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Abstract: Spectrum-based fault localization (SBFL) is a popular idea for automated software debugging. SBFL tech-
niques use information about the execution of program elements, recorded on a suite of test cases, and derive
statistics from them, which are then used to determine the suspiciousness of program elements, thus guiding
the debugging efforts. However, even the best techniques can face problems when the statistics are unbalanced.
If only one test case causes a program failure and all other inputs execute correctly, as is typical for fuzz test-
ing, then it may be hard to differentiate between the program elements suspiciousness-wise. In this paper, we
propose to utilize test case reduction, a technique to minimize unnecessarily large test cases often generated
with fuzzing, to assist SBFL in such scenarios. As the intermediate results, or by-products, of the reduction
are additional test cases to the program, we use these by-products when applying SBFL. We have evaluated
this idea, and our results show that it can help SBFL precision by up to 49% on a real-world use-case.

1 INTRODUCTION

When a software failure is detected, debugging starts.
But to be able to get rid of a bug, it has to be located
first. Like for many tasks in the domain of software
maintenance, it is also true for fault localization that
the more automated it is the better.

A popular idea to automatically localize faults is
based on program spectrum (Reps et al., 1997; Har-
rold et al., 2000), on information about the execution
of a program from certain perspective (e.g., whether
– or how many times – statements, branches, or func-
tion call chains are executed), called spectrum-based
fault localization (SBFL). The state-of-the-art SBFL
techniques (Wong et al., 2016) use hit-based spec-
tra of program elements – binary information about
the execution of statements, blocks, or functions –
recorded on a suite of passing and failing test cases,
and derive statistics from them (i.e., how many pass-
ing or failing executions of the program did or did
not cover each of the elements). From these statistics,
a so-called suspiciousness score is computed, which
is then used to rank the program elements. A good
SBFL technique is expected to give a high rank to the
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faulty element (ideally, the 1st place), thus guiding the
debugging efforts of the software engineer.

However, even the best SBFL techniques are in
trouble when the spectra and the statistics are skewed.
If only one test case causes a program failure and
a lot of other inputs execute correctly, then it may
not be easy to differentiate between the program el-
ements suspiciousness-wise. This situation is typical
with fuzzing or random testing (Takanen et al., 2018),
when a newly generated test causes a failure, and what
is more, that is the only known failure-inducing input,
while all of the existing test suite of the target program
passes correctly.

In this paper, we propose to utilize test case re-
duction (Hildebrandt and Zeller, 2000) to assist the
localization of faults found with fuzzing. The ran-
domly generated test cases are much larger than nec-
essary by nature, and when one of them triggers a
failure, it should preferably be trimmed down to a
minimal form. Fortunately, reducers are already a
part of fuzzer frameworks (Hodován and Kiss, 2018).
Our intuition is that the various slices of the fuzzer-
generated test case that are investigated during reduc-
tion can enrich the spectrum. Thus, in this paper we
seek to answer the research question, whether these
by-products of reduction can improve SBFL.

The rest of the paper is organized as follows: first,
in Section 2, to make this paper self-contained, we
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give a brief overview of spectrum-based fault local-
ization and test case reduction. Then, in Section 3,
we describe the idea of using reduction by-products
in fault localization in detail. In Section 4, we present
the results of the experimental evaluation of the idea.
In Section 5 we discuss related work, and finally, in
Section 6 we summarize our work and conclude the
paper.

2 BACKGROUND

Spectrum-based Fault Localization. Given the el-
ements of a program, |{e j}| = n, and test inputs,
|{ti}| = m, a program element hit spectrum is a bi-
nary matrix, S = (si j) ∈ Bm×n, where each element of
the matrix denotes whether the execution of the pro-
gram on test input ti has covered program element e j
(si j = 1) or not (si j = 0). The hit spectrum is usually
accompanied by a binary result vector, R = (ri)∈Bm,
where each element denotes whether the execution
of program on test input ti has resulted in a failure
(ri = 1) or not (ri = 0). A typical representation of
these two structures is shown below:

S =


e1 e2 · · · en

t1 0/1 0/1 · · · 0/1
t2 0/1 0/1 · · · 0/1
...

...
...

. . .
...

tm 0/1 0/1 · · · 0/1

 R =


0/1
0/1

...
0/1


From these structures, various statistics can be

computed for each program element. The most com-
monly used basic notations are:

• cef(e): number of failing test cases that execute e,

• cnf(e): number of failing test cases that do not ex-
ecute e,

• cep(e): number of passing test cases that execute
e, and

• cnp(e): number of passing test cases that do not
execute e.

Note that cef(e)+cnf(e) and cep(e)+cnp(e) are the
same for all program elements, giving the number of
failing and passing test cases, cfail and cpass, respec-
tively.

