer et al., 2013) that  
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consists of three major levels: 
 Perception and execution layer 
 Network layer 
 Cloud or application layer. 

1.2 Security Issues with IoT Systems 

In this work we will focus on threats against IoT 
systems, which occur when a flaw in an IoT device or 
application, on the perception, network or cloud level, 
is exploited by a hacker, and the device or application 
is compromised – i.e. full or limited access to 
functions and data is gained by an attacker. 

In (Ling et al., 2018), the authors have proposed 
five "dimensions" of IoT security:  hardware, 
operating system/firmware, software, networking, 
and data. The majority of security problems emerging 
in today’s IoT systems result directly from buggy, 
incomplete, or outdated software and hardware 
implementations in the perception layer, especially in 
home and office appliances and in industrial systems. 
Typical vulnerabilities in this layer emerge from 
common stack or heap overrun in legacy software, 
weak (and often built-in) passwords (such was the 
case in the famous Mirai botnet (Antonakakis et al., 
2017)), and faulty pairing and binding 
implementation. Major protocol flaw design error 
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(such as Heartbleed and DROWN (Durumeric et al., 
2014; Aviram et al., 2016)) is much rarer as a cause 
for vulnerabilities but also happens. The most 
common vulnerabilities are summarized in the 
OWASP Top 10 list (OWASP 2021). 

1.3 Scope of This Work and Related 
Research 

In this work, we propose a classification of device-
related (i.e. not “pure software”) vulnerability data for 
IoT and IIoT equipment. We have divided 
vulnerability descriptors from the Common 
Vulnerability and Exposures (CVE) public database 
into 7 distinct categories, including home equipment, 
SCADA devices, and networking systems. The 
database samples were hand-classified by us based on 
our expert knowledge. We used this data to train 
neural network (NN) and support vector machine 
(SVM) classifiers to predict categories of “new” 
vulnerabilities – for example, data from the year 2018 
was used to classify 2019’s data, etc. The rationale 
behind such predictions is to prevent and mitigate 
threats resulting from new vulnerabilities, as when a 
new vulnerability or exploit is discovered, it is often 
critical to learn its scope by automatic means as fast 
as possible. This is a difficult task given the size of 
the database and the rate of its growth – each day tens 
of new records are added to the CVE database alone. 
AI based classification tools operating on the similar 
principles to the ones proposed by us can be used to 
filter incoming vulnerability data with respect to 
given organization’s network and user infrastructure. 
Such solutions are part of software tools supporting 
SOC's (Security Operating Centers), and also 
emerging SOAR solutions (Security Orchestration, 
Automation and Response). 

Prior research on automatic analysis and 
classification of vulnerability databases includes the 
following: models and methodologies of categorizing 
vulnerabilities from the CVE database according to 
their security types based on Bayesian networks 
(Wang and Guo, 2010; Na et al., 2016); in (Neuhaus 
and Zimmermann, 2010) topic models were used to 
analyze security trends in the CVE database with no 
prior (expert) knowledge; and Huang et. al. (Huang et 
al., 2019) proposed an automatic classification of 
records from the Network Vulnerability Database 
(NVD) based on a NN – the authors compared their 
model to Bayes and k-nearest neighbor models and 
found it superior. Inspired by the above mentioned 
research we have decided to employ two most 
promising methods: SVM and neural networks. All of 
the research cited above focused on categorizing the 

software aspect of vulnerabilities, such as SQL 
injection, race condition, and command shell injection. 
In our previous related work (Blinowski and 
Piotrowski, 2020), we discussed CVE classification 
with an SVM. Here, we extend this research to include 
a neural network classifier. According to our 
knowledge, no prior work has been done regarding 
categorizing the impacted equipment – system or 
device – and our work tries to address this gap.  

This paper is organized as follows: in section 2, 
we describe the contents and structure of the CVE 
database and NVD records. In section 3, we introduce 
our proposed classes of IoT devices and we briefly 
discuss SVM and NN classifier methods and the 
measures used by us to test the quality of the 
classifiers. In section 4, we present the results of the 
classification. Our work is summarized in section 5. 

2 STRUCTURE AND CONTENTS 
OF CVE DATABASE 

2.1 The CVE Database 

In this work, we used an annotated version of the 
CVE database known as the NVD, which is hosted by 
the National Institute of Standards and Technology 
(NIST). The NVD is created on the basis of 
information provided by the CVE database hosted at 
MITRE (Mitre, 2020). CVE assigns identifiers (CVE-
IDs) to publicly announced vulnerabilities. NIST 
augments the CVE database with information such as 
structured product names and versions, and also maps 
the entries to CWE names. The NVD feed is provided 
both in XML and JSON formats structured in year-
by-year files as a single whole-database file and as an 
incremental feed reflecting the current year’s 
vulnerabilities.  

