

Invers Natural Number System to Maintain User-defined Sequence of
Data Records

Seyfettin Öztürk
Nokia Solutions and Networks GmbH & Co. KG, Nürnberg, Germany

Keywords: Database Indexing, Storing User-defined Row Sequence, Avoiding Reordering, Increasing Performance,
Decreasing Computing Time and Energy Consumption, Reducing Internet Data Traffic.

Abstract: The objective of this paper is to present a method to insert, edit, and delete database records without affecting
the sequence of existing data. Typically, databases comprise integer data fields, in this paper named sequence
number, meant to determine the user-defined sequence of data records. Inserting new data records or editing
the sequence number of data records might cause a resequencing of the existing data records. This
resequencing can be avoided by using a numbering system that decreases the value of a number when a digit
is added to its end. Such a numbering system allows to insert an infinite quantity of additional sequence
numbers between two sequence numbers even if their difference is 1.

1 INTRODUCTION

Generally, the user-defined sequence of data records
in database applications, such as list elements, is
stored in a dedicated data field named “sequence
number”, “list order”, “position number” etc.

Inserting new data records or editing existing data
records normally requires the renumbering
respectively updating of subsequent data records.

The presented method in this paper allows user-
defined sequencing without the need of resequencing.

2 THE ISSUE WITH THE
USER-DEFINED SEQUENCES

The following use case is discussed to explain the
issue with the user-defined sequence: An application
like an internet browser processes a query for
bookmarks and displays the resulting list to the user
(Nelson, 2018). The user can easily rearrange the
positions of the bookmarks according to his needs.
The sequence of the bookmarks is determined by the
values in the column “sequence number” of the
corresponding data record in the database. Before
user’s rearrangement, it can be assumed that the
sequence of the available bookmarks is as shown in
table 1.

Table 1: Original sequence of bookmarks displayed to the
user.

Bookmark Sequence Number
d 1
g 2
b 3
f 4
a 5

The issue of user-defined sequences appears when
the user rearranges the sequence in table 1 and moves,
for example, the bookmark “f” from position 4 to 1.
This leads to “write” activities for the data records
“d”, “g” and “b” to assign them the new sequence
numbers 2, 3 and 4. Write operation are resource- and
time-intensive, and software architects are interested
very much in minimizing these factors.

2.1 State of the Art of Maintaining the
User-defined Sequences

As outlined in the previous section, the sequence
number values of the bookmarks “d”, “g”, and “b”
must be updated when the user moves the bookmark
“f” from position 4 to position 1, as shown in table 2.

260
Öztürk, S.
Invers Natural Number System to Maintain User-defined Sequence of Data Records.
DOI: 10.5220/0010571502600266
In Proceedings of the 10th International Conference on Data Science, Technology and Applications (DATA 2021), pages 260-266
ISBN: 978-989-758-521-0
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Table 2: Updated sequence of bookmarks displayed to the
user.

Bookmark Sequence Number
f 1
d 2
g 3
b 4
a 5

To implement the resequencing in table 2, the
state of the art uses a database API (Application
Programming Interface) or an SQL (Structured Query
Language, Bayer, 1970) update statement. The
following pseudocode is an example to illustrate the
database writing activities using an SQL statement
(Nelson, 2018):

Input:
Database table Bookmarks: bookmarks
Attribute Bookmark: bookmark
Attribute Sequence Number: s

SQL Update Statement:
Update bookmarks
 Set s = s + 1
 Where s >= 1 and s < (Select s
from bookmarks where bookmark = 'f')

Update bookmarks
 Set s = 1
 Where bookmark = 'f'

The SQL statement above will initiate and perform
four write operations to rearrange the database table
“bookmarks”; three operations will update the data
records “d”, “g” and “b” and one operation will set
“f” to the sequence number 1.

The quantity of necessary write operations to
update the sequence will depend on the position of the
inserted new data record or the updated data record.
The size of the required write operation in “Big O”
notation is O(n) (Wikipedia, 2021). With other words,
a given sequence with n records requires at worst “n”
write operations to perform the rearrangement.