Various formulae have been proposed to convert
these statistics into suspiciousness scores, three of
the best-studied (Wong et al., 2016; Pearson et al.,
2017) are Tarantula (Jones et al., 2002; Jones and Har-
rold, 2005), Ochiai (Ochiai, 1957; Abreu et al., 2006;
Abreu et al., 2009), and DStar (Wong et al., 2012;
Wong et al., 2014), which are computed as follows:

Tarantula(e) =

cef(e)
cef(e)+cnf(e)

cef(e)
cef(e)+cnf(e)

+
cep(e)

cep(e)+cnp(e)

Ochiai(e) =
cef(e)√

(cef(e)+ cnf(e)) · (cef(e)+ cep(e))

D∗(e) =
cef(e)∗

cnf(e)+ cep(e)
For all of these formulae, higher scores are as-

sumed to signal more suspicious program elements,
i.e., elements that are more likely to contain the fault
that is responsible for the test failures. When all pro-
gram elements are scored, they are ranked. The higher
the actually faulty element is ranked, the better the
formula.
Test Case Reduction. Given a program with a
failure-inducing input, the goal of test case reduction
is to produce a smaller test case that still reproduces
the failure but is minimal with respect to some def-
inition of minimality. Most techniques (Hildebrandt
and Zeller, 2000; Misherghi and Su, 2006; Sun et al.,
2018; Gharachorlu and Sumner, 2019) achieve this by
iteratively chopping off smaller or larger parts of the
input. When such an intermediate test case does not
reproduce the failure, it is “thrown away”, while fail-
ing test cases are trimmed further as long as possible.

The most well-known approach is the minimizing
Delta Debugging algorithm (DDMIN) (Zeller, 1999;
Hildebrandt and Zeller, 2000; Zeller and Hilde-
brandt, 2002) that minimizes inputs without informa-
tion about their format. It works on a set of units rep-
resenting parts of the test case, e.g., on characters or
lines of the input. However, minimizing structured
inputs (e.g., program code) with DDMIN can lead to
many syntactically incorrect test cases, since DDMIN
can break the rules of the input format (e.g., split
keywords of a programming language). To help deal
with structured inputs, Hierarchical Delta Debugging
(HDD) (Misherghi and Su, 2006) uses a tree represen-
tation, most often built with the help of a context-free
grammar, and applies DDMIN to nodes at every level
of the tree.
Test Case Reduction and SBFL. The use of test case
reduction in spectrum-based fault localization has
been considered by Christi et al. In their study (Christi
et al., 2018), they suggested to first reduce failing test
cases and then replace the failing test cases with their
minimized counterparts when performing fault local-
ization. Their results confirmed that SBFL could ben-
efit from the replacement and improve the ranking of
the faulty program elements.
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3 REDUCTION-ASSISTED FAULT
LOCALIZATION

As the experiments of Christi et al. have shown,
spectrum-based fault localization can be improved
when failing test cases are minimized, and the spectra
of the reduced variants are used in statistics and sus-
piciousness formula calculations instead of the origi-
nals (Christi et al., 2018). Our hypothesis is, however,
that it is not only the minimized test case that can be
helpful, but the by-products – i.e., the intermediate
test cases evaluated during reduction – as well. The
intuition behind the hypothesis is that during reduc-
tion, multiple failing (as well as passing) slices of the
original test case are generated. These additional test
cases are expected to add extra data to the spectrum
matrix and result vector, which may further improve
SBFL.

To re-iterate the motivation from Section 1, we as-
sume a fuzzing scenario where there is a test suite
that contains passing tests only and a new fuzzer-
generated failing test case. We also assume to have
a test case reducer that, while trying multiple smaller
intermediate variants, produces a reduced version of
the original failing test case.

To be able to refer to concepts interesting to the
above-described setup, we introduce the following
notations. Matrix S[ts] denotes the spectrum of the
test suite ({t[ts]

i }) that contains passing tests only, i.e.,
R[ts] = 0. The spectrum of the new failing test case
generated by fuzzing (i.e., of t[fz]) is represented by
matrix S[fz], consisting only of one row, with the cor-
responding result vector R[fz] = 1. Reduction outputs
a minimal but still failing test case (t[rd]), which gives
spectrum matrix S[rd] and result vector R[rd] = 1, also
both of one row. The intermediate results, the by-
products of reduction, consisting of both failing and
passing test cases ({t[by]

i }) give spectrum matrix S[by]

and result vector R[by]. These can be written as fol-
lows.

S[ts] =


e1 e2 · · · en

t[ts]
1 0/1 0/1 · · · 0/1

t[ts]
2 0/1 0/1 · · · 0/1

...
...

