
Decentralized Application for Rating Internet Resources

Andreea Buţerchi a and Andrei Arusoaie b

Alexandru Ioan Cuza, University of Iaşi, Romania

Keywords: Blockchain, Decentralized Application, Rating.

Abstract: A lot of existing web applications use systems for rating internet resources (e.g., YouTube uses like/dislike-
based rating, IMDb uses star-based rating). Given the received ratings, the most popular internet resources
can generate large amounts of money from advertising. One issue arising from this is that the existing rating
systems are entirely controlled by a single entity (i.e., the owner of the web application). In this paper we
present a blockchain-based decentralized application for rating internet resources. The proposed solution
provides a transparent rating mechanism, given that no central authority is involved and the rating operations
are handled by a specialized smart contract. We present an implementation of our solution, where we combine
authentication methods with blockchain specific features, so that the users’ anonymity is preserved. We show
that our approach is better than the existing rating systems in terms of transparency and reliability.

1 INTRODUCTION

Various web applications use rating systems to estab-
lish specific trends or trending posts, videos, movies
or products. There are several categories of such sys-
tems, which are used for content or products evalua-
tion: like/dislike-based rating systems, star-based rat-
ing systems, review-based rating systems and others.

It is worth noting that the most web applications
are in control of the underlying rating systems. More-
over, the algorithms involved in the rating process
are not publicly available, fact that contributes to the
lack of transparency and affects the trust of the users.
Since the web applications access and control the rat-
ings, the users do not have the certainty that the own-
ers of the web applications did not alter the rating
record in their favor, especially when the ratings are a
criteria for producing money from advertising.

In contrast to the traditional web applications, the
decentralized applications are not controlled by a sin-
gle authority. They run on a peer-to-peer network,
which makes them more flexible, secure and reliable
than the conventional web applications.

In order to highlight the need of introducing a de-
centralized rating system, we present some real sce-
narios, where conventional rating systems are lacking
of transparency.

YouTube is considered to be one of the most pop-

a https://orcid.org/0000-0001-7258-0620
b https://orcid.org/0000-0002-2789-6009

ular media content providers1. Despite the fact that
YouTube informs its users with respect to the num-
ber of views, likes or dislikes received by the video
resources, it doesn’t specify exactly the manner in
which other factors (e.g., the watch time, the session
time or the popularity of a specific channel) influence
these numbers2. Moreover, given that the popular-
ity of the posted content is a criteria for being incen-
tivized by YouTube, the users may be determined to
use fraudulent means (e.g., click farms) to increase
their incomes. On this note, YouTube claims that its
rating algorithms handle these kinds of fraudulent ac-
tivities, but there is no certain proof in this respect.

Similarly to YouTube, IMDb does not disclose the
used rating algorithms. The resources on IMDb do
not have associated the raw average, but the weighted
average of the received ratings. As expected, IMDb
does not mention which factors influence the comput-
ing of the final (i.e., user accessible) ratings3.

1https://www.statista.com/statistics/272014/
global-social-networks-ranked-by-number-of-users/

2There are plenty of web pages where users com-
plain (e.g., https://support.google.com/youtube/thread/
11131851?hl=en). Even if the data on these pages cannot
be necessarily trusted, it is hard for YouTube to guarantee
that its rating algorithms are transparent and work prop-
erly.

3https://help.imdb.com/article/imdb/track-movies-tv/
ratings-faq/G67Y87TFYYP6TWAV#

Buţerchi, A. and Arusoaie, A.
Decentralized Application for Rating Internet Resources.
DOI: 10.5220/0010573405130520
In Proceedings of the 16th International Conference on Software Technologies (ICSOFT 2021), pages 513-520
ISBN: 978-989-758-523-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

