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In the light of stringent privacy laws, data anonymization not only supports privacy preserving data publica-
tion (PPDP) but also improves the flexibility of micro-data analysis. Machine learning (ML) is widely used
for personal data analysis in the present day thus, it is paramount to understand how to effectively use data
anonymization in the ML context. In this work, we introduce an anonymization framework based on the
notion of “probabilistic k-anonymity” that can be applied with respect to mixed datasets while addressing
the challenges brought forward by the existing syntactic privacy models in the context of ML. Through sys-
tematic empirical evaluation, we show that the proposed approach can effectively limit the disclosure risk in
micro-data publishing while maintaining a high utility for the ML models induced from the anonymized data.

1 INTRODUCTION

Data anonymization facilitates Privacy Preserving
Data Publishing (PPDP) which allows the data con-
trollers to share the data publicly or with specific third
parties with minimal privacy implications. In data
anonymization, the underlying micro-data (personal
data) are irrecoverably transformed so that the risk
of re-identifying the individuals (identity disclosure)
is minimized along with the risk of inferring their
sensitive characteristics (attribute disclosure). Data
anonymization not only supports PPDP but it also in-
troduces more flexibility into micro-data processing
and analysis in the light of new privacy laws. Ac-
cording to recital 26 of the General Data Protection
Regulation (GDPR), the data protection principles do
not apply to anonymized data. To achieve anonymiza-
tion under GDPR, re-identification (singling out) of
an individual must be impossible under all the means
reasonably likely to be used either by the data con-
troller or by any other party directly or indirectly.
Once the data are anonymized, they are allowed to be
freely used, shared and monetized without the usual
restrictions apply to the raw micro-data. Hence, by
anonymizing the micro-data an organization can earn
numerous advantages such as a) disclosure risks mini-
mization, b) avoiding GDPR compliance risks and, c)
improving the flexibility of data publishing and anal-
ysis. Due to these advantages anonymization seems
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to be a sensible approach for handling micro-data.
Anonymized data are then subject to further analysis
in order to facilitate reporting, knowledge extraction
and/ or decision making.

In the present day, ML is employed in a wide vari-
ety of domains where micro-data are used for training
the ML models. Moreover, in recent years there has
been numerous research highlighting the privacy vul-
nerabilities of ML models trained on micro-data such
as membership inference, attribute inference etc. (Al-
Rubaie and Chang, 2019). As a mitigating strategy
for privacy leakage via ML models, differential pri-
vacy (DP) based ML algorithms are proposed in the
literature (Ji et al., 2014). They are aimed at limit-
ing the effect of training data on the final ML model
via injecting noise into the training process thus mini-
mizing leakage of sensitive information. Even though
DP is widely used to achieve privacy preserving ML
(PPML), it has a significant drawback apart from the
conventional challenges of implementing DP; such as
utility loss due to noise injection, the complexity of
estimating function sensitivity or ambiguity in decid-
ing on privacy parameter (€). That is differentially
private ML models are assumed to be trained on the
original micro-data thus requiring the data controllers
to adhere to the data protection principles introduced
in GDPR which limit the flexibility of further process-
ing of micro-data (i.e., limitation on data retention and
purpose of processing, the requirement for data in-
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tegrity and accuracy followed by transparency in data
collection and accountability). On the other hand, if
the underlying training data are already anonymized
they are no longer considered as personal data thus
providing data controllers and analysts more flexibil-
ity. Motivated by the above discussed advantages of
data anonymization, it is plausible that the data con-
trollers anonymize the data before publishing them
for any data analysis task.

The field of statistical disclosure control
(SDC) has introduced different privacy models
and anonymization algorithms to support PPDP.
k-Anonymity (Samarati, 2001) is one of the most
widely used syntactic privacy models which ensures
record indistinguishability within a set of k records as
far as their quasi-identifier attributes (QIDs) are con-
cerned thus minimizing the risk of re-identification.
QIDs are a subset of attributes that can be used to
re-identify the individuals in a published dataset
uniquely, e.g., it is shown that simple demographic
attributes such as birthday, zip code and, gender
can be used together to re-identify about 87% of
the US population (Sweeney, 2000). k-Anonymity
relies on reducing the granularity of the QIDs to
satisfy the indistinguishability requirement. Data
generalization and suppression techniques are used
for categorical QIDs whereas, microaggregation or
rounding are used for numerical attributes to achieve
k-anonymity (Sweeney, 2002) (Domingo-Ferrer and
Mateo-Sanz, 2002). Moreover, concerning categor-
ical data generalization, it is always not possible
to obtain semantically meaningful categories for
all the QIDs. Nevertheless, most of the real-world
datasets contain both numerical and categorical QIDs
(i.e., mixed datasets) thus necessitating us to use a
combination of the above techniques for better data
utility (e.g, use microaggregation on numerical data
and generalization on categorical data) which makes
the anonymization process tedious. According to
Aggarwal (Aggarwal, 2005) when the number of
QIDs is large, most of the attribute values have to be
suppressed in order to satisfy k-anonymity conditions
which degrade the data utility significantly. Utility
loss of data caused by anonymization negatively
impacts any analysis done on the anonymized data
thereafter.

Since the k-Anonymity based privacy models are
mainly focused on PPDP, they bring up unforeseen
challenges when used in the context of ML where
the ML models are induced from anonymized train-
ing data. This is in addition to the utility loss encoun-
tered by the ML models trained on the anonymized
data. For example, k-Anonymity based privacy mod-
els make structural changes to QID attributes by the
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means of data suppression and generalization when it
is applied to the categorical data. This brings up the
below mentioned practical challenges as explained by
(Senavirathne and Torra, 2020).

e Data insufficiency due to suppression - Due to
data suppression a given ML algorithm might not
have enough data to learn a meaningful pattern.
Therefore, we may need to employ data imputa-
tion at the data preprocessing phase of the ML
pipeline to approximate these suppressed values.
This could intensify the accuracy loss of the ML
models trained on anonymized data.

e Previously unseen attributes values due to gener-
alization - Feature vectors pass into the deployed
ML models must have the same attribute domains
as the training data. However, when data gen-
eralization is used, it changes the attribute do-
mains by replacing the existing values with new
values from the top of the generalization hierar-
chy. Hence, anonymized training data are de-
prived of some attribute values that exist in the
general population. At the inference phase of the
ML pipeline, if a user submits a feature vector
containing previously unseen attribute values, the
ML model will fail to process that input. To ad-
dress this issue the ML model owners have to use
an API to transform user’s raw data into the gen-
eralized format required by the ML model.