...
. . .

...
t[ts]
m 0/1 0/1 · · · 0/1

 R[ts] =


0
0
...
0


S[fz] =

(
t[fz] 0/1 0/1 · · · 0/1

)
R[fz] =

(
1
)

S[by] =


t[by]
1 0/1 0/1 · · · 0/1

t[by]
2 0/1 0/1 · · · 0/1

...
...

...
. . .

...
t[by]
p 0/1 0/1 · · · 0/1

R[by] =


0/1
0/1

...
0/1



S[rd] =
(

t[rd] 0/1 0/1 · · · 0/1
)

R[rd] =
(

1
)

Additionally, we will use the notation {t[byf]
i },

S[byf], and R[byf] = 1 to refer to the subset of the by-
products, and to their spectrum, which are failing.

These spectra can be combined in various ways
to give different inputs to suspiciousness formulae.
Combining the spectra of the test suite and the fuzzer-
generated failing test gives the information that is usu-
ally available to a regular software engineer; we will
denote this combination as S[ts,fz] and R[ts,fz]. The ap-
proach suggested by Christi et al. can be formalized
as S[ts,rd] and R[ts,rd], i.e., as the combination of the
spectra (and result vectors) of the test suite and the
minimized test case. However, the above discussed
spectra allow for further combinations, which are cur-
rently in our focus. The by-products of the reduction
can also be taken into account during fault localiza-
tion if S[ts,by,rd] and R[ts,by,rd] are used as inputs to the
formulae. It may be also worth investigating whether
restricting the spectra of the by-products to the failing
test cases gives different results, i.e., if S[ts,byf,rd] and
R[ts,byf,rd] are utilized. Finally, the fault localization
potential of the reduction stack only may also be of
interest – e.g., in cases when no regression test suite is
available –, thus we also define S[fz,by,rd] and R[fz,by,rd].
The above mentioned combinations are shown below.

S[ts,fz] =

[
S[ts]

S[fz]

]
R[ts,fz] =

[
R[ts]

R[fz]

]
S[ts,rd] =

[
S[ts]

S[rd]

]
R[ts,rd] =

[
R[ts]

R[rd]

]

S[ts,by,rd] =

S[ts]

S[by]

S[rd]

 R[ts,by,rd] =

R[ts]

R[by]

R[rd]



S[ts,byf,rd] =

 S[ts]

S[byf]

S[rd]

 R[ts,byf,rd] =

 R[ts]

R[byf]

R[rd]



S[fz,by,rd] =

S[fz]

S[by]

S[rd]

 R[fz,by,rd] =

R[fz]

R[by]

R[rd]


It shall be noted that the above described idea of

using the spectra of the by-products of test case re-
duction can be generalized to use-cases when there
are multiple failing test cases – i.e., when S[fz], and
therefore S[rd] too, have multiple rows – or when the
failing test was not found by fuzzing but was already
part of the test suite. The generalization to the first
case is trivial: S[fz] and S[rd] having multiple rows has
no effect on the basic concepts, and S[by] shall simply
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contain the by-products of the reduction of all failing
test cases. The generalization to the second case is
also straightforward: the passing tests of the test suite
will constitute {t[ts]

i }, while the failing test of the test
suite becomes t[fz].

4 EXPERIMENTAL RESULTS

Experiment Setup. To evaluate the idea of using
the by-products of test case reduction in fault local-
ization, we had to look for collections of reducible
test cases first; and we have settled with two such
projects. The first of them is the JerryScript Re-
duction Test Suite (JRTS)1 with the underlying Jer-
ryScript lightweight JavaScript engine2. JRTS con-
tains fuzzer-generated test inputs (i.e., JavaScript
sources) that trigger bugs (e.g., assertion failures
or memory corruptions) in various versions of Jer-
ryScript. All the bugs have already been reported to
the issue tracker of the engine with minimized test in-
puts (and got fixed), but JRTS contains the original
test cases as they were first found by a fuzzer. For
every test case, JRTS also records the version of Jer-
ryScript that exhibits the bug (that was not captured
by its regression test suite at that version) and con-
tains a test oracle that determines the outcome of a
test input as failing or passing based on whether or
not it reproduces the same failure as the original test
case. We have used this test suite because it perfectly
aligns with the scenario envisioned in Section 3.

