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Abstract: We present a path planner for unstructured urban environments (PPUE) for self-driving cars. PPUE receives 
initial and goal poses as input, as well as maps of the environment. It employs a hybrid A* algorithm with 
two heuristics for generating paths, which are smoothed using Conjugate Gradient optimization. Different 
from previous works, PPUE uses: (i) an obstacle distance grid-map, instead of an occupancy grid-map, for 
representing the environment; and (ii) an accurate but simple collision model of the car. We have examined 
PPUE’s performance experimentally in simulated and real world scenarios. Our results show that PPUE 
computes smooth and safe paths, which follow the kinematic constraints of the vehicle, fast enough for 
suitable real world operation. 
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1 INTRODUCTION 

The path planning task of self-driving cars can be 
formulated as the problem of finding a sequence of 
poses, 𝑃 = {𝑝ଵ, 𝑝ଶ, … , 𝑝௜, … , 𝑝|௉|} , from the current 
car pose,  𝑝ଵ , to a desired pose, 𝑝|௉| , where each 
pose is a position in the world, defined as a 2-D 
coordinate pair, the self-driving car’s orientation at 
this position, and the direction of movement 
(forward or reverse), i.e., 𝑝௜ = (𝑥௜, 𝑦௜, 𝜃௜, 𝑟௜) . 
Depending on the operating scenario, path planning 
can be more or less complex. Urban self-driving cars 
typically have two main operating scenarios: road 
driving and parking. In road driving, path planning 
is typically simpler thanks to the road-network 
structure. To improve safety, roads have vertical and 
horizontal signalizations that simplify driving, and, 
therefore, path planning on them. Path planning on 
parking lots and other non-structured areas cannot 
benefit much of vertical and horizontal signalization, 
which makes path planning in such scenarios more 
complex. 

We have developed a self-driving car, named 
Intelligent Autonomous Robotic Automobile (IARA, 
Figure 1), whose autonomy system follows the 
typical architecture of self-driving cars (Badue et al., 

2020). Our self-driving car is based on a Ford 
Escape Hybrid tailored with a variety of sensors and 
processing units. Its autonomy system is composed 
of many modules, which include a localizer 
(Veronese et al., 2016), a mapper (Mutz et al., 
2016), a moving obstacle tracker (Sarcinelli et al., 
2019), a traffic signalization detector (Possatti et al., 
2019; Torres et al., 2019), a route planner, a path 
planner for structured urban areas, a behavior 
selector, a motion planner (Cardoso et al., 2017), an 
obstacle avoider (Guidolini et al., 2016), and a 
controller (Guidolini et al., 2017), among other 
modules. 

In this paper, we propose a path planner for 
unstructured urban environments (PPUE) for our or 
any other self-driving car. The proposed path 
planner for unstructured urban environments (for 
now on, path planner for short) is similar to that 
presented by Dolgov et al. (2010) – one of the most 
preeminent path planners in the literature based on 
the A* algorithm – but improve on it in several 
aspects. The contributions of this paper are these 
improvements, which can be summarized as: (i) the 
use of an obstacle distance grid-map instead of an 
occupancy grid-map (Thrun, Burgard & Fox, 2006) 
to represent the environment; and (ii) a more 
accurate but simple collision model of the car, which  
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Figure 1: Intelligent Autonomous Robotic Automobile (IARA) and its autonomy software system. In light blue, perception 
modules. In orange, decision making modules. TSD denotes Traffic Signalization Detection and MOT, Moving Objects 
Tracking. Red arrows show the State of the car, produced by its Localizer module and shared with most modules; blue 
arrows show the car’s internal representation of the environment, jointly produced by several perception modules and 
shared with most decision making modules. See details in Badue et al. (2020). 

simplifies the implementation of the path planner 
algorithm. To evaluate the performance of the 
proposed path planner, we employed our self-driving 
car simulator and different scenarios where the car 
had to make different maneuvers to achieve the goal. 
We measured the hybrid A* search running time, the 
full running time (which includes path smoothing 
step), the number of nodes expanded by the hybrid 
A* search, and the length of the final smoothed path. 
To assess the benefits of the use of the obstacle 
distance grid-map and the collision model of the car, 
we also measured the running time to create the map 
and to query it for the distance from the car to the 
nearest obstacle. Finally, we conducted real-world 
experiments using our self-driving car in a parking 
lot to examine the real world performance of the 
solution. Experimental results have shown that our 
planner allows our self-driving car to find a proper 
path in an unstructured environment in reasonable 
time, with running times from 0.42 s to 0.61 s for a 
path of about 70 m. 

2 RELATED WORKS 

Several techniques have been proposed in the 
literature for implementing path planners for non-
structured urban environments. Relevant path 
planner implementations include graph search based 
planners (Dolgov et al., 2010; Chu et al., 2015; 
Yoon et al., 2015; Urmson et al., 2008; Wang, 2019) 
sample based planners (Ghosh et al., 2019), and 
deep neural network based planners (Kicki, Gawron 
& Skrzypczyński, 2020; Moraes et al., 2020). 
Among those based on graph search, Dolgov et al. 
(2010) presented a path planner based on the hybrid 
A* algorithm for the autonomous car Junior, that 

finished second in the 2007 DARPA Urban 
Challenge (Montemerlo et al., 2018). Our path 
planner is similar to that of Dolgov et al. (2010), but 
refines it in two main aspects: the use of an obstacle 
distance grid-map (instead of an occupancy grid-
map) and of a more precise collision model of the 
car, which allowed computing the distance from the 
car to the nearest obstacle accurately and quickly.  