Addressing the above mentioned challenges re-
quire additional efforts in the ML process without any
guarantee on model utility improvement. It is also
shown that despite the distortion introduced to the
underlying data, k-anonymity still suffers from pri-
vacy vulnerabilities. Thus some enhancements are
proposed to k-anonymity. Out of them the most
widely known methods are 1-diversity (Machanava-
jjhala et al., 2006) and t-closeness (Li et al., 2007).
Even though these methods provide better privacy
preservation for PPDP they result in a higher data util-
ity loss and the above discussed complexities with re-
spect to mixed data, suppressed data and generalized
data persist. Therefore, the standard k-anonymity
based privacy models are not amenable in the con-
text of ML especially if the underlying data contains
categorical QIDs. The main reason for the above dis-
cussed complexities of standard k-anonymity based
privacy models can be attributed to the requirement
of maintaining record level truthfulness for PPDP. In
order to satisfy this, data are transformed with truth-
ful methods such as generalization and suppression
that reduce the precision of the data but not their ac-
curacy. However, when anonymized data are used for
training the supervised ML models (i.e., classifiers)
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the record level truthfulness does not play a signifi-
cant role compared to preserving the relationships be-
tween the features and the class attribute.

The above discussion highlights that an
anonymization approach that can be easily ap-
plicable for mixed data sets, which does not alter
the attribute domain or cause data suppression is
amenable in the ML context compared to standard
k-anonymity or its variants. As a solution, we turn
towards the notion of “probabilistic k-anonymity”
introduced in Soria-Comas and Domingo-Ferrer
(Soria-Comas and Domingo-Ferrer, 2012) which re-
laxes the indistinguishability requirement of standard
k-anonymity while guaranteeing the same level of
disclosure risk. A generic framework is introduced
in this work for achieving probabilistic k-anonymity
concerning numerical data. Unlike the standard k-
anonymity, here the indistinguishability requirement
is achieved via performing data swapping within the
homogeneous data partitions (equivalence classes)
of size k. Thus for any given record, its original
QID values are dispersed within a group of similar
records (with respect to QIDs) of size k leading to
uncertainty in record re-identification. Nevertheless,
similar to the standard k-anonymity this also limits
the probability of re-identification at most to % Since
this approach does not rely on data suppression and/
or generalization it eliminates the aforementioned
challenges when adopting into ML context.

In the initial work, it is shown that probabilistic
k-anonymity results in better data utility compared to
standard k-anonymity. However, these results are lim-
ited to the context of numerical data and no proper
approach is presented on how data swapping is car-
ried out in order to achieve probabilistic k-anonymity.
Most importantly, no analysis has been carried out on
how probabilistic k-anonymity would impact disclo-
sure. Nevertheless, data utility evaluation is limited to
measuring generic utility losses but no work has been
done on its impact when the anonymized data are used
for data analysis purposes (i.e. ML). Our contribution
in this paper is mainly threefold. First, we present
a framework for probabilistic k-anonymity extending
it to mixed datasets based on data permutation. Here,
we discuss different distance measures appropriate for
mixed data in order to generate the homogeneous data
partitions for k-anonymity. Secondly, we carry out
a comprehensive, empirical evaluation on disclosure
risk and data utility with respect to PPDP. Then, we
extend the analysis with respect to ML based classi-
fication of such data focusing on the impact on the
model utility. Finally, we comparatively evaluate our
approach with the existing work.

The rest of the paper is organized in the follow-
ing way. In Section 2 we discuss preliminaries of
data anonymization followed by Section 3 detailing
the methodology for probabilistic k-anonymity and
determination of QIDs. Empirical evaluation and re-
sults are presented in Section 4. Section 5 concludes
the paper with some final remarks.

2 RELATED WORK

Zhang et al. (Zhang et al., 2007) proposed the notion
of (k, e)-anonymity, a permutation based approach
to deal with numerical sensitive attributes. Here, the
data are partitioned into groups containing at least k
different sensitive values within a range of at least
e. Then the sensitive values are randomly shuffled
within each partition. However, this work is focused
on answering the aggregate queries about the sensi-
tive attribute and not about publishing privacy pre-
serving data. Re-identification of individuals is still
possible on (k, e)-anonymized data as it does not
modify the QID values that can lead to disclosure.
An anonymization algorithm is proposed by (Eyu-
poglu et al., 2018) based on the concept of proba-
bilistic anonymity where the data are anonymized uti-
lizing a chaotic function for data perturbation. Then
the resulting anonymized data are used to train a set
of classifiers followed by evaluating the classifica-
tion accuracy. The results show that the proposed
algorithm achieves a classification accuracy compa-
rable with the benchmark model. Some other work
has used standard k-anonymity based privacy models
in order to anonymize the training data (Rodriguez-
Hoyos et al., 2018), (Herranz et al., 2010), (Wimmer
and Powell, 2014). Despite the data distortion the
models induced from anonymized data has reported
comparable accuracies with the benchmark model.
However, non of these works have highlighted the
practical challenges of using standard k-anonymity in
the ML context or any analysis to understand how
comparable accuracies occur despite the utility loss
caused by anonymization. Fung et al. (Fung et al.,
2005) presents an algorithm for determining a gen-
eralized version of the data that aims at maintain-
ing classification utility. The algorithm generalizes
a given dataset by specializing it iteratively starting
from the most general state. At each iteration, a gen-
eral value is assigned into a specific value for cate-
gorical attributes, or a given interval is split further
for continuous attributes based on information gain.
Iterative partitioning of the data is repeated until fur-
ther specialization leads to violation of the required
anonymity level. The results indicate comparable ac-
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curacy with the benchmark model even for higher
anonymity levels. This method can be applied for
mixed datasets given that a semantically meaning-
ful taxonomy tree can be generated for the under-
lying original dataset. Moreover, at the inference
phase transformation of the incoming data (feature
vectors) are required to map original values into gen-
eralized values. k-Anonymity based anonymization
methods first generate homogeneous data partitions
(equivalence classes) of size k based on the QID val-
ues and then apply data generalization and/or suppres-
sion within them. Last et al. presented an anonymiza-
tion algorithm NSVDist (Non-homogeneous gener-
alization with Sensitive value Distribution) which is
based on non-homogeneous (k,/) anonymity where k
indicates the required minimal anonymity and / in-
dicates the diversity level for the sensitive attribute.
Here, generalization is carried out without clustering
the data first. Unlike typical anonymization meth-
ods, generalization is applied to the sensitive attribute
which converts it into frequency distributions. How-
ever, standard ML algorithms cannot be applied to the
generalized tables obtained via this approach. There-
fore, a data reconstruction step is required before
training the classifiers. Privacy Preserving Data Min-
ing (PPDM) algorithms are also proposed in the liter-
ature which is aimed at anonymization of the data to
cater for the specific data mining goals to maximize
the accuracy of the data mining results. In this case,
PPDM algorithms are tailored to specific data mining
algorithms (i.e., decision trees) under the assumption
that the exact use of the anonymized data is known to
the data controllers beforehand (Agrawal and Srikant,
2000). Recent work has done an empirical anal-
ysis on how applying existing privacy models and
anonymization methods on the training data impacts
the utility and the privacy of the ML models (Senavi-
rathne and Torra, 2020). Privacy of the ML models
is determined based on the success ratio of the mem-
bership and attribute inference attacks that target the
ML models trained on the anonymized data. Based
on their empirical results they have shown that in or-
der to minimize the privacy risks in ML (specifically
membership inference), the existing data anonymiza-
tion techniques have to be applied with high privacy
levels that can cause a deterioration in the model util-

1ty.