Within comprehensive databases, such
rearrangements might cause numerous read and write
actions, consuming considerable computing capacity.
In the worst-case scenario, all existing data records in
the sequence must be updated, as e.g. when inserting
a new data record in the first position of the sequence.

The implementation of such data access
transactions, in particular via the internet, is usually
complex and time-consuming.

Using the innovative method presented in this
paper, this comprehensive updating can be avoided
since the insertion will not affect the remaining

sequences anymore and the size of the write
operations will be limited to O(1).

3 OPTIONS FOR USER-DEFINED
SEQUENCES WITHOUT THE
NEED OF RESEQUENCING

3.1 The Consideration of Fixed-point
or Floating-point Arithmetic

In theory, it is possible to generate sequence numbers
in fixed-point or floating-point format to avoid the
resequencing (Schäfer, 1989). However, these data
types have limited precision and after certain iteration
the rightmost digits will be skipped, with the effect
that the accuracy and resolution of results might be
affected. This is due to the well-known machine
“overflows” respectively “underflows” that can occur
in electronic fixed- and floating arithmetic.
Furthermore, electronic computers might have
serious performance limitations when fixed-point and
floating-point arithmetic is used (Schmid, 1974).
Therefore, fixed- or floating-point numbers are rarely
used in applications to maintain the user-defined
sequences.

In contrast, the presented alternative method is
based on integer data type that is interpreted as
inverse natural numbers. The inverse natural number
system keeps the original sequence of data records
valid after new data record insertion and edition. The
renumbering is avoided even if two sequence
numbers only differ by 1 and a new data record is
inserted in between.

3.2 The Inverse Natural Number
System

When using the inverse natural numbering system,
resequencing is avoided by interpreting the value of
the sequence number inversely. In this context
inverse means that the maximum value of the number
is absolutely limited to the value of the leftmost digit.
Consequently, the value of a sequence number
decreases as the number of its digits increases. For
example, if the leftmost digit of a number is 9, the
value of this number will never exceed 9, no matter
how many digits are appended at the right of the
number.

With other words, the value of a sequence number
can be reduced by adding further digits to the right of
the existing digits of the number. Consequently, the
sequence number 100 is interpreted as being smaller

Invers Natural Number System to Maintain User-defined Sequence of Data Records

261

than the sequence number 10. Accordingly, the
sequence number 10 is assigned a smaller value than
the sequence number 1.

The value of positive integer numbers, i.e. natural
numbers, results from adding the place value
multiplied with the digit, as shown below in the
summation equation (1) (Sleator, 1988).

∑ ai ∗ 10௜ ௡
௜ୀ଴

ൌ a௡ an-1 … a1 a0 ሺa Є ℕ, aiЄ ሼ 0,1, … 9ሽሻ
(1)

This leads to the commonly known inequation (2):

10 < 100 (2)

In contrast, the place value assignment of the inverse
natural numbering system is determined using the
following summation equation in (3):

an ∗ 10଴ ൅ ෍ െ1 ∗

௡ିଵ

௜ୀ଴

ቊ
ሺ9 െ aiሻ ∗ 10௜ି௡ , ai ൏ 9

9 ∗ 10௜ି௡ିଵ , ai ൌ 9

(3)

ൌ a௡ an-1 … a1 a0 ሺa Є ℕ, aiЄ ሼ 0,1, … 9ሽሻ

This leads to the inequation of the inverse natural
numbers 10 and 100 (4):

10 > 100 (4)

Due to this formula, it is possible to insert an infinite
quantity of sequence numbers between two numbers
that differ by 1. This is because the value of a
sequence number decreases as the number of its digits
increases.

4 THE COMPARATOR OF THE
INVERSE NATURAL NUMBER
SYSTEM

For the purpose of the inverse natural number system,
the comparator can be used to determine the greater
respectively the smaller of two given inverse natural
numbers without applying the summation formula in
(3). Hereinafter, the comparator’s algorithm to
compare two given inverse natural numbers will be
presented.

The first inverse natural number’s value is
interpreted as being greater than the second number’s
value if:

a. all digits of the first number - from left to right -
are identical to the corresponding digits of the
second number and

b. the second number has at least one additional
digit. In other words, the second number has more
digits than the first number.