Other authors propose other variants of the A* 
algorithm for path planning. Urmson et al. (2008) 
proposed the anytime D* to compute a path for the 
self-driving car Boss (Carnegie Mellon University’s 
car that claimed first place in the 2007 DARPA 
Urban Challenge). Both anytime D* and hybrid-state 
A* algorithms merge two heuristics – one non-
holonomic, which disregards obstacles, and the other 
holonomic, which considers obstacles – and were 
used for path planning in an unstructured 
environment (parking lot). Chu et al. (2015) 
proposed a variation of A* to build a path that 
considers car’s kinematic constraints, which ignores 
the resolution of grid cells and creates a smooth 
path. Yoon et al. (2015) proposed a variation of A* 
to compute a path that accounts for kinematic 
constraints of the autonomous vehicle Kaist. None 
of these works use obstacle-distance maps. 

Wang (2019) proposes a variant of the Hybrid 
A* (i-AGT) that conducts selective expansion for a 
node, where only the control actions with the highest 
priority are applied, and a bidirectional A-search 
(BAGT), where two trees are constructed 
simultaneously from the initial and goal state. The 
path planner was tested in a simulation of a car in a 
parking lot, and its computation time, complexity of 
the tree and path length were measured. 
Experimental results indicate that i-AGT and BAGT 
are significantly faster than the normal Hybrid A*, 
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but in some cases, the BAGT is prone to fail (Wang, 
2019). 

Among those based on sampling, Ghosh et al. 
(2019) propose a kinematically constrained Bi-RRT 
(KB-RRT) algorithm, where the expansion of RRT 
is restricted to feasible regions of the state space, 
which avoids unnecessary growth of the RRT. In 
this approach, two RRTs are created from the initial 
and goal state, and are grown until they become 
connected, when a solution is found. This solution 
does not guarantee an optimal trajectory, however.  

Among those techniques based on neural 
networks, Kicki, Gawron and Skrzypczyński (2020) 
presented a path planner that employs a gradient 
based self-supervised learning algorithm to predict 
feasible paths. The neural network receives a 
representation of the environment, the initial and 
desired final robot poses, and generates a path spline 
defined as a 5-th degree polynomial. They evaluated 
the performance of their path planner in simulation 
experiments, in which overtaking maneuvers, 
perpendicular parking and oblique parking were 
considered. Their experimental results showed that 
their path planner can be 14 times faster than other 
comparing planners and serve as a generator of the 
initial solutions for other complete path planning 
algorithms. Moraes et al. (2020) presented an image-
based path planner for self-driving cars, which 
receives a front-face camera image and the current 
car pose, infers a cubic spline path model, generates 
the path in the car coordinate system and transforms 
its poses to the world coordinate system. They 
examined the performance of their path planner in 
real world scenarios. Their experimental results 
showed that the path planner is capable to generate 
paths on straight and curved sections of the lane, but 
might fail on forks in the road. Path planner based 
on neural networks does not guarantee optimality 
nor completeness, however. 

3 A PATH PLANNER FOR 
UNSTRUCTURED 
ENVIRONMENTS 

The hybrid-state A* algorithm of PPUE receives as 
input the Initial Pose, 𝑝ଵ , the Final Pose, 𝑝|௉| , an 
Obstacle Distance Grid-Map ( 𝐎𝐃𝐆𝐌 ), a Goal 
Distance Map ( 𝐆𝐃𝐌 ), and a Nonholonomic 
Heuristic Cost Map ( 𝐍𝐇𝐂𝐌 ). Each cell of the 𝐎𝐃𝐆𝐌 holds the distance from itself to the nearest 
obstacle – the way we compute this map online and 
the benefits of using it are described in Section 3.2. 

Each cell of 𝐆𝐃𝐌  holds the length (travelled 
distance) of a holonomic path from itself to the goal 
considering obstacles – see Section 3.4. Finally, 
each cell of 𝐍𝐇𝐂𝐌  holds the length of a 
nonholonomic path from itself to the goal without 
considering obstacles – the cost of computing this 
map is high, but we can compute it only once and 
offline, as detailed in Section 3.5. The output of the 
hybrid-state A* algorithm is an optimal path 𝑃′ ={𝑝ଵ, 𝑝ଶ, … , 𝑝௜, … , 𝑝|௉|} , which may not be suitably 
smooth for an Ackermann steering robot. Therefore, 
we smooth this path producing the path 𝑃 , as 
described in Section 3.8. The smoothed path is sent 
to the Behavior Selector module for execution (see 
Figure 1). Our implementation of the hybrid-state 
A* algorithm is presented in Algorithm 1 and 
detailed below. 