3 DATA ANONYMIZATION

The conventional requirement for data anonymiza-
tion is to support PPDP. This is a ubiquitous prac-
tice adopted in a wide variety of domains where per-
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sonal data are modified using anonymization tech-
niques and then released publicly or to a specific third
party for further analysis (e.g., statistical agencies, re-
search institutes, private/ public organizations). Data
anonymization achieves privacy as it irrecoverably
transforms the data to minimize the identity and at-
tribute disclosure risks which are respectively aimed
at re-identifying individuals and learning previously
unknown, confidential characteristics about them.

Based on the impact on privacy we can identify
four types of attributes in a given dataset. “Identi-
fiers” are the attributes that can be used to identify
the respective data subjects directly e.g., social se-
curity number, email address etc. “Quasi identifiers
(QIDs)” are indirect identifiers. When QIDs are con-
sidered as a composite key they can be used to iden-
tify some data subjects accurately. Usually, QIDs are
empirically decided by the domain experts who have
an extensive understanding of the data. “Confiden-
tial/ sensitive attributes” contain sensitive information
about data subjects such as health condition, salary,
sexual orientation etc. A confidential attribute can
also be a QID. “Non confidential attributes” do not
contain sensitive information thus no privacy impact
is noted. In the process of data anonymization, first,
the identifier attributes are removed from the data and
then the identified QIDs are modified using appropri-
ate anonymization techniques to produce a protected
dataset. In this case, the concepts of “anonymization
techniques” (masking methods/ SDC techniques) and
“privacy models” play a crucial role. Anonymiza-
tion techniques direct how to transform the origi-
nal data into a protected version. In contrast, a pri-
vacy model presents a specific condition that, if satis-
fied guarantees a degree of privacy that keeps disclo-
sure risk under control. Both of these concepts are
parametrized and allow the data controllers to tune
the degree of privacy that indicates how much disclo-
sure risk is acceptable. There is a synergy between
anonymization techniques and privacy models. That
is anonymization techniques are used to achieve spe-
cific privacy models as they determine how the orig-
inal data should be transformed. The privacy model
k-anonymity (Samarati, 2001) limits the risk of re-
identification by ensuring that for a given record there
exist at least k — 1 records that share identical values
for QIDs.

Definition 1. (k-Anonymity) A micro-data set T' is
said to satisfy k-anonymity if, for each record t € T',
there are at least k — 1 other records sharing the same
values for all the QIDs.

Such k records are known as an equivalence class.
k-Anonymity decreases the probability of a success-
ful record linkage based on any subset of QID to be
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at most 1/k. k-Anonymity can effectively mitigate
identity disclosure as it makes a given data record
indistinguishable among k — 1 other records with re-
spect to QID values. However, attribute disclosure
is possible on k-anonymized data if the values for
the sensitive attribute are the same or very similar
within an equivalence class. In that case, the ad-
versary can infer the sensitive attribute value with-
out prior re-identification. These are known as homo-
geneity attacks and similarity attacks respectively. In
order to avoid the vulnerabilities in k-anonymity some
enhancements are proposed. Out of them the most
widely known methods are I-diversity (Machanava-
jjhala et al., 2006) and t-closeness (Li et al., 2007).
However, these models are often criticized for their
unrealistic assumptions on the sensitive attribute dis-
tribution and utility loss. Moreover, l-diversity is also
vulnerable to adversarial attacks aimed at learning the
sensitive attribute values like similarity attack, back-
ground knowledge attack and skewness attack (Li
et al., 2007).

With respect to the above discussed k-anonymity
based privacy models, the generation of equivalence
classes makes data records indistinguishable among
k records thus limiting the risk of identity disclo-
sure. However, due to equivalence classes, it becomes
easier for an adversary to filter out the exact set of
records (i.e., the particular equivalence class) that cor-
responds to the data record at the adversary’s hand.
Hence, group identification makes a k-anonymized
dataset vulnerable to attribute disclosure (i.e., through
homogeneity attack, similarity attack, skewness at-
tack etc.). Whereas, t-closeness is resilient to such
attacks at the expense of data utility. This raises
the requirement for privacy models focused on im-
proving adversary’s uncertainty in correctly identify-
ing the groups (i.e., minimizing attribute disclosure)
while maintaining record indistinguishability among
a group of records (i.e., minimizing identity disclo-
sure). Therefore, a privacy model becomes more
preferable if it introduces uncertainty in both group
identification and record re-identification thus mini-
mizing the overall risk of disclosure. These objec-
tives can be achieved by introducing randomness into
the privacy model while maintaining a high degree of
symmetry within the equivalence classes. By defi-
nition, a probabilistic approach for k-anonymity can
address these requirements. This notion is referred
to as probabilistic k-anonymity and defined as below
(Oganian and Domingo-Ferrer, 2017) (Soria-Comas
and Domingo-Ferrer, 2012).

Definition 2. (Probabilistic k-Anonymity) A pub-
lished data set T’ is said to satisfy probabilistic k-
anonymity if, for any non-anonymous external data

set E, the probability that an adversary with the
knowledge of T', E and the anonymization mecha-
nism M correctly links any record in E to its corre-
sponding record (if any) in T' is at most 1/k.

Standard k-anonymity limits the probability of
re-identification at most to % by ensuring for each
record in 77, there exist at least k — 1 other records
sharing the same values for all the QIDs. On the
other hand, the concept of probabilistic k-anonymity
relaxes the indistinguishability requirement of stan-
dard k-anonymity and only requires that the probabil-
ity of re-identification be the same as in standard k-
anonymity. In the case of probabilistic k-anonymity,
indistinguishably is achieved via swapping of the at-
tribute values within the equivalence classes of size k
thus creating uncertainty for the adversary in the re-
identification process. Even though the definitions of
these two privacy models seem to be different from
each other at a glance, they enforce the same limit on
the probability of re-identification (i.e., %).