The second set of inputs comes from the
Siemens/SIR suite3 (Hutchins et al., 1994; Do
et al., 2005), used by many to evaluate SBFL tech-
niques (Harrold et al., 2000; Christi et al., 2018).
The suite contains multiple versions of programs,
an original correct variant and several others with
seeded faults for each, as well as a test suite per pro-
gram. Each faulty program version causes multiple
test cases to fail in the corresponding test suite. Orig-
inally, the tests in the suite determine their outcome
by comparing actual and precomputed expected out-
puts for a given input. However, this makes reducing
failing inputs non-trivial, because the suite does not
contain the expected outputs for the new test cases
generated during reduction. To solve this problem,
our modified test oracles utilize the original program
versions to generate the expected output for every test
input and compare that to the output of the faulty pro-
gram versions.

1https://github.com/vincedani/jrts
2https://github.com/jerryscript-project/jerryscript
3https://sir.csc.ncsu.edu/portal/index.php

To minimize failing test cases, we have used mul-
tiple test case reducers. For JRTS, we have used
the HDD-based Picireny tool4 with the JavaScript
grammar from the ANTLR v4 grammars reposi-
tory5 to build the tree representation of the inputs.
(For the sake of reproducibility, we mention that be-
fore performing HDD, squeezing of linear compo-
nents (Hodován et al., 2017b), and flattening of recur-
sive structures (Hodován et al., 2017a) have been ap-
plied to the trees, and DDMIN within HDD was config-
ured to skip subset tests, perform complement tests in
backward syntactic order (Hodován and Kiss, 2016),
and use content caching (Hodován et al., 2017b).) As
the format of the inputs in the Siemens/SIR suite is
unstructured or unknown, we have used the Picire6

implementation of the structure-unaware DDMIN al-
gorithm for their reduction. The reducer was con-
figured to use character granularity in most of the
cases, except for the inputs of the tot info appli-
cation where line-based reduction was applied, like
in (Christi et al., 2018).

To obtain the program element hit spectra, we
have compiled all applications (i.e., the JerryScript
engine as well as the programs of the Siemens/SIR
suite) with instrumentation for coverage analysis, and
gathered function-level coverage information after the
execution of every test input using the LCOV7 tool.
(According to several sources, function-level granu-
larity is suitable for SBFL purposes (Kochhar et al.,
2016; B. Le et al., 2016; Beszédes et al., 2020).) Note
that although the Siemens/SIR suite contains precom-
puted coverage information for every test case of ev-
ery program version, it naturally does not contain cov-
erage information for the reduced test cases or for the
by-products of the reduction. Thus, to ensure consis-
tent results, we have used the LCOV-based coverage
information collection approach for all test cases.

The experiments were executed on a workstation
equipped with an Intel Core i5-9400 CPU clocked at
2.9 GHz and 16 GB RAM. The machine was running
Ubuntu 20.04 with Linux kernel 5.4.0.

Results. Table 1 shows the size of the spectra col-
lected on JRTS. The Issue column indicates the ID
assigned to the bug report in the JerryScript project
repository that corresponds to the test case. The
Functions column shows the total number of func-
tions in the version of the engine specific to the is-
sue. The numbers of executed regression tests, fuzzed
test cases, by-products of reduction, and reduced

4https://github.com/renatahodovan/picireny
5https://github.com/antlr/grammars-v4
6https://github.com/renatahodovan/picire
7https://github.com/linux-test-project/lcov
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Table 1: Size of spectra collected on the JerryScript Reduction Test Suite.

Issue Functions Tests from Test from By-products of Test from
Suite Fuzzing Reduction Reduction
c[ts]

pass c[fz]
fail c[by]

pass + c[by]
fail c[rd]

fail

#3361 1,511 2,144 1 129 + 15 1
#3376 1,519 2,152 1 99 + 20 1
#3431 1,539 2,174 1 44 + 9 1
#3433 1,537 2,178 1 11 + 7 1
#3437 1,548 2,181 1 35 + 14 1
#3479 1,586 2,199 1 196 + 37 1
#3483 1,586 2,200 1 61 + 8 1
#3506 1,587 2,207 1 97 + 18 1
#3523 1,606 2,222 1 99 + 12 1
#3534 1,608 2,227 1 160 + 13 1
#3536 1,608 2,228 1 139 + 11 1

Table 2: Size of spectra collected on the Siemens/SIR suite.

Program Functions Passing Tests Failing Tests By-products of Tests from
from Suite† from Suite† Reduction† Reduction†

c[ts]
pass c[fz]

fail c[by]
pass + c[by]

fail c[rd]
fail

print tokens 18 28,450 530 8,692 + 4,721 530
print tokens2 19 38,957 2,443 18,670 + 15,768 2,443
replace 21 121,510 2,374 9,148 + 10,847 2,374
schedule 18 15,637 4,358 15,180 + 32,782 4,358
schedule2 16 22,267 201 6,484 + 2,158 201
tot info 7 22,861 1,979 58,063 + 11,760 1,979

†Sum of test counts from all fault-seeded program versions.

test cases are in columns Tests from Suite, Test from
Fuzzing, By-products of Reduction, and Test from Re-
duction, respectively. (For the by-products of reduc-
tion, the number of the passing and failing test cases
are shown separately.)