513



1.1 Related Work

To our best knowledge, at this moment there is only
one solution that has the purpose of moving rating
systems into the blockchain. The solution is reported
in (Shaker et al., 2021), but it seems to reiterate the
ideas from (Buterchi and Arusoaie, 2020). Despite
the similar motivation, the authors approach decen-
tralized rating in a different manner. In the system
proposed by the authors, the users need to register
using their Ethereum addresses. It is worth noting
that the authors use these Ethereum addresses to vali-
date the rating process and, consequently, to test if the
users have already rated. Even though it seems to be
a suitable approach, in fact, it introduces vulnerabil-
ities. Given that the users can generate an unlimited
number of Ethereum addresses, they can register us-
ing multiple addresses. By expressing their ratings
multiple times, the users alter the integrity and the
credibility of the rating record. In the current paper
we address this problem by using an authentication
mechanism, which allows us to reduce the fraudulent
activities and to preserve the integrity of the rating
data. In the context of our solution, the Ethereum ad-
dresses are used only for the interaction with the smart
contract and for payment purposes (i.e., the users need
to pay for the rating operations). The authentication
mechanism will be discussed in detail in Section 3.3.
Another problem concerning the solution proposed in
(Shaker et al., 2021) is that the rating method does not
guarantee the relevance of the final ratings. Given that
it simply computes the average of the ratings (i.e., the
sum of the ratings divided by the number of raters),
the final ratings could drop considerably when the
users submit ratings close to 0. In the current paper,
we avoid this problem since we propose a like/dislike-
based rating system. The users have access to the final
ratings, which consist of the total number of likes and
dislikes for each rated resource.

Besides the aforementioned solution, decentral-
ized rating can be associated with decentralized vot-
ing (Bocek et al., 2009; Khader et al., 2012; Ayed,
2017; Hsiao et al., 2018; Khoury et al., 2018). In the
case of voting, the users express their vote for a spe-
cific candidate. The action of voting is irreversible
and the users cannot vote more than once. In the
case of rating, the users can rate internet resources and
their actions are not limited to only one rating opera-
tion. Despite the visible differences, voting and rating
are similar, since both systems need the same security
properties, including privacy (i.e., the identity of the
voter/rater should not be disclosed) and integrity (i.e.,
the voting/rating system should be fraud-resilient).

1.2 Contributions

In order to address the transparency issues of the
traditional rating systems, we propose a blockchain-
based decentralized application for rating.

Our solution provides a trustworthy and transpar-
ent rating system, given that the rating record is stored
on the blockchain and the smart contract’s codebase is
publicly available. The proposed rating system sim-
ulates the functionalities of a like/dislike-based rat-
ing system. The smart contract handles the rating op-
erations and prevents multiple rating situations (i.e.,
when a user attempts to submit multiple likes or mul-
tiple dislikes for a resource). Besides the smart con-
tract, our solution comes with an additional authen-
tication mechanism. The authentication mechanism
is helpful due to the following reasons: guarantees
the uniqueness of the users, reduces fraudulent ac-
tions (i.e., it does not allow unauthenticated users to
rate) and provides various authentication options. In
the current form of the application, the users can rate
resources from Google (e.g., YouTube), GitHub and
Spotify. The decentralized application comes with an
intuitive user interface, which is divided into three
sections: authentication, rating and data visualization.

1.3 Paper Organization

In Section 2, we present the concepts, the tools and
the technologies used in the current paper. Our con-
tribution, i.e., decentralized application for rating, is
detailed in Section 3. In Section 4 we present the
experiments that we have performed, along with an
overview of their execution costs. Finally, we con-
clude in Section 5.

2 PRELIMINARIES

This section contains a brief presentation of the
tehnologies, tools and programming languages that
we used in the development of our solution.

The blockchain is a new technology that records
data across a peer-to-peer network in a distributed
shared ledger. The technology was initially designed
for cryptocurrency trading (Nakamoto, 2009), and
nowadays it also supports smart contracts.

Ethereum (Wood, 2014; Buterin, 2013) is a pop-
ular blockchain platform, which enables the use of
smart contracts. Smart contracts can simulate real-
world agreements for different kinds of assets. Usu-
ally, they are written in high-level languages (e.g., So-
lidity, Vyper) and compiled into Ethereum bytecode

ICSOFT 2021 - 16th International Conference on Software Technologies

514



Figure 1: A use case diagram of the decentralized application for rating.

(Wood, 2014; Buterin, 2013). The bytecode is then
executed using the Ethereum Virtual Machine (EVM).

Solidity (Ethereum-Foundation, 2021) is a
statically-typed, high-level and contract-oriented
programming language, designed for implementing
smart contracts that run on the EVM.

Remix (Remix, 2021) is a powerful tool that al-
lows its users to design, deploy and test smart con-
tracts directly in the browser.

Metamask (Metamask, 2021) is a cryptocurrecy
wallet that can be used as a browser extension on
various existing browsers (e.g., Chrome, Firefox and
Brave). It connects to the Ethereum blockchain and
it facilitates testing. For this, we use Ganache (Suite,
2021) which provides a local Ethereum network.