First, from the point of view of privacy, not
only probabilistic k-anonymity limits the risk of re-
identification/ identity disclosure, it effectively low-
ers the risk of attribute disclosure as exact group/
equivalence class identification is made difficult via
data swapping. With respect to the utility of the
anonymized data, probabilistic k-anonymity can pre-
serve the marginal distributions exactly when the en-
tire dataset is concerned in a univariate manner (at-
tribute wise). Also, it permits us to maintain the vari-
ability in the anonymized data set as opposed to the
standard k-anonymity based methods which reduce
the variability via generalization, suppression and/ or
aggregation of data that leads to high utility loss (Oga-
nian and Domingo-Ferrer, 2017). Moreover, when
the number of selected QIDs are high (e.g., when all
the attributes are considered as QIDs) it is shown that
standard k-anonymity based methods incur significant
utility loss (Aggarwal, 2005). On the other hand,
probabilistic k-anonymity distorts the multivariate re-
lationships in the data (i.e., correlations, mutual infor-
mation etc.). Also, it adversely impacts the analysis
done on data sub-domains (e.g., computation of mean
salary with respect to a specific job). Therefore, par-
titioning a given dataset based on their homogeneity
before applying data swapping is important as it leads
to reduce the above mentioned negative impact on the
data utility since the attribute values are now shuffled
in a controlled setting. Apart from the above issues,
the possibility of unusual combinations of data may
occur due to data swapping. To overcome this, data
swapping can be carried out in a multivariate manner
where first we group several QIDs into a single block
and then swapping is applied to each block separately
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instead of targeting a single QID at a time.

Apart from the aforementioned privacy and util-
ity related advantages, probabilistic k-anonymity has
many favourable characteristics when applied in the
ML context compared to the other privacy models.
All k-anonymity based syntactic privacy models (i.e.,
standard k-anonymity, l-diversity, t-closeness etc.)
bring up the challenges discussed in Section 1 with
respect to data suppression and generalization. Some
other data anonymization methods, as discussed in
Section 2 either publish anonymized data tailored to
specific ML algorithms or require data regeneration in
order to transform them into a flexible format before
using them for model training. As probabilistic k-
anonymity is a general framework focused on control-
ling the maximum re-identification probability it pro-
vides data controllers more flexibility in selecting the
underlying data transformation techniques. There-
fore, data anonymized via probabilistic k-anonymity
can be directly used for model training and infer-
ence without any additional requirement for data pre-
processing.

4 METHODOLOGY

In this Section, we extend the initial work of
Soria-Comas and Domingo-Ferrer (Soria-Comas and
Domingo-Ferrer, 2012) with respect to mixed data
and present an algorithm for achieving probabilistic
k-anonymity based on data permutation. The pro-
posed method consists of four main steps as a) com-
puting pairwise dissimilarity among the data records,
b) data partitioning based on QIDs, ¢) grouping QIDs
and, d) data permutation. First, we introduce some
basic notions as below. Let T = {t;,2,...,1,} be a
dataset with attributes Aq,...,A,,. Q denotes the set
of all attributes that are considered as QIDs whereas
S represents the sensitive attribute. Privacy parameter
or the minimum size of each data partition is indicated
by k whereas C = {ci,...,c,} represents data parti-
tions. Dissimilarity measure d(.) is used to measure
the pairwise dissimilarity between given two records
and finally, a pair-wise dissimilarity matrix (M) is
generated.

o Computing Pairwise Dissimilarity: Homoge-
neous data partitions (clusters of size k) are cre-
ated based on record similarity (or dissimilarity).
There exist many similarity measures that can be
used to obtain a similarity score. The choice of
these measures depends on the data type. For
example, in numerical data context Euclidean,
Mahalanobi’s, Manhattan distances can be used.
Whereas, for ordinal and nominal data, measures
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such as Jaccard’s coefficient or Hamming dis-
tance are suitable. In their work, Soria-Comas and
Domingo-Ferrer have limited their analysis to nu-
merical data and used MDAV-microaggregation
(Domingo-Ferrer and Mateo-Sanz, 2002) to cre-
ate data clusters of size k which is based on
the aforementioned numerical distance measures.
However, in the real world, most datasets are a
mixture of data types hence it is required to use a
distance measure appropriate to mixed data. Here,
we use two distance measures proposed for mixed
data clustering as mentioned below.

Gower dissimilarity - Gower distance (Gower,
1971) is designed to measure the dissimilarity be-
tween two data points of mixed data types as de-
picted below.

m
YL Wt,'t_/ldt;tjl
m :
Z[: 1 Wit jl

Here, Wet)1 indicates the weight for variable / be-
tween observations i and j, whereas df,‘ljl indicates
the dissimilarity between instance i and j on at-
tribute /. Categorical and numerical attributes are
considered separately when calculating dy; ;. For
categorical data (nominal or binary) distance is
measured using Hamming distance where d’itjl is
set to 0 when attribute values of i and j are equal
and 1 when they are not. For numerical data the
scaled absolute difference is used that limits the
attribute range between 0 and 1. When comput-
ing the weights wy,; is set to 1 for non-missing
variables and O otherwise.

Ahmad-Dey dissimilarity - In the above case,
Hamming distance is used to evaluate categorical
data which is not very accurate for multi-valued
categorical attributes. Hence, Ahmad and Dey
(Ahmad and Dey, 2011) presented a dissimilarity
measure for mixed data that computes a dissim-
ilarity between categorical attribute values based
on their co-occurrence with the values of other at-
tributes as mentioned below.

d(l‘,’,tj) = (1)

An Ay
dyg; = Y weltie—15)° + Y 8(tisstjs). (2
r=1 s=1

Here, Ay and Ay respectively represents numerical
and categorical attribute sets. The first term repre-
sents the squared Euclidean distance between "
numerical attribute value between instance ¢; and
tj. The second term depicts the dissimilarity of the
s'" categorical attribute value between instances ;
and ;. §(.,.) is used for measuring the dissimi-
larity between categorical data. Let Ay denote a



Systematic Evaluation of Probabilistic k-Anonymity for Privacy Preserving Micro-data Publishing and Analysis

categorical attribute which contains two values as
a and b. To measure the dissimilarity between a
and b, this method considers the overall distribu-
tion of a and b in the data set along with their co-
occurrence with values of other attributes. Let Ay,
denote another categorical variable. Let ® denote
a subset of values of Ay and ® the complemen-
tary set. P(w|a) denote the conditional probabil-
ity that an object having value a for Ay, has a value
in o for Ay. Similarly, P(®|b) denotes the condi-
tional probability that an object having value b for
Ay, has value in ® for Ay. The dissimilarity be-
tween values a and b for A; concerning Ay is given
by 8(a,b) = P(®|a) + P(®|b) — 1, where ® is the
subset of values of Ay that maximizes the quan-
tity P(w|a) + P(®|b). The dissimilarity between
a and b is computed with respect to all the other
attributes. The average value of dissimilarity is
the distance ®(a,b) between a and b. The signif-
icance of the rth numeric attributes are depicted
by w,. To compute w,, the numerical attributes
are first discretized, followed by computing the
distances between every pair of discretized values
using the same method. Finally the average val-
ues are taken as the significance of the attributes.
Interested readers are referred to the original pub-
lication (Ahmad and Dey, 2011) for more infor-
mation.