Algorithm 1: Hybrid-State A* Algorithm. 
Input: 𝑝ଵ, 𝑝|௉|, 𝐎𝐃𝐆𝐌, 𝐆𝐃𝐌, 𝐍𝐇𝐂𝐌 
Output: 𝑃 
1:   𝑛ଵ ← (𝑝ଵ, 0, 0, NULL) 
2: 𝐆𝐒𝐌[.]← (Not visited, 0) 
3: 𝐹𝐻 ← {𝑛ଵ} 
4: 𝐆𝐒𝐌[𝑛ଵ. 𝑝] ← (Open, 𝑔(𝑛ଵ)) 
5: 𝐰𝐡𝐢𝐥𝐞 𝐹𝐻 ≠  ∅ 𝐝𝐨 
6:   𝑛 ← FH.pop() // get node 𝑛 with minimum 𝑛.f from FH 
7:   if 𝐆𝐒𝐌[𝑛.p].s ≠ Closed then 
8:     𝐆𝐒𝐌[𝑛. 𝑝].close() 
9:     if is_goal(𝑛. 𝑝, 𝑝|௉|) then 
10:       𝑃′ = get_path(𝑛) 
11:       return 𝑃′ 
12:     else 
13:        𝑁 ← {expand_node(𝑛, 𝐎𝐃𝐆𝐌)} 
14:       for n′ ∈ 𝑁  do 
15:         𝑛′. 𝑔 ← 𝑔(𝑛′) 
16:         𝑛′. 𝑓 ← 𝑓(𝑛′) 
17:         𝑛′. 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑛 
18:         if 𝐆𝐒𝐌[n′. 𝑝].s ≠ Closed and  
19:           (𝐆𝐒𝐌[n′. 𝑝].s = Not visited or  
20:             (𝐆𝐒𝐌[n′. 𝑝].s = Open and 𝐆𝐒𝐌[𝑛′. 𝑝].g >  𝑛′. 𝑔)) then 
21:           𝐆𝐒𝐌[n′. 𝑝] = (Open, 𝑛′. 𝑔)            
22:           𝐹𝐻 ← 𝐹𝐻 ∪ {𝑛ᇱ} 
23: return {∅} // path not found 

3.1 Hybrid A* Search 

Different from the standard A*, where the search is 
performed in a graph, in the hybrid-state A* 
algorithm the search is performed in a Grid State 
Map (𝐆𝐒𝐌). Algorithm 1 finds 𝑃′ using the 𝐆𝐒𝐌 
and a Fibonacci Heap, 𝐹𝐻, of nodes. 𝐆𝐒𝐌 is a 4D 
grid-map indexed by discretized poses, 𝑝௜ =(𝑥௜, 𝑦௜, 𝜃௜, 𝑟௜), where each cell holds a state and a 
value. The state can be “Not visited”, “Open”, or 
“Closed”, while the value is computed by a path-cost 
function, 𝑔(. ). We use the Fibonacci Heap, 𝐹𝐻, for 
efficiently implementing the list of nodes being 
handled by the algorithm at each instant of time. 
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Each node, 𝑛, holds: a candidate pose of 𝑃′; the cost 𝑓, computed by the cost function 𝑓(. ); the cost 𝑔, 
computed by the cost function 𝑔(. ); and a pointer to 
its parent node. In the following, we detail these cost 
functions. 

The hybrid A* algorithm is guided by the costs 𝑓 and 𝑔 of each node. It tries and finds a path from 𝑝ଵ to 𝑝|௉| traversing 𝐆𝐒𝐌 through the cells with the 
smallest f and 𝑔, starting with the cell set with 𝑝ଵ. 
To examine all possible paths allowed by the 
discretization of the space provided by 𝐆𝐒𝐌 is too 
expensive; hence, the use of a search algorithm 
such as the hybrid A* is a practical alternative. 
Starting from an initial node we call 𝑛ଵ, which is 
set using 𝑝ଵ (line 1 of Algorithm 1), the algorithm 
expands new nodes, 𝑛’ , whose poses obey the 
robot’s nonholonomic restrictions and that do not 
collide with obstacles. The costs 𝑓 and 𝑔 of 𝑛’ are 
computed by the functions 𝑓(𝑛’) and 𝑔(𝑛’), which 
are given by 𝑓(𝑛′) = 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠(𝑛ᇱ) + 𝑔(𝑛′) + ℎ(𝑛′) (1)

and 𝑔(𝑛′) = 𝑔(𝑛) + |𝑛. 𝑝 − 𝑛ᇱ. 𝑝|, (2)

where ℎ(𝑛′) = max (𝐆𝐃𝐌[𝑛ᇱ. 𝑝], 𝐍𝐇𝐂𝐌ൣ𝑝|௉| − 𝑛′. 𝑝൧). (3)