The fields NVD record fields that are relevant for 
further discussion are as follows: entry contains 
record ID as issued by MITRE – the id is in the form 
CVE-yyyy-nnnnn (e.g. CVE-2017-3741) and is 
commonly used in various other databases, documents, 
etc. to refer to a given vulnerability; vuln identifies 
software and hardware products affected by a 
vulnerability – this record contains the description of a 
product and follows the specifications of the Common 
Platform Enumeration (CPE) standard (see section 
2.2); vuln:cvs and cvss:base_metrics describe 
the scope and impact of the vulnerability, and this data 
allows real-world consequences of the vulnerability to 
be identified; and vuln:summary holds a short 
informal description of the vulnerabilities. 
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2.2 Common Platform Enumeration 
(CPE)  

CPE is a formal naming scheme for identifying 
applications, hardware devices, and operating 
systems. CPE is part of the Security Content 
Automation Protocol (SCAP) standard (NIST, 2020), 
The CPE naming scheme is based on a set of 
attributes called Well-Formed CPE Name (WFN) 
compatible with the CPE Dictionary format (NIST 
CPE, 2020). The following attributes are part of this 
format: part, vendor, product, version, update, 
edition, language, software edition, target software, 
target hardware, and other (not all attributes are 
always present in the CPE record; very often “update” 
and the attributes that follow are omitted). 

The CVE database uses URI format for CPE, 
and we will only discuss this format. For example, in 
the CPE record cpe:/h:d-link:dgs-1100-05:- , 
the attributes are as follows: part:h (indicating 
hardware device), vendor:d-link, product:dgs-
1100-05, and version and the following attributes are 
not provided. In the NIST CVE records, logical 
expression built from CPE descriptors are used to 
indicate sets of affected software and/or hardware 
platforms. An example is given in Figure 1. 
<vuln:vulnerable-configuration 
id="http://nvd.nist.gov/"> 
  <cpe-lang:fact-ref name="cpe:/o: 
     d-link:dgs-1100_firmware:1.01.018"/> 
  <cpe-lang:logical-test operator="OR"  
     negate="false"> 
    <cpe-lang:fact-ref name="cpe:/h: 
     d-link:dgs-1100-05:-"/> 

 <cpe-lang:fact-ref name="cpe:/h: 
     d-link:dgs-1100-10mp:-"/> 
  </cpe-lang:logical-test> 

</vuln:vulnerable-configuration> 

Figure 1: A vulnerable configuration record from CVE – a 
logical expression built from CPE identifiers. 

3 CVE DATA CLASSIFICATION 
AND ANALYSIS  

3.1 Data Selection  

From the NVD database, we extracted only records 
marked in their CPE descriptor as “hardware”. We 
assumed that they potentially reflected IoT and IIoT 
connected devices from the perception or network 
layer. The exact criterion was as follows: if any of the 
descriptor in the vuln:vulnerable-configuration 

section contained the “part” attribute set to “h”, then 
the record was selected for further consideration. We 
also narrowed down the timeframe to data from the 
years 2010–2019 (data from the first quarter of 2019 
was taken into account).  

We grouped the selected records into 7 distinct 
classes: 
 H – home and SOHO devices; routers, on-line 

monitoring. 
 S – SCADA and industrial systems, 

automation, sensor systems, non-home IoT 
appliances, cars and vehicles (subsystems), and 
medical devices. 

 E – enterprise and service provider (SP) 
hardware (routers, switches, enterprise Wi-Fi, 
and networking) – the network level of IoT 
infrastructure. 

 M – mobile phones, tablets, smart watches, and 
portable devices – these constitute the 
“controllers” of IoT systems. 

  P – PCs, laptops, PC-like computing 
appliances, and PC servers (controllers). 

  A – other, non-home appliances: enterprise 
printers and printing systems, copy machines, 
non-customer storage, and multimedia 
appliances. 