At the end of this step, we generate a dissimilar-
ity matrix M containing the pairwise dissimilari-
ties between all the data instances with respect to
QIDs (separately based on equation 1 and 2).

Cardinality Constrained Data Partitioning: In
this step data partitioning (clustering) is carried
out based on the dissimilarity matrix M such that
each data partition contains at least k data in-
stances. To generate cardinality constrained clus-
ters we use MDAV-Microaggregation (Maximum
Distance to Average Vector) (Domingo-Ferrer and
Mateo-Sanz, 2002). Typically, microaggregation
is an SDC method for numerical data protection
where the data are first partitioned into micro-
clusters of size k followed by replacing them with
each micro cluster’s centroid value. However, our
focus here is only on the data partitioning part
thus we update the MDAV-microaggregation al-
gorithm to generate micro-clusters of size k on the
dissimilarity matrix M and to return the clusters
which contain the corresponding record indices.
The output of this step is a nested list (C) that con-
tains micro-clusters each comprises of the record
indices that are clustered together based on their
similarity as shown by 1.

Algorithm 1: MDAV-microaggregation for clustering
records based on their similarity.

Input: M,k

Output: C

while 2k or more rows in M remains do

Randomly select a row g from M

Find the furthest point p from g

Select k — 1 nearest points to p including
p and form micro-cluster ¢; by fetching
their index values

For all points in ¢; remove corresponding
rows and columns from M

if there are k to 2k — 1 points left then
L Form a new micro-cluster ¢; and fetch

their respective index values from M

else
Assign the index values of remaining
records in M to the last micro-cluster
generated

Append generated micro-cluster/s to form
nested list C

e Generate QIDs Groups: As explained in Sec-

tion 3 applying data anonymization in a multivari-
ate manner improves the utility of the anonymized
data. This is achieved by grouping QIDs into sev-
eral blocks before applying anonymization. In
this case, we block the QIDs based on their associ-
ation with the sensitive attribute (S) such that each
block contains at least 2 QID attributes. In or-
der to estimate the association, we use Mutual In-
formation (MI). MI measures the association be-
tween two random variables capturing both lin-
ear and non-linear dependencies. MI between two
discrete random variables X and Y can be defined
as below.

MIX;Y)=HX)—-HX|Y)=H(Y)—H(Y|X)
3)
Here, H(X), H(Y) are the entropy or the uncer-
tainty level of the respective variables that can
be measured using H(X) = — Y cx p(x) log p(x).
Whereas, H(X|Y) is the conditional entropy that
indicates the amount of uncertainty left in X after
observing Y. In Equation 3, the first term explains
the entropy of X before Y is known, while the sec-
ond term indicates the entropy after Y is known.
Hence, mutual information is the amount of en-
tropy reduced in X by knowing Y. Therefore, if X
and Y are independent of each other the amount
of MI is 0 whereas, MI is greater than 0 when X
and Y are related. For a given dataset 7 we quan-
tify the MI between the features and the identified

313



SECRYPT 2021 - 18th International Conference on Security and Cryptography

S as MIg = MI(A,,S). Ml is the mutual infor-
mation vector that indicates the respective associ-
ation of each attribute with the S. Then we group
the QIDs such that attributes that have high MI are
blocked together and each block contains at least
2 attributes.

e Data Permutation. Once the data records are
clustered based on their similarity the next step
is to apply within cluster data permutation in or-
der to achieve probabilistic k-anonymity. As ex-
plained previously C contains micro-clusters of
record indices. For each ¢ € C we extract the
records from T as T|c] and then randomly per-
mute the order of the QID values followed by up-
dating the permuted values in the original dataset
T.

Algorithm 2 summarizes the above mentioned
process for generating probabilistically anonymized
data.

Algorithm 2: Probabilistic k-Anonymity.
Input: 7,0, S,k
Output: Anonymized dataset : T’
QIDyy :=T[Q]
M := Generate pairwise dissimilarity for
OID;s // Algorithm 1

C := Generate clusters of size k over M

P := Generate QID blocks

T'=T

for c€Cdo

for pe Pdo

ECysi=T[c,p] // Extract data
chunk given their indices(c)
and attributes (in block p )

PMdf = ECdf
while ECdf == PMdf do
L PM,y :=Permute (ECyy)

B T'[c,p) == PMyy

S EXPERIMENTAL EVALUATION

In this Section, we use six publicly available datasets
for evaluating the anonymized data under the follow-
ing criteria, a) data utility, b) disclosure risk and,
¢) impact on ML utility. UCI Contraceptive Meth-
ods (1473x9), UCI Mammographic (961x6), UCI
Adult (48,842x14), UCI German Credit (863x25),
UCI Heart disease (303x14) and, UCI Cardiotocog-
raphy (1,914x23) datasets are used for experimenta-
tion where the class attribute of each dataset is con-
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sidered as the sensitive attribute(S) (the number of
instances and the attributes are mentioned within the
parentheses). Selected sensitive attributes are respec-

ELENNT3

tively “contraceptive method used”, “severity”, “in-
come status, “credit rating”, “presence of heart dis-
ease” and, “presence of cardiac arrhythmia”. Respec-
tively UCI Cardiotocography and UCI Contraceptive
Methods datasets contain 10 and 3 unique values for
the sensitive attributes whereas other datasets have
binary sensitive attributes. To avoid the anonymiza-
tion process being solely impacted by chance, each
anonymized dataset is generated in five trials and the
results are averaged across them.