So, as shown in (1), 𝑓(𝑛′) is the sum of the costs 
associated with 𝑛′. Let’s start by examining the costs 
associated with 𝑛′ by the 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠(𝑛′) term in (1). 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠(𝑛′) are given by 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠(𝑛ᇱ) = ଵ𝐎𝐃𝐆𝐌[௡ᇲ.௣] +𝑤ଵ × |𝑛. 𝑝 − 𝑛ᇱ. 𝑝| × 𝑛ᇱ. 𝑝. 𝑟 +𝑤ଶ × [𝑛ᇱ. 𝑝. 𝑟 ≠ 𝑛. 𝑝. 𝑟], (4)

where 𝑤ଵ and 𝑤ଶ are weights. 
In (4) and throughout the text, we use the 

notation 𝑥. 𝑦 to refer to the element 𝑦 of 𝑥 (𝑛ᇱ. 𝑝 is 
the pose element of 𝑛′ ). So, by its first term, 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠(𝑛′)  grows with the inverse of the 
distance between the pose of the node 𝑛’  and the 
nearest obstacle. By the second term, 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠(𝑛′) 
increases with 𝑤ଵ  times the Euclidean distance 
between the poses of the nodes 𝑛  and 𝑛’  if the 
direction of movement from 𝑛 to 𝑛’ is reverse (i.e., 𝑛ᇱ. 𝑝. 𝑟 = 1 ). Finally, by the third term, 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠(𝑛′) increases with 𝑤ଶ in case of a change 
in the direction of movement (i.e., 𝑛ᇱ. 𝑝. 𝑟 ≠ 𝑛. 𝑝. 𝑟). 
The weights 𝑤ଵ  and 𝑤ଶ  are parameters of the 
algorithm. 

The next term of (1) is 𝑔(𝑛′)  itself, which is 
given by (2). As shown in (2), 𝑔(𝑛′) is equal to 𝑔(𝑛) 
plus the Euclidean distance between the poses of the 
nodes 𝑛 and 𝑛′. Finally, the last term of (1) is ℎ(𝑛′), 
which is given by (3). As shown in (3), ℎ(𝑛′)  is 
given by the maximum of two terms: 𝐆𝐃𝐌[𝑛′. 𝑝] 
and 𝐍𝐇𝐂𝐌ൣ𝑝|௉| − 𝑛′. 𝑝൧ . The first term represents 
the cost of going from 𝑛′. 𝑝 to 𝑝|௉| following a path 
that considers obstacles, but not the nonholonomic 
restrictions of the car. We detail how we build 𝐆𝐃𝐌 
online in Section 3.4. The second term represents the 
cost of going from 𝑛′. 𝑝 to 𝑝|௉| following a path that 
obeys the nonholonomic restrictions of the car, but 
that does not consider obstacles. This second term is 
important for increasing the cost of paths that arrive 
at the goal with wrong robot orientation. We detail 
how we build the 𝐍𝐇𝐂𝐌 offline and how we use it 
online to compute this cost in Section 3.5.  

Algorithm 1 starts by initializing the initial node, 𝑛ଵ , with the tuple (𝑝ଵ, 0, 0, NULL), in line 1, the 
whole 𝐆𝐒𝐌 with the tuple (Not visited, 0), in line 2, 
and 𝐹𝐻 with a list of nodes containing 𝑛ଵ  only, in 
line 3. After this initialization and before the main 
loop, in line 4 the algorithm sets the cell of 𝐆𝐒𝐌 
where 𝑝ଵ is mapped to with the tuple (Open, 𝑔(𝑛ଵ)). 
This marks this cell as Open and sets the cost of this 
cell according to the function 𝑔(. ). 

The main loop of Algorithm 1 starts by testing if 𝐹𝐻 is empty, in line 5, which will not be the case at 
start time due to its initialization in line 3. In line 6, 
the algorithm gets the node 𝑛 with minimum cost 𝑓 
from 𝐹𝐻. The algorithm proceeds by examining if 
the cell indexed by the pose of the node 𝑛 is closed, 
in line 7. If it is not closed, in line 8, the algorithm 
closes the cell. Then, the algorithm checks, in line 9, 
if the current node is near enough to the goal using 
the function is_goal(). In this case, it computes the 
path using get_path(), which basically goes back in 
the sequence of nodes from the current node, 𝑛, up 
to initial node, 𝑛ଵ , using the pointer to the parent 
node that every node maintains, and returns the path 𝑃′, in line 11. If is_goal() returns false, the algorithm 
continues from line 12 onwards.  

In line 13, the current node taken from 𝐹𝐻  is 
expanded producing a set of nodes we call 𝑁 (the 
function expand_node() is described in Section 3.6). 
This expansion is the mechanism employed by the 
algorithm to search for a solution in a space of 
alternatives where it can move forwards, backwards, 
left, right, or straight. For the set of possible 
expansions, the algorithm, starting in line 14, 
examines each one of the expansion alternatives and 
computes, for each one of them, represented by 𝑛′, 
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𝑛′. 𝑔, 𝑛′. 𝑓 and the pointer to the parent of 𝑛′, i.e., 𝑛, 
in lines 15 to 17, respectively.  

Once  𝑛′  is computed, in lines 18 to 20, the 
algorithm examines if its cell of 𝐆𝐒𝐌 is not closed, 
in line 18, and not visited, in line 19, or if its cell is 
open and the value 𝑔 of the cell is larger than the 
value 𝑔 of 𝑛′. If the conditions examined in lines 
18 to 20 hold true, the cell of 𝐆𝐒𝐌 pointed by the 
pose of 𝑛′ is set as open and the value of the cell of 𝐆𝐒𝐌 is set to the value 𝑔 of the node 𝑛′, in line 21. 
Then, this node is added to the Fibonacci heap 𝐹𝐻, 
in line 22. After examining all possible expansions 
of node 𝑛 in lines 13 to 22, the algorithm goes back 
to line 5 and checks if the Fibonacci Heap is 
empty. If not, it takes the node with the minimum 
value 𝑓 from the heap – many of them might have 
been added in line 22 – and continues the process, 
trying to find a node that is near enough to the goal 
as tested in line 9. If one such node is found, the 
path 𝑃′ has been found and it is returned by the 
algorithm in line 11. If no path is found after 
exploring all possible cells of 𝐆𝐒𝐌, the Fibonacci 
Heap will be found empty in line 5; that is, there 
will be no more nodes to examine. In this case, the 
algorithm will terminate in line 23 returning an 
empty path. 