React (React, 2021) and Material UI (Material-
UI, 2021) are JavaScript libraries used for creating
user interfaces for web applications.

Passport (Passport, 2021) is a JavaScript library,
which provides a wide range of authentication strate-
gies that can be embedded into web applications.

Provable (Provable, 2021) and Chainlink (Chain-
link, 2021) are blockchain oracle services. An ora-
cle service allows Ethereum smart contracts to access
data sources outside the blockchain.

3 A DECENTRALIZED
APPLICATION FOR RATING

A decentralized application (i.e., known as a DApp) is
a web application that runs on a blockchain network,
instead of a single computer. The logic of a decentral-
ized application is represented by one or more smart
contracts that interact with the blockchain network.
In this section we present the decentralized applica-
tion for rating. We start with the description of the
workflow, which consists of the interaction between
several components. Each component has a specific
role (e.g., authentication, input validation, error han-
dling, rating). Next, we discuss the smart contract, the
authentication mechanism and the user interface.

3.1 Workflow

In Figure 1 we illustrate the workflow of our DApp.
First, the user needs to authenticate (step 1©) with

one of the available providers (i.e., Google, GitHub
and Spotify). The authentication succeeds when the
user has valid credentials. If successful, the authen-
tication mechanism returns the user’s ID (step 2©).
The ID is stored at the application level and it is used
when the user initiates a rating operation.

Now, the user is allowed to rate internet resources

Decentralized Application for Rating Internet Resources

515



(step 3©) based on their ID (step 4©). In order to be
recorded, the rating action needs to be valid. The in-
put validation component performs two verifications
(step 5©): check that there is not an attempt of multi-
ple rating (i.e., the user is allowed to switch from like
to dislike and vice versa, but the attempts to submit
multiple likes or dislikes for the same resource are
forbidden) and assure that the resource is hosted by
the provider chosen for authentication. If the require-
ments are satisfied, the process continues, otherwise a
corresponding error is thrown (step 5©).

Based on the validated input, the rating compo-
nent interacts with the smart contract (step 6©). The
smart contract exposes a rating function, which has
the role of storing the rating record on the blockchain.
The function initiates a new transaction (step 7©),
which is sent across the network for validation. If
the process succeeds, the state of the smart contract
is updated with the new rating (step 8©).

Finally, the user can access the updated rating
record. The component responsible for the rating in-
formation interacts with the smart contract and re-
trieves the updated rating data (steps 9© and 10©).

3.2 Smart Contract for Rating

The implemented smart contract simulates the be-
haviour of a like/dislike-based rating system. There-
fore, the users can submit positive ratings (i.e., likes)
and negative ratings (i.e., dislikes) for a specific re-
source. For the development process of the smart con-
tract we used the contract-oriented language Solidity.
We tested the functionalities of the smart contract us-
ing Remix and Ganache.

Both the users and the resources are uniquely
identified. The ratings stored on the blockchain con-
sist of tuples of the following form:

〈 user ID, resource ID, boolean value 〉,
where the boolean value indicates a positive or a nega-
tive rating. In order to interact with the smart contract,
the users need to pay a fee. Our purpose is to reduce
the rating costs as much as possible. To minimize the
deployment and execution costs, we made our smart
contract as slim as possible and put the complex logic
in the web application. However, this simplification
does not impact the accuracy of the rating operations.

3.2.1 Data Structures

The smart contract encapsulates a set of data struc-
tures, which facilitate the process of rating. Given
that the data structures are public, the information
stored inside the smart contract is also publicly avail-
able. There are two types of operations that can be

performed on the data structures: read operations and
write operations. When a user submits a rating, a
write operation is performed and the rating is stored
in the smart contract. For instance, if a user request
information about the rating record, the decentralized
application interacts with the smart contract and reads
the data structure that stores the ratings.

Next, we provide a brief description of the most
relevant data structures:

• resourcesInformation records the number of
likes and dislikes of the rated resources.

• ratedResources contains tuples formed of the
resource ID and a boolean value, where the
boolean value indicates if the corresponding re-
source was previously rated or not.

• ratingsInformation contains tuples of the fol-
lowing form: user ID, resource ID and boolean
value. Each time a rating operation is successful,
this data structure stores the user ID, along with
the rated resource and a positive or a negative rat-
ing value.

• usersToResources stores tuples of the follow-
ing form: user ID, resource ID and boolean value.
In this case, the boolean value indicates if the re-
source was previously rated by a specific user.