To evaluate how differing the number of QIDs im-
pact the data utility and disclosure risk, we have used
two approaches for QID selection.

e Part QID— Only a subset of attributes are selected
as QIDs using ARX anonymization tool (Prasser
et al., 2014) which leads to more than 99% of re-
identification of the records based uniqueness and
separation ratios.

e Full QID— All the attributes are considered as
QIDs except the sensitive attribute S.

For each of the above mentioned approaches,
probabilistic k-anonymity is applied with four pri-
vacy/ anonymization levels (k as 5, 50, 100 and 200).

= Part QID (Gower)

Part QID (Ahmad-Dey)
W Full QID (Gower)
W= Full QID (Ahmad-Dey)
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Figure 1: Average loss of mutual information.

5.1 Utility Loss

A generic, data type independent, utility loss mea-
sure is used to estimate the utility of the probabilisti-
cally k-anonymized data. The measure is based on the
concept of mutual information (MI). As explained in
(Domingo-Ferrer and Rebollo-Monedero, 2009), mu-
tual information bears some resemblance to the corre-
lation matrix that is used as a generic utility loss mea-
sure in SDC literature in the form of the relative dis-
crepancy between correlations. Application of prob-
abilistic k-anonymity alters the statistical dependence
between the attributes thus mutual information can be
used to quantify this distortion in terms of loss of mu-
tual information. For a given dataset, first, the mutual
information matrix is computed which indicates the
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association among the attributes. Then the average
mutual information vector is computed for each at-
tribute Aj ...A,, respectively as Ml ,.c = M1, ...MI,,.
If the M1,.. of the original dataset is termed as MIr
and that of the anonymized dataset is termed as M1y,
the relative loss of mutual information is computed
as, MI loss = %ZMIT —Mly.

Fig 1 illustrates the probabilistically k-
anonymized data under the previously mentioned
dissimilarity measures (i.e., Gower, Ahmad-Dey)
and QID selection methods (Part QID, Full QID).
The results are averaged across the selected six UCI
datasets. Here, we can observe that increasing the
anonymization level (k) and/or number of QIDs
increase the loss of MI. This can be attributed to
the higher distortion caused by data permutation
within larger data partitions which leads to higher
privacy. Moreover, comparing to tuning the privacy
parameter (k) into a higher value, selecting a higher
number of QIDs has a more adverse impact on data
utility. Therefore, data controllers have to be more
economical when selecting QIDs for anonymization.
When data partitioning is done based on Gower
dissimilarity the relative loss of MI is marginally
lower than that of Ahmad-Dey dissimilarity.

5.2 Disclosure Risk

The purpose of disclosure risk limitation is to min-
imize the amount of information available in an
anonymized dataset with respect to individuals lead-
ing to identity and/ or attribute disclosure. In the
case of probabilistic k-anonymity, an adversary would
not be able to positively identify which anonymized
records correspond to which original records exactly.
In other words, it is impossible for an adversary to
be confident of having identified an individual in the
anonymized dataset as every record now could be al-
tered. Therefore, the risk of identity disclosure is min-
imal under probabilistic k-anonymity except in the
presence of unique values in QIDs. For example, if a
particular record carries unique values for all or most
of the QIDs, even if those values are dispersed among
multiple records (via permutation) an adversary can
still draw a conclusion of its mere existence in the
anonymized dataset (without an exact record linkage).

One of the biggest limitations of standard k-
anonymity is the vulnerability towards attribute dis-
closure. In standard k-anonymity, risk of attribute dis-
closure occurs due to the possibility of exact equiva-
lence class identification followed by the existence of
same (or similar) sensitive attribute values within the
given equivalence classes (refer Section 3 for more in-
formation). In this case, an adversary can obtain the

sensitive attribute values of a given record by observa-
tion without using any sophisticated inference meth-
ods. We use Adult and Cardiotocography datasets
to showcase this risk. On the Adult dataset, the
sensitive attribute has two unique values whereas on
the Cardiotocography dataset ten unique values are
available. When standard k-anonymity is applied on
the Adult dataset, respectively 0.72%, 0.6%, 0.52%,
0.47%, 0.11%, 0.06%, and 0.002% records belong to
equivalence classes where the same sensitive attribute
value is present when k value differs as 2, 3, 4, 5,
50, 100 and 200. On the Cardiotocography dataset
for the aforementioned & values percentage of records
belong to the equivalence classes with the same sensi-
tive attribute value changes as 0.45%, 0.27%, 0.24%,
0.027%, 0%, 0%, 0%. This shows that small privacy
parameter values (k) and low diversity in sensitive at-
tributes could result in high attribute disclosure risk
under standard k-anonymity.

Even though exact equivalence class identifica-
tion is not possible with high certainty in probabilis-
tically k-anonymized data attribute disclosure is still
possible. However, by definition attribute disclosure
is more challenging under probabilistic k-anonymity
compared to standard k-anonymity. Hence, to assess
this risk we adopt three inference methods namely, a)
distance based record linkage b) probabilistic record
linkage and, c) ML based inference.

In this case, we consider the scenario where an ad-

versary has access to an external dataset E that com-
prises un-anonymized QID data and E’s anonymized
version T’. Here, we assume that E contains person-
ally identifiable information (unmodified QIDs that
can lead to specific individuals) without the sensi-
tive attribute/s. Whereas, T’ contains the sensitive at-
tribute values along with the modified (anonymized)
QIDs. Thus, by using a mechanism to join £ and
T’ on their QIDs adversary can infer the sensitive at-
tribute value for the interested individuals in E. To
illustrate a sophisticated adversary with full access to
information, we assume E contains all the records in-
cluded in T’, prior to anonymization without the sen-
sitive attribute values (i.e., E = T \ SA).
Distance based Record Linkage. In this case, the
adversary uses record similarity to identify a poten-
tial link for a given record in E and infer the sensitive
attribute based on this. For a given record ¢; € E the
adversary computes the similarity to all the records
ti.n € T'. Then for t; € E find the nearest neighbour
from T’ based on the computed similarities and ex-
tract the sensitive attribute value. In this case, we have
used Gower dissimilarity for generating the distance
matrix as it incurs a lower utility loss compared to
Ahmad-Dey.
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Probabilistic Record Linkage. Probabilistic record
linkage (PRL) attempts to link two datasets when
there are inconsistencies between the records with re-
spect to the linking attributes. The goal of this record
linkage method is to establish whether a given pair
of records belong to the same entity or not. In this
case, probabilistic record linkage is carried out be-
tween E and T’ on QID attributes. As probabilis-
tic k-anonymity permutes the QID values in 7/ now
there are inconsistencies between the majority of the
linking attributes. Thus even a record is inked, the
chances are high that it is merely a similar record
but the correct match. To illustrate this we gener-
ate a dataset 7,. 50% of T,’s records are from T’
and the rest is from a hold out dataset 7;, where
T,NT = 0. Then we used probabilistic record link-
age to identify links (based on reclin package on R)
where one-to-one linkage is enforced. Ideally, 50%
of the records taken from 7' should have been cor-
rectly liked while the records taken from 7}, are not
linked. In other words, a high True Positive (TP)
count and a low False Positive (FP) count is ex-
pected. However, we noticed that probabilistic record
linkage results in a very high number of FPs with
respect to all the datasets. Thereby, reporting low
positive predictive value (PPV) computed as PPV =
T PTP +p- Lhe average of the reported PPV values is
0.49+£0.01 across all the UCI datasets for their prob-
abilistically k-anonymized counterparts. This result
indicates that probabilistic record linkage under prob-
abilistic k-anonymity does not yield meaningful re-
sults. Nevertheless, we can utilize the linked records
to infer the sensitive attribute values for records in E.