Table 2 shows the same information for the
Siemens/SIR suite. As mentioned above, the tests
were not found by fuzzing in this case, but they were
part of the original suite. This is also reflected in the
names of the columns Passing Tests from Suite and
Failing Tests from Suite; but to keep the notations
consistent throughout the paper, we keep referring to
these values as c[ts]

pass and c[fz]
fail , respectively, as also dis-

cussed in Section 3. The suite contains multiple faulty
versions of each program and every fault is detected
by multiple test cases, therefore the numbers of tests
(both passing and failing from suite, the by-products,
and from reduction) show summed values across all
versions.

Using the above spectra and using their combina-
tions as discussed in Section 3, we have computed
the Tarantula, Ochiai, and D2 suspiciousness scores
for every function of every JerryScript version and

every faulty Siemens/SIR program8,9. In Tables 3
and 4, we show the average rank of the faulty func-
tions, which have been manually identified in the bug
fixing patches of JerryScript and in the original-vs-
fault-seeded program source diffs of the Siemens/SIR
suite. (Average rank means the use of fractional or
“1 2.5 2.5 4” ranking, i.e., when multiple functions
get the same suspiciousness score, they all receive the
same rank, which is the mean of what they would get
under distinct ordinal ranking.) We use rk(e) to de-
note the computed (average) rank of a program ele-
ment with a superscript to signal the spectrum combi-
nation used for the ranking, and we use f ∗ to denote
the manually identified faulty function. Thus, we have
the following values in the tables:

• rk[ts,rd]( f ∗): The rank of the faulty function com-
puted using the combination of the spectra of the

8Division by zero may occur during the computation of all
three scores. We have chosen to define division by zero as
zero in the Tarantula and Ochiai formulae, and as a suitably
large number (cef(e)∗+1) in D∗. A detailed discussion of
this issue is given in the Appendix.

9The parameter of the D∗ formula can be freely chosen, but
∗= 2 is the most thoroughly explored configuration (Pear-
son et al., 2017), thus we have also used this value.
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Table 3: Average rank of faulty functions in JRTS.

Issue Formula rk[ts,rd]( f ∗) rk[ts,by,rd]( f ∗) rk[ts,byf,rd]( f ∗) rk[fz,by,rd]( f ∗)

#3361 Tarantula 4 3 3 88
Ochiai 4 3 3 20
D2 4 3 3 19

#3376 Tarantula 39.5 27 29 72
Ochiai 39.5 18 25.5 12
D2 39.5 18 25.5 12

#3431 Tarantula 276 145.5 188.5 271.5
Ochiai 276 135 178 223.5
D2 276 134 176 216.5

#3433 Tarantula 10 5.5 7 7
Ochiai 10 5 6.5 5
D2 10 5 6.5 5

#3437 Tarantula 260 157.5 200 377.5
Ochiai 260 130.5 175 194.5
D2 260 129 172 193.5

#3479 Tarantula 4 2 2.5 20.5
Ochiai 4 2 2 6.5
D2 4 2 2 6.5

#3483 Tarantula 192.5 111 154 229
Ochiai 192.5 102.5 145 183
D2 192.5 101 144 162

#3506 Tarantula 5 4.5 4.5 61.5
Ochiai 5 2.5 3 9.5
D2 5 2.5 3 9.5

#3523 Tarantula 7 8.5 8.5 56
Ochiai 7 5.5 6 16
D2 7 4 4.5 16

#3534 Tarantula 20 3 10.5 73.5
Ochiai 20 3 10.5 16.5
D2 20 3 10.5 15.5

#3536 Tarantula 3 2 2 8
Ochiai 3 3 2 6.5
D2 3 2 2 6.5

test suite and that of the reduced test case. We will
use this value as our baseline. (Note that we do not
list rk[ts,fz]( f ∗) nor use it as a baseline, as the work
of Christi et al. has already shown rk[ts,rd]( f ∗) to
be better.)

• rk[ts,by,rd]( f ∗): The rank of the faulty function
computed with the assistance of reduction, i.e.,
using all of the by-products of reduction as well.

• rk[ts,byf,rd]( f ∗): The same as above, but using the
failing by-products only.

• rk[fz,by,rd]( f ∗): The rank of the faulty function
computed without the spectrum of the test suite,
but with the spectra of the reduction stack only,
i.e., based on those of the fuzzer-generated test
case, the by-products of reduction, and the min-
imized test case.