These data structures can be both externally and
internally accessed. Based on the information stored
inside these data structures, the decentralized appli-
cation can read the rating record and, moreover, dis-
cover fraudulent behaviours.

3.2.2 Smart Contract Functionalities

The main functionalities of our smart contract are
listed below:

• The users can rate positively or negatively (i.e.,
only one like/dislike per resource).

• The users can change their rating options for the
previously rated resources.

The rate function handles accurately each possi-
ble use case of a like/dislike-based rating system. It
is called each time a new rating operation is issued.
A detailed workflow of the rate function can be in-
spected in Figure 2.

3.3 Authentication Mechanism

Our solution includes an authentication mechanism
that guarantees the uniqueness of the users. In order
to rate resources, the users need to have valid creden-
tials for the providers that share the resources. Even
if the decentralized application has access to the IDs

ICSOFT 2021 - 16th International Conference on Software Technologies

516



Figure 2: The diagram highlights the conditions that are evaluated within the rating function.

of the users (i.e., the IDs provided by the authentica-
tion mechanism), the IDs are not plainly stored in the
smart contract, but they are previously hashed with
md5. In this way, no one can find the credentials of
the users by simply inspecting the transactions on the
blockchain. Moreover, each call to the rate func-
tion includes a signature of the hashed ID, which is
then checked in the smart contract. So, only the calls
done through the DApp will be registered. Without
this signature, anyone can call the smart contract with
any value for the ID and rate a resource without being
authenticated to an existing platform.

Our approach prevents the cases of multiple rat-
ing. For instance, if the Ethereum addresses of
the users are used for authentication purposes as in
(Shaker et al., 2021), then the situations of multiple
rating can not be avoided. Since the users can gener-
ate an unlimited number of Ethereum addresses asso-
ciated with their accounts, they can use a new identity
each time they interact with the decentralized appli-
cation, thus altering the rating record.

The advantage of our solution is precisely the ad-
ditional authentication layer. Even so, the users can
rate multiple times a resource, but they need to have
multiple active accounts on the platform that share
that resource. This is more difficult to achieve than the
generation of Ethereum addresses, because the plat-
forms themselves implement algorithms for detecting
and removing fake accounts. Therefore, the rating
process is trustworthy w.r.t. the existing accounts.

For the authentication mechanism we used Pass-
port. In the current version of our application we
provide support for the authentication with Google,

GitHub and Spotify, but other authentication strate-
gies can be easily added.

3.4 User Interface

The user interface of the decentralized application
consists of three sections: authentication, rating and
data visualization.

Figure 3: The authentication page.

In the authentication section (Figure 3), the user
can choose one of the available authentication strate-
gies: Google, GitHub and Spotify. The user clicks the
desired authentication method and signs in with their
own credentials. Once the authentication succeeds,
the user can start to rate resources.

The rating section (Figure 4) encapsulates the
components for input validation and error handling.
The user needs to provide an URL of the resource and
to select a rating option (i.e., like or dislike). Before
the DApp calls the rating function of the smart con-
tract, two input validation steps are performed:

1. Check the resource’s provenience.

Decentralized Application for Rating Internet Resources

517



Figure 4: The rating page.

2. Check the rating record.

If one of the following situations occurs, the error
handling module throws a corresponding error:
• If the user attempts to rate an invalid resource

(e.g., the resource is hosted by another provider,
the URL is not reachable), then the error han-
dling module returns a notification message with
the following content: Invalid resource.

• If the user attempts to submit multiple likes for the
same resource, the rating process will stop and the
error handling module returns a notification mes-
sage with the following content: Multiple ratings
for the same resource are not allowed. Analog for
multiple dislikes.

Figure 5: The data visualization page.

If all requirements are met, the rating process con-
tinues and Metamask informs the user w.r.t. the rating
costs. When the user confirms the transaction, the rat-
ing function is called. The state of the smart contract
will be updated after the transaction is mined. The
URL-based resources are validated using API calls to
the host services.

The data visualization section accesses the state of
the smart contract, such that the user can inspect the
rating record within the application.

We designed the decentralized application using
React and Material UI.

4 TOOL EVALUATION &
EXPERIMENTS

In this section we present an analysis of the costs re-
quired by our DApp. There are several categories of
costs: deeployment costs, the costs to maintain the
smart contract, and rating costs. The application pre-
sented so far was not our first attempt. We discuss
below our approaches and we compare them.