3.2 Obstacle Distance Grid-Map 
(ODGM) 

A contribution of this paper is the use of an 𝐎𝐃𝐆𝐌 
instead of an occupancy grid-map (Dolgov et al., 
2010) to represent the obstacles in the environment. 
Each cell of 𝐎𝐃𝐆𝐌 keeps its distance to the nearest 
obstacle; so, to find out the distance from a position 
to the nearest obstacle, we simply query the 𝐎𝐃𝐆𝐌 
cell where the position is mapped to. 

Figure 2 illustrates an 𝐎𝐃𝐆𝐌 of the parking lot 
where we conducted real-world experiments using 
our self-driving car. In the 𝐎𝐃𝐆𝐌  of Figure 2, 
darker cells represent regions closer to obstacles, 
while lighter cells indicate areas farther from 
obstacles. The uniformly lighter cells in the middle 
of the map represent areas whose distances from 
obstacles are greater than a threshold and are 
represented by a constant value. 𝐎𝐃𝐆𝐌 is computed 
online using the current occupancy grid-map of the 
same area and dynamic programming. 

3.3 Collision Model of the Car 

Another contribution of this paper is the use of a 
precise, yet simple collision model of the car to 
compute the distance from the car to the nearest 

obstacle in the context of unstructured path 
planning. The collision model of the car is used to: 
(i) compute the first term of 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠(𝑛′), in (4) 
(see Section 3.1); (ii) verify if expanded nodes, 𝑛’, 
collide with obstacles (Section 3.6); and (iii) check 
for collisions during path smoothing (Section 3.8). 

 
Figure 2: ODGM. Darker cells represent regions closer to 
obtacles, while lighter cells farther from obstacles. 

The car is modeled by a set of 5 equally spaced 
circles with equal radii, 𝑅 . To obtain the distance 
from the car to the nearest obstacle, we verify the 
obstacle distance held by the 𝐎𝐃𝐆𝐌 cells to where 
the centers of the car model circles mapped, and 
return the smallest distance. If the returned distance 
is smaller than 𝑅, it is considered as collision. Figure 
3 shows the collision model of the car (five circles) 
with an excerpt from an occupancy grid map in the 
background. 

 
Figure 3: Collision model of the car (five circles) 
superimposed on a blue rectangle with an excerpt from an 
occupancy grid map in the background. The blue rectangle 
indicates the current car’s pose. In the occupancy grid map 
in the background, white cells represent free regions, grey 
cells represent occupied regions and blue cells represent 
unknown regions. 
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3.4 Goal Distance Map (GDM) 

Each cell of 𝐆𝐃𝐌 holds the distance from itself to 
the goal, 𝑝|௉|. To compute a 𝐆𝐃𝐌, we use the Exact 
Euclidean Distance Transform (EEDT), proposed by 
Elizondo-Leal, Parra-González, and Ramírez-Torres 
(2013) which receives as input a discretized version 
of the current 𝐎𝐃𝐆𝐌 and 𝑝|௉|. We discretize 𝐎𝐃𝐆𝐌 
using a distance threshold (0.5 m) – cells closer to 
obstacles than this threshold are set to 1, otherwise, 
zero. 

In Figure 4(a), we show an example of 𝐆𝐃𝐌 
computed using EEDT, where the goal is the center 
of the map and there is only a vertical line as 
obstacle. In Figure 4(b), we show the same example, 
but using dynamic programming for computing 𝐆𝐃𝐌 . As can be seen in these figures, EEDT 
provides a more precise map. 𝐆𝐃𝐌s computed using 
dynamic programing have the disadvantage of 
making search algorithms prefer paths that follow 
the artifacts present in maps produced this way (the 
lines in form of star irradiating from the goal in 
Figure 4(b)). 

In Figure 4(c), we show the 𝐆𝐃𝐌 of a parking 
lot used in the experiments. The goal 𝑝|௉|  is 
represented by a small red circle. As can be seen in 
the figure, we use a 𝐆𝐃𝐌 with reduced resolution 
for closing gaps present in 𝐎𝐃𝐆𝐌  that would 
otherwise allow misguided distances to goal in 𝐆𝐃𝐌. 