Once the records are linked between E and T’ the
next step is to infer the sensitive attribute (S) value as
mentioned below. Assume record ¢; € E is linked with
tj € T'. Then value of S is inferred as E,,[S] = 7;/[S].
ML based Inference. In this case, the adversary first
trains a ML classifier on T’ in order to predict the sen-
sitive attribute of the original, un-anonymized dataset
E. Since it is assumed that E only contains QIDs,
the ML classifiers are trained only based on the QIDs
attributes of 7’ In this work, we have used the ran-
dom forest (RF) algorithm as the adversary’s choice to
train the ML model. The accuracy of the inferred SAs
is reported using the micro-averaged F1 score which
aggregates the contributions of all the classes.

The average AD risk under the aforementioned in-
ference methods are illustrated in Fig 2 when the un-
derlying micro-data are partitioned based on Gower
dissimilarity and only a subset of attributes are con-
sidered as QIDs (Part QID) following the typical
adversarial assumption in SDC where it is assumed
that the adversaries have access to only a subset
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of attributes that can be effectively used for re-
identification (i.e., QIDs). We term such adversaries
as partially informed adversaries (PIA). More pre-
cisely, in this case, the dataset E contains only a sub-
set of attributes (un-anonymized). The fraction of at-
tributes (QIDs) available in £ concerning each dataset
is 0.23, 0.2, 0.44, 0.18, 0.42, 0.8 and, 0.35 respec-
tively for Heart, German Credit, Contraceptive Meth-
ods, Cardiotocography, Adult and, Mammographic
datasets. On each dataset, the attribute disclosure risk
(AD) is first measured on the original, un-anonymized
dataset followed by an evaluation of the probabilisti-
cally k-anonymized data. The purpose of using the
original, un-anonymized dataset in the experimenta-
tion is purely to evaluate the effectiveness of the dif-
ferent attribute inference methods. With respect to all
the inference methods, it can be seen that AD accu-
racy is very high for original, un-anonymized data.
That is on average 0.92, 0.83 and, 0.98 for distance
based, ML based and, PRL based methods respec-
tively. Considering all the datasets it can be seen
that applying probabilistic k-anonymity has reduced
the risk of AD. For varying privacy levels (i.e., k=5,
50, 100, 200) on average, AD risk is reduced by
~39.9 %, =~ 25 % and =~ 49 % respectively for for
distance based, ML based and, PRL based methods.
However, AD risk is not always monotonically re-
duced as we increase the privacy level k. For example,
Cardiotocography and Contraceptive datasets seem to
be more susceptible to increasing k values compared
to the other datasets which have binary sensitive at-
tributes (class attribute). However, datasets with bi-
nary class attributes have also shown a reduction of
AD approximately about 20% indicating that proba-
bilistic k-anonymity result in reducing AD risk effec-
tively.

Next, we summarize the results of AD risk when
all the attributes are treated as QIDs (Full QID). In
this case, we assume that the external dataset E, that
the adversary has access to, contains all the attributes
except for the sensitive attribute S. We term such
adversaries as fully informed adversaries (FIA). FIA
can be considered as a real threat since an adver-
sary would at least have the complete knowledge of
the data belong to his/her close contacts (i.e., fam-
ily, friends). Or with the excessive digital data col-
lection, the availability of such personal data is no
longer a far fetched assumption. Here, the dataset
E contains all the attributes (un-anonymized) and the
adversary exploits them to infer the correct sensi-
tive attribute value based on the aforementioned in-
ference methods. The AD risk reduction is =~ 38 %
for distance based approach, ~ 22 % for ML based
approach, ~ 51 % for PRL based approach. These re-
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Figure 2: Attribute disclosure risk under Gower distance and Part QID.

sults show that probabilistic k-anonymity can reduce
the AD risk successfully in the presence of strong
adversaries with a significant amount of background
knowledge about the underlying data subjects. (Simi-
lar results are also noted for Ahmad-Dey dissimilarity.
They are not included here due to space limitations.)
The take away from these results is two-fold. First,
probabilistic k-anonymity can effectively reduce AD
risk. As explained earlier, AD is possible in standard
k-anonymity due to exact equivalence class identifi-
cation which is no longer exists in probabilistic k-
anonymity. Even with sophisticated inference meth-
ods, fully informed adversaries AD risk remains low
when data are probabilistically k-anonymized. Sec-
ondly, probabilistic k-anonymity cannot completely
alleviate AD risk. As long as the data remains use-
ful there exists room for AD.

5.3 Impact on Machine Learning

In the beginning, we discussed why probabilistic k-
anonymity is an amenable approach in the context
of ML compared to the rest of the well-known pri-
vacy models used for data anonymization. In this
sub-section, we discuss the impact of training data
anonymization based on probabilistic k-anonymity
with respect to ML model utility.

Model Utility. Fig 3 depicts the F1 score when the
underlying training data are anonymized using prob-
abilistic k-anonymity. Here, we have used two QID
selection methods as Part QID and Full QID which
varies on the number of QIDs. As shown by the
results, increasing the number of anonymized QIDs
and the privacy levels (k) deteriorate the model accu-
racy gradually. Previously, we discussed how proba-
bilistic k-anonymity incurs utility loss in the data and
used the loss of MI to quantify it. Hence, it is intu-
itive that the ML models trained on the anonymized
data also face a loss of predictive power. Here, the
F1 score is measured on a holdout dataset (7},) ex-
tracted from the same population as 7 without any
overlapping. Multi Layer Perceptron (DNN), Logistic
Regression (LR), Support Vector Machines (SVM),
Decision Trees (DT) and Random Forest (RF) algo-
rithms are used in the experiments and the reported

accuracy values are averaged over them. For DNN a
three layer neural network is configured with 32 hid-
den units each with “relu” activation and “adam” op-
timizer.