In every row of the tables, numbers in italics denote
ranks better than the baseline, while bold numbers
denote the best rank(s). (Note that the smaller the
numerical values the better, i.e., the highest and best
possible rank is 1).

The results measured on JRTS (shown in Table 3)
show that the by-products of reduction (both with and
without the passing test cases) helped improve fault
localization. Both rk[ts,by,rd]( f ∗) < rk[ts,rd]( f ∗) and
rk[ts,byf,rd]( f ∗)< rk[ts,rd]( f ∗) hold for almost all issues
and suspiciousness formulae. The only two excep-
tions are the ranking based on the Tarantula scores for
issue #3523, where the rank of the faulty function be-
came slightly worse (lowered from 7 to 8.5), and the
ranking based on the Ochiai formula for issue #3536,
where the rank of the faulty function did not change
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Table 4: Average rank of faulty functions in the Siemens/SIR suite.

Program Formula rk[ts,rd]( f ∗)‡ rk[ts,by,rd]( f ∗)‡ rk[ts,byf,rd]( f ∗)‡ rk[fz,by,rd]( f ∗)‡

print tokens Tarantula 5.2 5.5 5.4 7.1
Ochiai 5.2 5.2 5.2 5.2
D2 5.2 5.2 5.2 5.2

print tokens2 Tarantula 6.75 7.05 7.2 7.6
Ochiai 6.65 6.55 6.75 7.1
D2 6.65 6.55 6.7 7.1

replace Tarantula 3.57 3.57 3.59 8.78
Ochiai 3.04 3 3.02 6.39
D2 3.04 3 3.02 6.31

schedule Tarantula 8.94 8.63 7.88 8.94
Ochiai 8.88 8.31 8 8.81
D2 8.88 8.25 8.13 8.44

schedule2 Tarantula 4.28 4.56 4.44 7.22
Ochiai 4 4.22 4.11 5.44
D2 4 4.22 4.11 5.44

tot info Tarantula 1.53 1.53 1.65 1.78
Ochiai 1.45 1.48 1.45 1.48
D2 1.47 1.48 1.47 1.5

‡Averaged over all fault-seeded program versions.

when the spectra of all passing by-products were con-
sidered. However, if we focus on the D2 formula only,
then strict improvement can be observed for all issues.
(Also note that for all test cases of JRTS, D2 performs
at least as well as the other two formulae).

On average, the improvement of rk[ts,by,rd]( f ∗)
over rk[ts,rd]( f ∗) is 35.24%, 47%, and 49.1% with
the Tarantula, Ochiai, and D2 formulae, respectively.
For rk[ts,byf,rd]( f ∗), the average improvement over
rk[ts,rd]( f ∗) is 23.93%, 33.95%, and 36.11% with
Tarantula, Ochiai, and D2, respectively. I.e., even the
failing by-products of reduction helped improve fault
localization, but keeping the passing by-products as
well yielded even better results.

When the spectrum of the regression test suite is
not used for fault localization – i.e., only the fuzzer-
generated test input, the by-products of reduction, and
the minimized test case contribute to the spectrum –
, then the results are mixed. Using this spectrum as
input, even the D2 formula ranked the faulty functions
lower than with the baseline spectrum for 5 of the 11
issues, and with Tarantula, this was the case for 9 of
the 11 issues. Thus, this restricted set of test cases
should only be used for fault localization when there
really is no other test suite available.

When it comes to the data of Table 3, three rows
deserve additional discussion: the rankings at is-
sues #3431, #3437, and #3483. For these issues,
rk[ts,rd]( f ∗) falls in the range of hundreds with all for-
mulae. In these cases, the actual bug is far away from

the point in the engine where the fault is eventually
manifested, which seems to mislead the suspicious-
ness formulae. Although our proposal to use the by-
products of reduction did not fix this problem entirely,
the ranks have improved considerably, e.g., from 276
to 134, from 260 to 129, and from 192.5 to 101 when
using D2 on S[ts,by,rd].

The results measured on the Siemens/SIR suite
(shown in Table 4) are somewhat less significant. The
ranks of the faulty functions (averaged over the fault-
seeded versions for each program) do not change
prominently with any of the spectrum combinations
or suspiciousness formulae. In general, the ranks of
the faulty functions computed with Tarantula or us-
ing the spectrum of the reduction stack only (i.e.,
S[fz,by,rd]) became lower, but not by orders of mag-
nitude. With Ochiai and D2, the ranks improved on
average, but also only by a small factor (by less than
1%).