3.5 Nonholonomic Heuristic Cost Map 
(NHCM) 

Each cell of 𝐍𝐇𝐂𝐌  holds the nonholonomic 
distance from 𝑛′. 𝑝  to the 𝐍𝐇𝐂𝐌  center, which 
represents the goal, 𝑝|௉|. We access a cell in this map 
using the vector 𝑣(𝑥, 𝑦, 𝜃) = 𝑝|௉| − 𝑛′. 𝑝  (see (3)); 
so, 𝐍𝐇𝐂𝐌  is a tridimensional map indexed by a 
discretized version of 𝑣 . We used Reed-Shepp 
curves (Reeds & Shepp, 1990) to compute this map. 
The cost stored in each cell 𝐍𝐇𝐂𝐌ൣ𝑝|௉| − 𝑛′. 𝑝൧ is 
equal to the length of the Reed-Shepp curve that 
takes the car from a pose 𝑛′. 𝑝 to 𝑝|௉|. The length of 
this curve (or path) depends heavily on the 
orientation of the current pose, 𝑛′. 𝑝, and the Final 
Pose, 𝑝|௉| . In our implementation, 𝐍𝐇𝐂𝐌 does not 
consider obstacles; so, as Dolgov et al. (2010), we 
were able to compute it offline and store it as a 
lookup table. 

 

(a)

(b) 

(c)
Figure 4: (a) Example of GDM obtained by EEDT. (b) 
Same example of (a) but computed using dynamic 
programming. (c) GDM of a parking lot used in 
experiments. 
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3.6 Expansion of Nodes 

Since we use a nonholonomic robot (a car), the 
expansion of a node must follow its kinematic 
constraints. The method expand_node() of 
Algorithm 1 performs node expansion and receives 
the current node, 𝑛 , and 𝐎𝐃𝐆𝐌  as input. 
expand_node() computes a set, 𝑁, composed of up 
to 6 poses 𝑛′. 𝑝 . These poses are computed 
simulating the car movement from 𝑛. 𝑝  to poses 
resulting from moving the car forwards and 
backwards for a fixed distance, 𝑑, while steering to 
max-left, straight, and to max-right. This results in 6 𝑛′. 𝑝  poses. However, if any of these poses results in 
a collision in 𝐎𝐃𝐆𝐌, it is not include in the set 𝑁. 

3.7 Goal Proximity Verification and 
Reed-Shepp Path 

The method is_goal() verifies if the current node, 𝑛, 
is close enough to the goal and, if it is, the search 
terminates. If it is not, is_goal() computes, for every 𝑘(. ) nodes examined, where 𝑘(. ) is a function that 
returns a value that decreases as 𝑛. 𝑝 gets closer to 
the Final Pose, 𝑝|௉|, a Reed-Shepp path between 𝑛. 𝑝 
and 𝑝|௉| . If the Reed-Shepp-path’s poses have no 
collisions and there is no change of direction of 
movement in this path, (i) it is appended to the path 
computed so far from 𝑛ଵ. 𝑝ଵ  to 𝑛. 𝑝, (ii) 𝑛 receives 
the value of the last node of the Reed-Shepp path, 
and (iii) is_goal() returns true. Otherwise, is_goal() 
returns false. The requirement of no change of 
direction of movement in the Reed-Shepp path is 
enforced for avoiding paths with too many changes 
of direction near the goal. 

3.8 Path Smoothing 

The paths produced by Algorithm 1 are composed 
uniquely by segments of a fixed distance, 𝑑 , 
forwards and backwards, while steering to max-left, 
straight, and max-right. To improve passenger 
comfort and safety, we smooth this path using the 
Conjugate Gradient (CG) optimization algorithm. 
We employ CG for minimizing the following 
objective function: 𝐶(𝑃ᇱ) = ∑ 𝑐௦௜ + 𝑐௢௜ + 𝑐௖௜|௉ᇲ|௜ୀଵ . (5)𝐶(𝑃ᇱ)  is equal the sum of three costs: the 
smoothness cost, 𝑐௦௜ , and the obstacle cost, 𝑐௢௜ , and 
the curvature cost, 𝑐௖௜ . For minimizing 𝐶(𝑃ᇱ) , CG 
moves the poses 𝑝௜  of 𝑃ᇱ , using the gradient of 𝐶(𝑃ᇱ) as a guide. Actually, 𝑃ᇱ is used as seed of CG 

and, to maintain the main characteristics of the path 
produced by Algorithm 1, some nodes are not 
affected by the CG because we anchor them to the 
Algorithm 1 solution. A node is anchored if it is the 
first or final node of the path, and if it changes the 
direction of motion of the car. Next, we describe the 
three terms of the objective function 𝐶(𝑃ᇱ). 

The smoothness cost 𝑐௖௜  is defined as 𝑐௦௜ = |Δ𝑝௜ାଵ − Δ𝑝௜|ଶ, (6)

where Δ𝑝௜ = 𝑝௜ − 𝑝௜ିଵ . The minimization of 𝑐௦௜  is 
meant to keep consecutive poses close to one 
another. However, in doing so, poses may get too 
close to obstacles, or the steering needed for going 
from one pose to another may exceed the limits of 
curvature of the car. To avoid that, we employ the 
costs 𝑐௢௜  and 𝑐௖௜ . 

The obstacle cost 𝑐௢௜  is defined as: 𝑐௢௜ = 𝜎௢(𝑑௠௔௫ − 𝐎𝐃𝐆𝐌[𝑝௜]) × [𝐎𝐃𝐆𝐌[𝑝௜] ≤ 𝑑௠௔௫] (7)

where 𝜎௢  is a quadratic penalty function (we use 𝜎௢ = (𝑑௠௔௫ − 𝐎𝐃𝐆𝐌[𝑝௜])ଶ) and 𝑑௠௔௫ is a limit for 
the value of 𝑐௢௜ ; if 𝐎𝐃𝐆𝐌[𝑝௜] > 𝑑௠௔௫ , 𝑐௢௜ = 0. As 𝐎𝐃𝐆𝐌[𝑝௜] is the distance from the car at pose 𝑝௜ to 
the nearest obstacle, 𝑐௢௜  increases as the car gets 
closer to an obstacle up to a maximum equal to 𝑑௠௔௫ଷ, in case of a collision. 