However, we do not observe linearity in the accu-
racy loss as a response to the increasing number of
QIDs or privacy level. Further, in some cases, the
loss of model accuracy is almost negligible or even
slightly improved despite the utility loss caused by
anonymization. Concerning the different QID selec-
tion methods, the average F1 score loss varies from
0.124+0.01 to 0.23 £0.05 under Gower dissimilar-
ity concerning Part QID and Full QID respectively.
With respect to Ahmad-Dey dissimilarity the average
F1 score loss changes as 0.1540.01 and 0.24 +0.01.
In a closer inspection of the results, it can be seen that
binary classification problems are less susceptible to
utility loss compared to the multi-class problems in
general. This is more prominent under Full QID ap-
proach for QID selection. As explained by Senavi-
rathne and Torra (Senavirathne and Torra, 2020) in
multi-class classification, only a limited number of
records per class exist for the classification algorithm
to learn a discriminative pattern. When anonymiza-
tion distorts the existing relationships in the data it be-
comes increasingly difficult to learn an accurate pat-
tern. This explains the high accuracy loss in multi-
class cases. In order to improve the model accuracy
in multi-class cases, we can balance the class distri-
bution and/ or re-define the classification problems to
have a limited number of classes when it is possible.
From the above results, it is conspicuous that the use
of probabilistically k-anonymized training data im-
pacts the classification accuracy negatively. By opt-
ing lower privacy level (k) and/ or a smaller subset of
QIDs this negative impact can be lowered. However,
data controllers have to keep in mind that tuning for
more accuracy leads to high disclosure risk.
Comparative Analysis. In this Section, we com-
pare probabilistic k-anonymity with other commonly
used privacy models and comparatively evaluate their
impact on classification utility with respect to Deep
Neural Networks (DNN) as they are being increas-
ingly used to solve complex ML problems. For the
evaluation, we use standard syntactic privacy mod-
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Figure 3: Average F1 Score.

els such as k-anonymity (KN), I-diversity (LD) and t-
closeness (TC). In this case, the anonymized data are
generated based on Mondrian anonymization algo-
rithm (LeFevre et al., 2006). As we discussed earlier,
learning based on differentially private (DP) ML algo-
rithms have become the standard practice for PPML.
Hence, we adopt DP DNN (Abadi et al., 2016) for the
comparative analysis as well.

As explained at the beginning, compared to prob-
abilistic k-anonymity (PKAN) the standard syntactic
privacy models require the support of data transfor-
mation APIs in the inference phase of ML as they al-
ter the attribute domain of the underlying data. DP
also faces a myriad of challenges including high util-
ity loss when applied to ML. However, amongst those
challenges having to maintain access to raw, sensi-
tive data in order to train the DP ML models greatly
hinders the flexibility of sensitive data analysis (Re-
fer Section 1 for more details). Compared to these
methods probabilistic k-anonymity not only provides
straight forward implementation also provides high
flexibility for sensitive data processing without risk-
ing compliance with GDPR.

Figure 4 showcases the test accuracy obtained
via each privacy model over aforementioned datasets
when only a subset of attributes are considered as
QIDs (Part QID). A one to one comparison be-
tween these privacy models is not very meaningful
as there are differences between how each privacy
model is implemented and what the privacy param-
eters mean in each case. However, our attempt here
is to understand if each of these privacy models is
implemented with acceptable privacy levels to gen-
erate anonymized data, how would it impact the clas-
sification accuracy of the ML models induced from
that? To realize this objective we train multiple ML
classifiers for each dataset with a variety of privacy
levels. For probabilistic k-anonymity and standard
k-anonymity privacy levels (k) are chosen as 5, 50,
100, and 200. For t-closeness privacy levels (t) are
chosen as 0.5, 0.3, 0.1, and 0.01. When generating
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Figure 4: Comparative evaluation of test accuracies for
DNNSs trained under different privacy models. Each marker
indicates a different dataset and a different privacy level.

l-diversity data for all the datasets with binary class
attributes / value is set to 2. For Contraceptive Meth-
ods dataset, / value is set to 2 and 3 respectively. For
the Cardiotocography dataset privacy parameter [ is
set to 2, 3, 4, and 5 respectively. For training differ-
entially private ML classifiers privacy parameter € is
chosen as 3, 1, 0.5, and 0.25 with 8 = le — 5. Once
the ML classifiers are trained for each dataset and
privacy level, their test accuracies are obtained and
grouped over different privacy models to compara-
tively analyse their impact on ML utility. As depicted
in Figure 4 there is a loss of utility caused by applying
anonymization which is shown through low accuracy
compared to the benchmark model (model trained
on original data). Probabilistic k-anonymity imple-
mented with Gower distance shows a higher accuracy
compared to probabilistic k-anonymity implemented
with Ahmad-Dey distance, standard syntactic privacy
models (KAN, LD, TC) and DP. In conclusion, prob-
abilistic k-anonymity obtain a relatively high utility
for ML while providing the data controllers with the
previously discussed advantages such as high flexibil-
ity for sensitive data analysis under GDPR, a means
for PPDP with low attribute disclosure risk and, an
easy adaptation into ML context without additional
data pre-processing or post-processing requirements.

6 CONCLUSION

In this work, we systematically show that proba-
bilistic k-anonymity can effectively address the chal-
lenges faced by standard privacy models in the con-
text of ML. Here, we have presented a framework
that consists of two algorithms for obtaining proba-
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bilistically k-anonymized data in the context of mixed
datasets. Then an in-depth analysis is carried out
to evaluate the utility and privacy aspects of proba-
bilistic k-anonymity with respect to PPDP. Then we
trained a variety of ML classifiers on probabilistically
k-anonymized data and evaluated the model utility.
When applied with high privacy parameter levels(k)
or a high number of QIDs, probabilistic k-anonymity
has an adverse impact on ML utility. However, com-
pared to the other syntactic privacy models (i.e., k-
anonymity, I-diversity, t-closeness) probabilistic k-
anonymity has gained better ML utility. In conclu-
sion, probabilistic k-anonymity obtain relatively high
utility for ML while providing the data controllers
with numerous advantage such as high flexibility for
sensitive data analysis under GDPR, a means for
PPDP with low attribute disclosure risk and, an easy
adaptation into ML context without additional data
pre-processing or post-processing requirements. In
future work, it can be explored whether these classi-
fication accuracies can be improved further via noise
correction and sample selection methods presented in
the ML literature when learning has to be carried out
on the noisy data.
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