Based on the data and observations above, we can
conclude that adding the by-products of reduction to
the minimized test case and to the existing regression
test suite can improve the localization of faults re-
vealed by fuzzer-generated test cases, especially with
the Ochiai and D∗ (∗= 2) formulae.
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5 RELATED WORK

The closest to our work is the study of Christi et al.,
where Delta Debugging-based test case reduction was
also suggested to improve fault localization (Christi
et al., 2018). Their approach was to use the re-
duced test case for fault localization instead of the
fuzzer-generated one, assuming that the minimal test
case that reproduces the original failure contains less
misleading information. Xuan and Monperrus also
proposed test case purification in order to improve
fault localization (Xuan and Monperrus, 2014). Their
goal was to generate purified – i.e., minimized – ver-
sions of unit tests that included only one assertion
and excluded statements unrelated to the assertion.
They used an automated test case generator to pro-
duce single-assertion test cases for each failed unit
test, then applied slicing to remove code parts unre-
lated to that assertion. Both of these works focused
on the minimized-purified test cases, but did not take
the by-products of reduction into consideration.

Several studies have been carried out about us-
ing test suite reduction to improve fault localization.
Vidács et al. investigated different test suite reduction
approaches from performance and detection points of
view, and proposed a combined method which incor-
porated both aspects (Vidács et al., 2014). Fu et al.
proposed a similarity-based test suite reduction ap-
proach (Fu et al., 2017) to extract highly suspicious
statements and select similar passing test cases for
each failing one. We see these techniques – and test
suite reduction in general – as orthogonal to our ap-
proach, and their combination may be worth investi-
gating in future research.

In a wider sense, there are a great number of
works related to the topic of this paper. Both of the
two research areas that are interconnected in this pa-
per – i.e., spectrum-based fault localization and test
case reduction – have huge literatures on their own.
Therefore, we refer the reader to recent surveys and
overviews of the two research areas for further infor-
mation (Wong et al., 2016; Zeller, 2021).

6 SUMMARY

In this paper, we have proposed to utilize test case re-
duction to assist spectrum-based fault localization in
a fuzzing-motivated scenario. When an application
is being fuzz-tested, it is typical that when a failure
is observed, there is only a single test input that trig-
gers that failure – i.e., the test case randomly gener-
ated by a fuzzer – while all other already existing tests
pass. Such heavily unbalanced results can pose prob-

lems to spectrum-based fault localization techniques.
Test case reduction is a technique that is already com-
monly used together with fuzz testing to minimize
the otherwise unnecessarily large randomly generated
test cases. Strictly speaking, for test case reduction,
the only valuable output is the minimized test case.
However, the intermediate results, or by-products, of
the reduction are a mix of additional failing and pass-
ing test cases to the tested application. Therefore, we
have proposed to use these by-products as well when
applying SBFL to locate the fault. We have evalu-
ated this idea, and our experimental results show that
the extension of the existing test suite with the fail-
ing and passing by-products of test case reduction can
help SBFL, i.e., the rank of the faulty program ele-
ment (function) can improve by up to 49% on a real-
world use-case. The experimental results also show
that the here-proposed idea is not specific to a given
SBFL formula, as improvements have been measured
with three widely used formulae (Tarantula, Ochiai,
and D2).

We see several potential future directions to con-
tinue this research. We are interested in how differ-
ent test case reduction techniques can assist or affect
fault localization – e.g., variants of DDMIN or HDD,
like HDDr or Coarse HDD, or techniques that are not
H/DD-based, e.g., Perses or Pardis. We plan to extend
the current experiment to see how reduction-assisted
fault localization scales to different granularities, e.g.,
to statement-level fault localization. We would like
to validate our results on a wider set of subjects, e.g.,
on programs with different input formats and written
in different programming languages. Finally, we also
wish to investigate the interplay between reduction-
assisted fault localization and test suite reduction.
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APPENDIX

Several SBFL formulae contain divisions, and several
of them are not well-defined for all possible inputs,
as their computation may involve divisions by zero.
Multiple approaches exist in the literature to deal with
such cases, mostly defining a variant of division that
is defined for a zero denominator or by modifying the
values used in the formulae.

Approaches in the Literature: We quote eight pa-
pers from the literature of the past two decades that
discussed this topic, and suggested and used different
approaches.

(Jones and Harrold, 2005, p. 274): “Note that if
any of the denominators evaluate to zero, we assign
zero to that fraction.”

(Naish et al., 2011, p. 5): “Several of the metrics
contain quotients where the denominator can be zero.
If the numerator is zero we use zero otherwise we use
a suitably large value. For example, the Overlap for-
mula we can use the number of tests plus 1, which
is larger than any value which can be returned with
a non-zero denominator. An alternative is to add a
suitably small ε to the denominator.”