See table 3 for the comparison between 10 and 100.

Table 3: Example inverse natural numbers to compare.

Comparison 1: an an-1 an-2 an-3

First Number 1 0

Second Number 1 0 0
The digits an and an-1 are identical, but second number

has additionally the digit an-2, therefore: 10 > 100

Comparison 2: an an-1 an-2 an-3

First Number 1 2 3

Second Number 1 2 4 7
The digit an-2 of the first number is smaller than the an-2

of the second number, therefore: 123 < 1247

The first two digits of 10 and 100 from left are
identical in table 3. Since the integer number 100 has
a third digit 0, it has, according to the new methods’
comparator, less value than the integer number 10.

In summary, if all digits of the first number are
processed and identical to the corresponding digits of
the second number, and the second number still has
further digits, then the second number is smaller. This
is explained with the shown additional examples in
table 4.

Table 4: Comparison of two inverse natural numbers P1 and
P2 by the comparator.

P1 P2 Comparator
134 1350 P2 > P1

2783 2785 P2 > P1
221 22022 P1 > P2
66 667 P1 > P2

2595 25 P2 > P1
1330 133 P2 > P1

As presented in table 4, the algorithm enables to

interpret the greater value between two of given
inverse natural numbers just by comparing their digits
from the left to the right.

5 MAINTAINING THE
USER-DEFINED SEQUENCE
USING THE INVERSE
NATURAL NUMBER SYSTEM

This section briefly describes the insertion algorithm
of a new section number:
 In the first position of a sequence
 Between two existing sequence numbers
 In the last position of the sequence.

DATA 2021 - 10th International Conference on Data Science, Technology and Applications

262

The proposed insertion algorithm is also able to
preserve the uniqueness of sequence numbers in the
list order. This is even more relevant when the inverse
natural number system is utilised for indexing and for
key fields of the database records.

In order to maintain the uniqueness of sequence
numbers, the method in this section avoids 9 as last
rightmost digit of the newly inserted sequence
numbers.

This is a key functionality to create index files that
allow to insert new index items without the need to
update the index tree (Bayer, 1970, Schäfer, 1989).

5.1 Insertion of Data Records in the
First Position of the Sequence

This section outlines the methodology to add a new
row in the beginning of the ordered list.

An additional data record is inserted in the first
position of the sequence by calculating the sequence
number Pn (n stands for new) of the additional data
record as 10 times the sequence number P1 of the
subsequent data record in the sequence (see equation
(5)):

Pn = 10 * P1 (5)

Here, the subsequent data record in the sequence is
the data record that originally occupied the first place
in the sequence of the data records.

This enables insertion of an additional data record
in the first position of the sequence by reading just the
sequence number of one further data record. The
sequence numbers of the already existing data records
do not need to be changed (see table 5).

Table 5: Inserting a row in the first position of the sequence.

Before insertion After insertion
 1 (P1) 10 (Pn)

2 1 (P1)
3 2

etc. 3
 etc.

5.2 Insertion of Data Records in the
Sequence between a Preceding Data
Record and a Succeeding One

To insert an additional data record in the sequence
between a preceding data record and a succeeding
one, the sequence numbers of the preceding and
succeeding data record must be read.

In the event that the sequence numbers of the
preceding data record and the succeeding data record
differ by 1, the sequence number Pn of the additional

data record is calculated as being 10 times the
sequence number Pi+1 of the succeeding data record
(see equation (6) and table 6).

Pn = 10 * Pi+1 (6)

Table 6: Inserting a row between sequence numbers 1 and
2.

Before insertion After insertion
 1 (Pi) 1 (Pi)

 2 (Pi+1) 20 (Pn)
3 2 (Pi+1)

etc. 3
etc.

If the sequence numbers of the preceding data
record and the succeeding data record differ by more
than 1, a number of steps need to be performed in
order to determine the sequence number of the
additional data record.

Firstly, the sequence number Pn of the additional
data record is calculated as being 1 plus the sequence
number Pi of the preceding data record (see equation
(7)):

Pn = Pi+1 (7)

If the last digit of the preceding sequence number is
equal to 8, then – in addition thereto – the obtained
sequence number of the additional data record needs
to be multiplied by 10 (see equation (8)).