Our initial approach was to encapsulate the entire
rating logic in the smart contract. Since our rating
system aims to avoid multiple rating situations and
to validate the resources’ provenience, the smart con-
tract gained complexity. This led to increased execu-
tion costs and made our initial attempt unfeasible.

Moreover, smart contracts can not access infor-
mation outside the network. Since we needed con-
firmations that the rated resources are hosted by the
corresponding providers, we initially used Provable
and Chainlink. This approach led to different kinds
of problems. First of all, the deployment costs and
the costs supported by users for the rating operations
(i.e., a call of the rate function) increased consider-
ably, because the off-chain requests require extra fees.
The off-chain requests involved also the usage of cus-
tom cryptocurrencies (e.g., LINK for the Chainlink).

In order to stimulate the interest for the proposed
rating system, we tried to minimize the costs4. Based
on the observation that off-chain interactions are not
suitable, we moved the authentication, input valida-
tion and other side logic outside the smart contract.
The complexity of the smart contract is now consid-
erably reduced. Except the minimal information (i.e,
IDs, resources and their associated ratings) required
to keep the ratings in a decentralized manner, the rest
of the logic is directly handled at the application level.
Thus, the off-chain dependencies were removed from
the smart contract.

As expected, the smart contracts with external
providers have higher deployment costs, due to ad-
ditional functions which facilitate the off-chain com-
munication. The smart contract with no external
providers has significantly lower deployment costs.
This is the one we have currently implemented5.

The smart contracts which use external providers
have a higher cost for the rating operation too. For
instance, the rating operation for the smart contract
which uses Provable is expensive, since the external

4These are computed in a testing environment provided by
Remix, Metamask and the Kovan Test Net.

5The code is available on GitHub: https://github.com/
dapprating/DApp-For-Rating/blob/main/contracts/Rating.
sol.

ICSOFT 2021 - 16th International Conference on Software Technologies

518



Table 1: A comparison between our approaches: simple smart contract vs. smart contracts with external providers. We show
both the deployment and rating costs.

Costs analysis
Smart Contract version Deployment Rating operation
Simple smart contract 0.091400 ETH 0.003548 ETH
(no external providers) (1538986 gas) (59754 gas)
Smart contract 0.218751 ETH 0.006162 ETH
with Provable (3683309 gas) (44014 + 59754 = 103768 gas)
Smart contract 0.185437 ETH 0.008805 ETH
with Chainlink (3122376 gas) (148268 gas)

requests charge the user with additional costs6. We
estimate that the total costs for a rating operation for
this type of smart contract is the sum between the
costs for the off-chain interaction and the execution
costs for the rate function. For the smart contract
that uses Chainlink, the costs for the rating opera-
tion can be higher than the ones displayed in the ta-
ble. This is expected, since the smart contract needs
an amount of LINK7 in order to execute external re-
quests.

We conclude that our current implementation is
the most efficient one w.r.t. the costs involved. The
Github repository contains the source code and instal-
lation instructions. The smart contract code is written
in Rating.sol under the contracts folder, while
the UI is mainly in the client folder.

5 CONCLUSIONS

The solution we propose in this paper is a decen-
tralized application that stores the ratings in the
blockchain using a smart contract. In order to rate an
internet resource, users need accounts on the platform
that host that resource. Obviously, their accounts or
login data are not stored in the blockchain, therefore
we use their hashed value. Note that this approach
keeps the benefits brought by the algorithms for elim-
inating or detecting fake accounts currently imple-
mented in the existing media platforms. In this con-
text, our rating application cannot accept more fake
ratings than the existing approaches, as shown in Fig-
ure 6. The transparency and decentralization are guar-
anteed by the use of the blockchain.

To summarize, our approach provides a decentral-
ized solution to keep ratings for internet resources
identified by an URL. The approach is based on the
blockchain technology that provides anonymity and

6These can be inspected here: https://docs.provable.xyz/
#pricing-advanced-datasources-call-fee.

7The exchange rate between LINK and ETH can be found
at: https://currencio.co/link/eth/.

immutability of data besides decentralization. We use
authentication with third parties in order to set an in-
ferior limit to the number of ratings. The limit is the
number of accounts controlled by a user.