(Lee, 2011, p. 73): “When it comes to ranking
program statements, there is a possibility of the de-
nominator of respective spectra metrics having zero.
We could handle this scenario in three different ways.

1. Return a large metric value

2. Assign zero to the statement

3. Use ε on the denominator

[. . . ] For example, when using the Tarantula metric
to evaluate the metric value of program statements,
if the denominator of a statement is zero, rather than
returning an undefined value, we could use a larger
value such as the number of tests plus 1, which is
larger than any value which can be returned with a
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non-zero denominator. [. . . ] The third solution pro-
posed to handle the denominator being zero is to add
a suitably small ε to the denominator. There is no is-
sue when applying ε on the denominator for most of
the spectra metrics with the exception of the Ample
metric.”

(Yoo, 2012, p. 249): “The division operator
gp div will return 1 when division by zero error is
expected. [. . . ] gp div(a, b) 1 if b = 0, a

b other-
wise”

(Naish and Lee, 2013, p. 56): “As well as the new
metrics, the table includes the original version of Jac-
card and its duals and the original version of Taran-
tula, modified to avoid division by zero (x/0 is con-
sidered to be 0.5 if x = 0 and 9999 otherwise).”

(Xue and Namin, 2013, p. 115): “where the con-
stant 0.1 is added to avoid division by zero and com-
putational problems as suggested by Liu and Mo-
toda”

(Landsberg et al., 2015, p. 124): “To assign a
score, we added a small prior constant (0.5) to each
cell of each program entity’s contingency table in or-
der to avoid divisions by zero, as is convention (Naish
et al., 2011).”10

(Troya et al., 2018, p. 22): “Different approaches
mention how to deal with such cases (Naish et al.,
2015; Xue and Namin, 2013; Yoo, 2012). Following
the guidelines of these works, if a denominator is zero
and the numerator is also zero, then our computation
returns zero. However, if the numerator is not 0, then
it returns 1 (Yoo, 2012).”11

These approaches can be formalized and grouped
either as modifying division like

• div〈0,0〉 (Jones and Harrold, 2005; Lee, 2011),

• div〈0,N〉 (Naish et al., 2011),

• div〈N,N〉 (Lee, 2011),

• div〈1,1〉 (Yoo, 2012),

• div〈0.5,9999〉 (Naish and Lee, 2013),

• div〈0,1〉 (Troya et al., 2018),

• div〈+ε〉 (Naish et al., 2011; Lee, 2011),

or as modifying the values of the cef, cnf, cep, and cnp
like

• c + ε (Xue and Namin, 2013; Landsberg et al.,
2015),

10Incorrectly cites (Naish et al., 2011), which does not men-
tion anything like that. Might have wanted to cite (Naish
and Lee, 2013), which mentions a constant 0.5, but not to
be added to each cell of the contingency table but to be
used as the result of 0/0.

11(Naish et al., 2015) does not mention explicitly how to
deal with division by zero, but references (Landsberg
et al., 2015) as related work.

where

div〈a,b〉(x,y) =


a if y = 0∧ x = 0
b if y = 0∧ x 6= 0
x/y otherwise

div〈+d〉(x,y) = x/(y+d)

and N and ε are suitably large and small numbers, re-
spectively.

The Approach used in This Paper: We argue,
however, that there may be no single solution appli-
cable to all formulae. If their authors have not ex-
plicitly defined how to deal with a zero denominator,
then each formula should be analyzed and augmented
individually. (But if the authors did define the inter-
pretation of a division by zero, then their definition
should be followed.)

Several suspiciousness formulae used for SBFL
originate from the domain of systematic biologi-
cal research (where they are called coefficients) and
have been developed decades (some even a cen-
tury) ago. Thus, fortunately, many of them have
already been thoroughly analyzed. So it has been
shown (Cheetham and Hazel, 1969) that the Ochiai
coefficient (Ochiai, 1957) – which is exactly equiva-
lent to the Ochiai formula (Abreu et al., 2006) – tends
to zero as the denominator tends to zero. The D∗ for-
mula is a relatively new construct (Wong et al., 2012),
but it is actually a modified version of the 1st Kul-
czynski coefficient (Sokal and Sneath, 1963), which
has been shown to tend to infinity as the denominator
tends to zero. Therefore, we decided to assign zero
to the Ochiai formula and infinity (approximated with
a suitably large number) to D∗ when their denomina-
tor is zero. I.e., we have used div〈0,0〉 in Ochiai and
div〈N,N〉 in D∗.

However, we did not perform any analyses on the
Tarantula formula because its authors were explicit
about interpreting all division-by-zeros as zero (Jones
and Harrold, 2005). Thus, we have followed their def-
inition and used div〈0,0〉 in that formula.
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