The curvature cost 𝑐௖௜  is defined as: 𝑐௖௜ = σୡ ൬ Δ𝜙௜|Δ𝑝௜| − 𝑘௠௔௫൰ × ൤ Δ𝜙௜|Δ𝑝௜| > 𝑘௠௔௫൨ (8)

where 𝜎௖ = ቀ ୼థ೔|୼௣೔| − 𝑘௠௔௫ቁଶ
 is a quadratic penalty 

function, analogous to the one in the obstacle cost, 
and Δ𝜙௜ = |𝑎𝑡𝑎𝑛2(Δ𝑝௜ାଵ. 𝑦, Δ𝑝௜ାଵ. 𝑥) −𝑎𝑡𝑎𝑛2(Δ𝑝௜. 𝑦, Δ𝑝௜. 𝑥)|  is the absolute value of the 
change in of the tangential angle of 𝑃ᇱ at 𝑝௜. So, ୼థ೔|୼௣೔| 
approximates the curvature of 𝑃ᇱ at 𝑝௜. In (8), if the 
approximate curvature is smaller than the parameter 𝑘௠௔௫ , 𝑐௖௜ = 0 , otherwise, 𝑐௖௜  grows unboundedly 

with ቀ ୼థ೔|୼௣೔|ቁଷ
. 

The CG algorithm requires the derivative of 𝐶(𝑃ᇱ) with respect to the 𝑥௜ and 𝑦௜ of each 𝑝௜ of 𝑃ᇱ. 
We compute these derivatives numerically.  

Our technique for smoothing 𝑃ᇱ and obtaining  𝑃 
operates only with the 𝑥௜  and 𝑦௜  of each 𝑝௜ . The 
value 𝑟௜ of each 𝑝௜ of 𝑃 is the same as that computed 
by the Algorithm 1 for 𝑃ᇱ. The value 𝜃௜ of each 𝑝௜ of 𝑃 is defined as 𝑎𝑡𝑎𝑛2(Δ𝑝௜. 𝑦, Δ𝑝௜. 𝑥), for 𝑟௜ିଵ = 0, 
and 𝑎𝑡𝑎𝑛2(Δ𝑝௜. 𝑦, Δ𝑝௜. 𝑥) + 𝜋, for 𝑟௜ିଵ = 1. 
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4 EXPERIMENTAL 
METHODOLOGY 

In this section, we describe the methodology used 
in the experiments conducted to evaluate the 
performance of the proposed path planner. Firstly, 
we describe the infrastructure of our self-driving 
car. Subsequently, we present the parameters of the 
PPUE implementation examined in the 
experiments.  

Our self-driving car (Figure 1) is based on a 
Ford Escape Hybrid, which was modified to: allow 
electronic control of steering, throttle, brakes, gears 
and several signalization items; provide the car 
odometry for the its autonomy system; and to 
supply power for computers and sensors. Its 
autonomy system follows the typical architecture 
of self-driving cars – its hardware and software are 
described by Badue et al. (2020). 

The parameters of the PPUE were determined 
experimentally in an ad hoc manner by means of 
simulation. We found that 𝑤ଵ = 2, 𝑤ଶ = 5 (see (4)), 𝐎𝐃𝐆𝐌  with size of 210 m ×  210 m  and with 0.2 m  resolution, 𝐆𝐃𝐌  with 210 m ×  210 m  and 1 m of resolution; 𝐍𝐇𝐂𝐌  with 100 m ×  100 m × 360° and 0.2 m resolution for 𝑥 and 𝑦, and 5° for 𝜃, 𝐆𝐒𝐌  with size of 210 m ×  210 m ×  360° ×  2 
and 1 m resolution for 𝑥  and 𝑦 , 10° for 𝜃 , and 2 
directions for 𝑟  (forward or reverse), 𝑑 = 1.41  m, 
max-left = 0.52  radians, max-right = 0.52  radians 
(Section 3.6), 𝑑௠௔௫ = 1.5 m, and 𝑘௠௔௫ = 0.17  m-1 
(Section 3.8) provided suitable operation of PPUE. 
We used the Gnu Scientific Library (Galassi et al., 
2009) implementation of CG (Section 3.8) in our 
code. 

5 EXPERIMENTAL RESULTS 

In this section, we present the results of some 
experiments we performed to show the performance 
of PPUE. Initially, three scenarios were considered, 
all involving entering or exiting a parking lot of the 
main campus of our university. Figure 5 shows these 
three experimental simulation scenarios. 