The rationale behind such classification is the 
following: from the security point of view, the key 
distinction for an IoT component is the scope of its 
application (home use, industrial use, network layer, 
etc.). The number of classes was purposefully low – 
we were limited by the description of the available 
data, so it would have been difficult to use a finer-
grain classification. Additionally, it would not be 
practical to introduce too many classes with a small 
number of members because the automatic 
classification quality would suffer. Table 1 shows the 
total number of records and number in classes in the 
2010 – 2020 (Q1) timespan. The NVD database is 
distributed as XML and JSON feeds. In addition, 
there is an on-line search interface. The database, as 
of the beginning of 2020, contains over 120 000 
records in total, and the number of records usually 
increases year by year. The NVD database is neither 
completely consistent nor free of errors. For example, 
two problems are a lack of CPE identifier (in approx. 
900 records) and inconsistencies with the CPE 
dictionary (approx. 100 000 CPEs). Binding between 
the vulnerability description and the product 
concerned may also be problematic. Product names 
containing non-ASCII or non-European characters 
also pose a problem, as they are recoded to ASCII 
often inconsistently or erroneously. Essentially, it is 
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impossible to extract data relating to web servers, 
home routers, IoT home appliances, security cameras, 
cars, SCADA systems, etc. without a priori 
knowledge of products and vendors. 

Table 1: Number of NVD records pre year – total and in 
classes. 

Year Total Number in class 
  A C E H M P S

2010 185 6 2 113 28 21 2 13
2011 148 4 2 107 21 6 4 4
2012 288 7 2 180 27 15 9 48
2013 417 8 7 236 84 14 4 64
2014 391 3 0 189 102 16 0 81
2015 386 3 2 174 99 40 8 60
2016 463 6 13 150 75 80 7 132
2017 813 1 26 151 371 94 21 150
2018 1629 64 206 258 582 103 26 390

Q1 2019 400 6 16 193 83 22 7 73

3.2 Data Analysis Methodology 

We tested two types of classifiers: (1) a linear SVM 
(Vapnik, 1998) and (2) a Neural Net. The same set of 
data, i.e. selected attributes of “hardware” 
vulnerability records extracted from the NVD 
database, was used for training. The feature vector 
contained: vendor name, product name and other 
product data from CPE (if supplied), and CWE 
vulnerability description. 

The steps of the process of building a classifier 
are the following: 1. pre-processing input data 
(removal of stop-words, lemmatization, etc.); 2. 
feature extraction, i.e. conversion of text data to 
vector space via bag-of-words format; and 3. training 
the linear SVM or NN. The length of the feature 
vector varied from 1998 to 9911 depending on the 
training data time period. 
SVN Classifier. We used a standard linear SVM, 
which computes the maximum margin hyperplane 
that separates the positive and negative examples in 
feature space. With the SVM method, the decision 
boundary is not only uniquely specified, but statistical 
learning theory shows that it yields lower expected 
error rates when used to classify previously unseen 
examples (Vapnik, 1998; Liu et al., 2010), i.e. it gives 
good results when classifying new data. We used 
Python with NLTK to pre-process the text data and 
SVM and classification quality metrics routines from 
scikit-learn libraries. 

NN Classifier. The number of network inputs is equal 
to the size of the feature vector, the number of outputs 
is equal the number of classes. In the last step of data 
preparation, we used the term frequency-inverse 
document frequency (TF-IDF) technique for data 
representation. In TF IDF, we “reward” the words 
that occur frequently in a given document but are rare 
in others, we use TFIDF on all analyzed text tokens 
together. We also used hyperparameter optimization 
to tune the NN – we use: 0, 1 or 2 hidden layers, with: 
16, 32 or 64 neurons in the layer, we also use 50 – 150 
optimization algorithm rounds (epochs). We adjust 
other network parameters too, namely:  type of the 
weight optimizer algorithm, neuron dropout ratio and 
some others. For this we employed the GridSearchCV 
package. The simulator is written in Python with 
scikit-learn, TensorFlow, Keras and Google 
Colaboratory libraries.  As the volume of training and 
validating data is relatively low, we used K-folds 
cross validation to optimize the network. 

3.3 Classification Measures 

To benchmark the classification results, we used two 
standard measures: precision and recall. We defined 
precision (eq. (1)) as the ratio of true positives to the 
sum of true positives and false positives; we defined 
recall (eq. (2)) as the ratio of true positives to the sum 
of true positives and false negatives (elements 
belonging to the current category but not classified as 
such.) Finally, as a concise measure, we used the F1 
score – eq. (3). The F1 score can be interpreted as a 
weighted average of precision and recall, where an F1 
score reaches its best value at 1 and worst at 0. 𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)ൗ  (1) 𝑟𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)ൗ  (2) 𝐹1 = 2 ∗ ௣௥௘௖௜௦௜௢௡∗௥௘௖௔௟௟(௣௥௖௘௜௦௜௢௡ା௥௘௖௔௟௟)  (3) 

4 CLASSIFICATION RESULTS 

We tested both classifiers on historical data in one 
year intervals. We took into account data from the 
timeframe of 2010–2019. For example, to classify 
data from 2018, we used records from the following 
ranges: 2010–2017, 2011–2017, … and finally only 
from 2017. The size of the training and testing data is 
given in Table 1. Due to limited space, below we will 
present the results of classification for data from 2018 
and 2019. 
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SVN-2017 SVN-2012-2017 

NN-2017 NN-2012-2017 

Figure 2: NN and SVN Classification of records from 2018. Left – training data from 2017, right – training data from 2012 
to 2017. 