Pn = 10 * Pn (8)

This ensures that the last, i.e. the rightmost digit of
the sequence number of the additional data record is
not equal to 9 and the uniqueness of the sequence is
guaranteed (see table 7).

Table 7: Inserting a row between sequence numbers 28 and
2.

Before insertion After insertion
 28 (Pi) 28 (Pi)

 2 (Pi+1) 290 (Pn)
3 2 (Pi+1)

etc. 3
etc.

Then, the sequence number of the additional data
record is compared by means of the comparator (see
Section 4) with the sequence number of the
succeeding data record. The sequence number of the
new data record must be smaller than the sequence
number of the succeeding data record.

Pn <Pi+1 (9)

Invers Natural Number System to Maintain User-defined Sequence of Data Records

263

If the sequence number of the succeeding data record
is not interpreted as being greater than the sequence
number of the additional data record as in inequation
(9), then the sequence number of the additional data
record must be multiplied by 10 and compared with
the sequence number of the succeeding data record
again until the sequence number of the succeeding
data record is interpreted as being greater than the
resulting sequence number of the additional data
record (see equation (10) and table 8).

Pn = 10 * Pn (10)

Table 8: Inserting a row between sequence numbers 28 and
290.

Before insertion Intermediate After insertion
28 (Pi) 28 (Pi) 28 (Pi)
290 (Pi+1) 290 (Pn) 2900 (Pn)
3 290 (Pi+1) 290 (Pi+1)
etc. 3 3
 etc. etc.

5.3 Insertion of Data Records in the
Last Position of the Sequence

For insertion of additional data record in the last
position of the sequence, it is necessary to distinguish
whether the last, i.e. the rightmost, digit of the
sequence number of the preceding data record is
equal or not to 8.

In the event that the last digit of the sequence
number of the preceding data record is not equal to 8,
then the sequence number Pn of the additional data
record is calculated as being 1 plus the sequence
number Pi of the preceding data record (see equation
(11) and table 9):

Pn = Pi+1

(11)

Table 9: Inserting a data record at the end of the sequence.

Before insertion After insertion
83 83
84 84

 85 (Pi) 85 (Pi)
 86 (Pn)

If the last digit of the sequence number of the

preceding data record is 8, then the sequence number
Pn of the additional data record is determined in such
a way that 1 is added to the sequence number of the
preceding data record, and the sum obtained is
multiplied by 10 (see equation (12)).

Pn = 10 * (Pi +1) (12)

This is to ensure that the rightmost digit of the
sequence number of the additional data record is not
equal to 9, thus guaranteeing the uniqueness of the
sequence.

The preceding data record here is the data record
that occupied the last position in the sequence of data
records originally, i.e. before the addition step (see
table 10).

Table 10: Inserting a data record at the end of the sequence.

Before insertion After insertion
6 6
7 7

 8 (Pi) 8 (Pi)
 90 (Pn)

6 THE NEXT VALUE
ALGORITHM FOR THE
INVERSE NATURAL NUMBER
SYSTEM

Software applications require a standard functionality
that track the actual sequence and provide the last
sequence number increment as the next value (IBM,
2021). The next value of integer numbers Pi is
calculated as being 1 plus its selves (see equation
(13)).

PnextValue = 1 + Pi (13)

As a matter of fact, the equation (14) will not result in
the correct next value considering the summation
equation (3) of the inverse natural number system.
For instance, the next value of 1 applying equation
(14) will result in 2. According to new method’s
comparator (see section 4), 2 as the next value of 1
would waste all numbers between 1 and 2 (see
inequation (14) and table 11).

1 < 2000 < 2 (14)

Table 11: Skipping sequence numbers between 1 and 2.

List Order Unused sequence numbers
 1 (Pi)

…
2000

…
etc.