5.1 Future Work

A possible future work is to add more extensions, so
that the users can authenticate with other accounts.
Currently we support only Google, GitHub and Spo-
tify, but our architecture allows any extension that is
compatible with Passport. Another improvement is
related to the various types of ratings. Now, our ap-
plication only allows users to rate resources using a
two choice (i.e., like/dislike) option. However, other
rating systems allow scores or systems based on stars.
Adding reviews is also an interesting feature, but this
requires a very strong analysis on the costs involved to
keep the reviews on the blockchain. One idea is not to
keep the reviews on the blockchain, but only a hashed
value of the review so that it can be easily checked if
a review retrieved from a different resource is indeed
the one whose hash is stored in the blockchain.

The solution that we are currently investigating is
trying to keep the rating process out of the blockchain,
and in the same time keep a trace of them in the
blockchain. Basically, various platforms can connect
their rating mechanism to the blockchain (i.e., to a
smart contract) and submit a hash of the current sta-
tus of the ratings. This hash should be exactly the
hash of a ledger of their rating records. In order to
check the authenticity of the data provided by a rating
platform (e.g., YouTube), one can inspect the ledger
of rating records provided by the platform, compute
the hash, and compare it to the existing hash value
stored in the blockchain. The advantage of this idea
is twofold: first, one does not need to pay in order
to rate a resource, and second, the interaction with
the blockchain is significantly reduced. However, this
idea requires a deeper investigation, because trans-
parency and reliability might be affected.

Decentralized Application for Rating Internet Resources

519



Figure 6: Authentication and rating. The users can not rate a resource until the authentication process is completed.

REFERENCES

Ayed, A. B. (2017). A conceptual secure blockchain based
electronic voting system. International Journal of
Network Security & Its Applications, 9:01–09.

Bocek, T., Peric, D., Hecht, F., Hausheer, D., and Stiller,
B. (2009). Peervote: A decentralized voting mecha-
nism for p2p collaboration systems. In Sadre, R. and
Pras, A., editors, Scalability of Networks and Services,
pages 56–69, Berlin, Heidelberg. Springer.

Buterchi, A. and Arusoaie, A. (2020). Dapp for rating.
ArXiv, abs/2009.03253.

Buterin, V. (2013). Ethereum : A next-generation smart
contract and decentralized application platform.

Chainlink (2021). Chainlink docs. https://chain.link/.
Ethereum-Foundation (2021). Solidity docs.

https://docs.soliditylang.org/en/v0.8.0/.
Hsiao, J.-H., Tso, R., Chen, C.-M., and Wu, M.-E.

(2018). Decentralized e-voting systems based on the
blockchain technology. In Park, J. J., Loia, V., Yi,
G., and Sung, Y., editors, Advances in Computer Sci-
ence and Ubiquitous Computing, pages 305–309, Sin-
gapore. Springer Singapore.

Khader, D., Smyth, B., Ryan, P. Y. A., and Hao, F. (2012). A
fair and robust voting system by broadcast. In Kripp,
M. J., Volkamer, M., and Grimm, R., editors, 5th
International Conference on Electronic Voting 2012
(EVOTE2012), pages 285–299, Bonn. Gesellschaft für
Informatik e.V.

Khoury, D., Kfoury, E. F., Kassem, A., and Harb, H. (2018).
Decentralized voting platform based on ethereum
blockchain. In 2018 IEEE International Multidisci-
plinary Conference on Engineering Technology (IM-
CET), pages 1–6.

Material-UI (2021). Material ui docs. https://material-
ui.com/.

Metamask (2021). Metamask docs.
https://docs.metamask.io/guide/.

Nakamoto, S. (2009). Bitcoin: A peer-to-peer elec-
tronic cash system. Cryptography Mailing list at
https://metzdowd.com.

Passport (2021). Passport docs.
http://www.passportjs.org/docs/.

Provable (2021). Provable docs. https://provable.xyz/.
React (2021). Github react. https://reactjs.org/docs/getting-

started.html.
Remix (2021). Remix docs. https://remix-

ide.readthedocs.io/en/latest/.
Shaker, M., Aliee, F. S., and Fotohi, R. (2021). Online rat-

ing system development using blockchain-based dis-
tributed ledger technology. ArXiv, abs/2101.04173.

Suite, T. (2021). Ganache docs.
https://www.trufflesuite.com/docs/ganache/overview.

Wood, G. (2014). Ethereum: a secure de-
centralised generalised transaction ledger.
https://gavwood.com/paper.pdf.

ICSOFT 2021 - 16th International Conference on Software Technologies

520