In Figure 2, we show the confusion matrices for 
the classification of 2018’s records trained using data 
ranging from 2012 to 2017 and using data from 2017 
alone. From a good classifier, we would expect the 
majority of records to be on the diagonal. For the 
SVN classifier (top row of Figure 2), we can state that 
a larger set of training data (i.e. going back further in 
time) reduces the quality of the classification. For 
example, for "H" class, we have 489 records 
classified correctly (84% recall value) when data 
from only 2017 is used for training, but only 262 
(45%) when we train using a dataset from 2012–2017. 
Classification results from other periods (Blinowski 
and Piotrowski, 2020) confirm this trend. For NNs 
(bottom row of Figure 2), the case is different: there 
is no obvious bias towards better classification results 
obtained from shorter or longer historical data. 

However, if we analyze weighted precision, recall, 
and F1 for NN (Figure 3), we can conclude that using 
more historical data increases the quality of the 
classification. 

Further, from the results shown in Figure 3, we 
can conclude that the NN classifier gives slightly 
better results in terms of all measures. For NN, the 
measures are almost stable, with F1 ranging from 
58% to 61%, and the trend that using more historical 
data is beneficial is visible. For SVN on the other 
hand, the conclusion is more complex: there is an 
improvement in classification measures if data from 
2016–2017 is used, but classification degrades if 
older data is taken into account. Similar conclusions 
can be drawn for classified data from 2019 (Figure 4). 
Again, the NN classifier gives better and more stable 
results than SVN (F1 in the range of 69%–74%), and  
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Figure 3: Weighted precision, recall, and F1 for 2018 
records based on training data from 2010–2017, 2011–
2017, etc. Top – SVN, bottom – NN. 

using more (older) training data is almost always 
beneficial. For SVN, F1 varies from 63% to 72%. In 
general, NN gives slightly better classification results 
than SVM. We should also note that results presented 
in Figure 3 and Figure 4 show precision, recall, and 
F1 measures weighted with support (the number of 
true instances for each label). 

Here, we refer the reader to consult full datasets 
of this study (http://www.ii.pw.edu.pl/~gjb/ 
CVE_IoT2020/results.zip), where we show precision 
and recall rates of up to 80% for strongly populated 
categories and of approx. 50% or lower for less 
numerous categories. 

5 SUMMARY 

We have proposed a system of automatic 
classification of IoT device vulnerabilities listed in 
the public CVE/NVD databases. We have divided 
vulnerability records into 7 distinct categories 
relating to the devices’ field of usage. The hand-
classified database samples were used to train SVM  
 

 

 
Figure 4: Weighted precision, recall, and F1 for 2019 
records based on data from 2010–2018, 2011–2018, etc. 
Top – SVN, bottom – NN. 

and NN classifiers to predict categories of “new” 
vulnerabilities. The purpose of the classification was 
to predict, prevent, and mitigate unknown threats 
resulting from newly discovered vulnerabilities. 
Given the size and the rate of growth of the public 
vulnerability database and the requirement for a rapid 
response to new data, this is a task that cannot be done 
by hand and must be automated. We attained 
weighted classification precision and recall rates of 
55%–70% – with better measures for the NN 
classifier. These are not ideal results, and in practice 
they would require further human intervention 
(verification and possibly reclassification). The 
problem lies with the data itself – neither CVE nor 
CPE provide enough specific data for the NN or SVM 
to discern record categories. An additional 
vulnerability ontology should be introduced to extend 
the information currently provided. This should 
include more precise vendor and model data. A 
similar conclusion, not directly related to IoT 
security, was suggested in (Syed, 2016), where the 
authors propose a unified cybersecurity ontology that 
incorporates heterogeneous data and knowledge 

Comparing Support Vector Machine and Neural Network Classifiers of CVE Vulnerabilities

739



schemas from different security systems. It is also 
worth mentioning that our method can also be used 
on numerous other on-line vulnerability databases 
such as those managed by companies (e.g. Microsoft 
Security Advisories, Tipping Point Zero Day 
Initiative, etc.), national CERTs, or professionals’ 
forums (e.g. Exploit-DB and others). It may also be 
worthwhile to integrate information from various 
databases – this should increase the precision of the 
classification and is a topic of our further research. 
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