 2 (PnextValue)

To ensure that the range of values of the new

method are utilized effectively, it is proposed to start

DATA 2021 - 10th International Conference on Data Science, Technology and Applications

264

the next value at a so-called turning number if the
current sequence number is a single-digit number.
The turning number is calculated by multiplying the
current sequence number with a default power of 10.
As an example, the possible valuation flow of the
inverse natural numbering system using 3 as default
power of 10 for the turning number is shown in table
12:

Table 12: Next value series of sequence numbers using the
inverse natural number system.

Next value series of numbers using 3 as default power
of the 10 for the turning number

1
2000, 2001, 2002, …, 2008,

200
2010, 2011, 2012, …, 2018,

201
2020, 2021, 2022, …, 2028,

…
2090, 2091, 2092, …, 2098

20
2100, 2101, 2102, …, 2108

…
2190, 2191, 2192, …, 2198

21
2200, 2201, 2102, …, 2208

…
2290, 2291, 2292, …, 2298

22
…

2990, 2991, 2992, …, 2998
2

3000, 3001, 3002, …, 3008
…

The pseudocode to calculate the next sequence
number of the inverse natural number system is
illustrated below:

Program Module to get the next value
for a given sequence number, written
in pseudocode

Input:
Given sequence number: v Є ℕ

Output:
Next sequence number value: x Є ℕ

Algorithm:
Initialize default power of 10 of the
most-left digit of the turning
number: p Є ℕ

Initialize power of 10 of the
most-left digit of the given

sequence number value v. This is
calculated using the logarithm base
10 to get the exponent and the
function Floor()to get the integer
part of a given decimal number:
q = Floor(Log10(v))

If rightmost digit of v is 8 and
 p smaller or equal q Then

 v ← (v - 8) / 10

While rightmost digit of v is 9
v ← (v - 9) / 10

Loop

Else

If p greater q Then
v ← (v + 1) * 10(p – q)

 Else
 v ← (v + 1)

Return x ← v

7 CONCLUSIONS

As a result, insertion of further data records in any
position within the sequence of data records is
performed effectively and easily when using the
described method.

The new method allows management of databases
without the need for recalculating already allocated
sequence numbers of data records when inserting
further data records in any position into the sequence
of these records.

Using this method, a sequential renumbering of
the sequence numbers of all succeeding data records
in the sequence is avoided. It remains valid and
relevant, even following changes of the sequence
numbers or deletion of any data records.

Consequently, the computation time for managing
a database is reduced and the data volume required
when accessing the database, particularly via the
internet, is minimized.

REFERENCES

Bayer R. and McCreight E. (1970). Organization and
Maintenance of Ordered Indices, Boeing Scientific
Research Laboratories.

Cowlishaw, M. F. (2021). Decimal Arithmetic FAQ.
http://speleotrove.com/decimal/decifaq.html.

Invers Natural Number System to Maintain User-defined Sequence of Data Records

265

Cowlishaw, M. F. (2003). Decimal Floating-Point:
Algorism for Computers. IBM UK.

IBM (2021). db2 product hub. https://www.ibm.com/
support/producthub/db2/docs/content/SSEPGG_11.5.0
/com.ibm.db2.luw.sql.ref.doc/doc/r0023464.html.

IBM (2021). Sequence objects. https://www.ibm.com/docs/
en/db2-for-zos/11?topic=programs-sequence-objects.

Microsoft (2021). ALTER SEQUENCE (Transact-SQL).
https://docs.microsoft.com/de-de/sql/t-sql/statements/
alter-sequence-transact-sql?view=sql-server-ver15.

Nelson, J (2018). User-defined Order in SQL.
https://begriffs.com/posts/2018-03-20-user-defined-
order.html.

Sleator, D. D. and Dietz, P. F. (1988). Two Algorithms for
Maintaining Order in a List.

Schäfer, G. (1989). Datenstrukturen und Datenbanken.
Schmid, H. (1974). Decimal Computation, General Electric

Company, New York.
Horn, T. (2007). SQL-Grundlagen. https://www.torsten-

horn.de/techdocs/sql.htm.
Wikipedia (2021). Decimal. https://en.wikipedia.org/wiki/

Decimal.
Wikipedia (2021). Big O Notation. https://en.wikipedia.

org/wiki/Big_O_notation.

DATA 2021 - 10th International Conference on Data Science, Technology and Applications

266