In the first scenario (Figure 5(a)), 𝑝ଵ  was 
positioned in the right lane of the ring road of the 
our university main campus in clockwise direction, 
and 𝑝|௉| was placed in a slot of the parking lot in a 
top-bottom direction – in this first scenario, the 
planned path went only forward, from the initial 
pose in the road, until the final pose in the parking 
slot. In the second scenario (Figure 5(b)), 𝑝ଵ  and 

𝑝|௉| were positioned in the same poses of the first 
scenario, except that 𝑝|௉|  was set in the opposite 
direction (bottom-top) – in this second scenario, the 
planned path went forward from the initial pose in 
the lane until the parking lot, and then backward 
for a couple of meters in order to stop in the 
parking slot. Finally, in the third scenario (Figure 
5(c)), 𝑝ଵ was placed in another parking slot in top-
bottom direction, and 𝑝|௉| further ahead in the right 
lane of the ring road in the clockwise direction – in 
this third scenario, the planned path went backward 
for a couple of meters, and then forward in order to 
follow the lane outside the parking lot. 

For each one of these three simulation 
scenarios, we measured the hybrid A* search 
running time, the whole PPUE running time 
(hybrid A* plus path smoothing), the number of 
nodes expanded by the hybrid A* algorithm, and 
the length of the final smoothed path, 𝑃. Table 1 
shows these results for an average of five runs of 
the simulation scenarios. 

Table 1: Hybrid A* search time, full PPUE time, number 
of nodes expanded, and length of the final path for an 
average of five runs. 

Scenario Search 
time Full time Number of 

nodes 

1 0.42 s 0.64 s 1,248 

2 0.61 s 0.76 s 9,450 

3 0.47 s 0.51 s 1,170 

As shown in Table 1, the hybrid A* search times 
of the second and third scenarios were larger than 
that of the first one, because of the penalties 
involved in the segments of reverse driving present 
on them. The full running time of the second 
scenario was the largest of all because of the 
complexity of the maneuvers required to achieve the 
goal, which required a larger expansion of nodes 
during the hybrid A* search.  

For all these three simulation scenarios, we 
measured the time to build the 𝐎𝐃𝐆𝐌 and to query 
it for the distance from the car to the nearest 
obstacle. 𝐎𝐃𝐆𝐌  building time was 0.01 s and 𝐎𝐃𝐆𝐌 querying time was 737 ns, for an average of 
five runs of the simulation scenarios. These running 
times are well within the 0.05 s time budget allowed 
by proper operation of the autonomous software 
system of our self-driving car. 
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(a) 

(b) 

(c) 
Figure 5: Experimental simulation scenarios. The blue 
filled rectangles represent the Initial Pose, pଵ , the red 
filled rectangles the Final Pose, p|୔|, and the sequence of 
red unfilled rectangles the smoothed paths from pଵ to p|୔|. 

In two additional simulation scenarios, we 
measured the number of nodes expanded by the 
hybrid A* search using two different ℎ(. ) functions: 
(i) simply the Euclidean distance between 𝑝ଵ  and 𝑝|௉| , and (ii) the ℎ(. )  function presented in (3). 
Figure 6 shows the search tree for each one of these 
two heuristics. 

Using the Euclidean distance between 𝑝ଵ  and 𝑝|௉| as ℎ(. ), hybrid A* expands 8,028 nodes (Figure 
6(a)), while using ℎ(𝑛′) =max (𝐆𝐃𝐌[𝑛ᇱ. 𝑝], 𝐍𝐇𝐂𝐌ൣ𝑝|௉| − 𝑛′. 𝑝൧, 6,346 nodes 
(Figure 6(b)) – the use of 𝐆𝐃𝐌 and 𝐍𝐇𝐂𝐌 reduces 

the number of expanded nodes significantly. Also, it 
is easily visible in Figure 6(a) that, when not using 𝐆𝐃𝐌, hybrid A* searches for solutions in regions of 
the map that do not offer a path to the goal due to 
obstacles (see also Figure 4(c)) and, thanks to 𝐍𝐇𝐂𝐌, the path approaches the goal more smoothly 
in Figure 6(b). 

(a) 

(b)
Figure 6: Search trees for two different h(. )  functions:  
(a) Euclidean distance; (b) h(n′) =max (GDM[nᇱ. p], NHCMൣp|୔| − n′. p൧) . Blue filled 
rectangles represent the Initial Pose, pଵ , red filled 
rectangles the Final Pose, p|୔| , green curves expanded 
nodes, and red curves smoothed paths from pଵ to p|୔|. 

Finally, we evaluated the performance of the 
proposed Path Planner for Unstructured 
Environments in real world scenarios using our self-
driving car. A video that shows these experiments is 
available at http://tiny.cc/iara-ppue. In the video, the 
first real world scenario is similar to the first 
simulation scenario (Figure 5(a)), in which the car 
travels forward from the initial pose in the road to 
the final pose in a slot of the parking lot. The second 
scenario in the video shows the car traveling forward 
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from a slot in the parking lot to the road. Finally, in 
the third scenario, the car is already inside the 
parking lot and it travels backward until the parking 
slot. As the video shows, our self-driving car 
operates appropriately in the real world with PPUE. 

6 CONCLUSIONS 

We presented a path planner for unstructured urban 
environments (PPUE) for our or any other self-
driving car. PPUE computes smooth and safe paths 
that obey the kinematic constraints of the vehicle in 
an amount of time suitable for real world operation. 
Compared with related works, PPUE differs in its 
car’s collision model and in its use of an obstacle 
distance map instead of an occupancy grid map – 
these improvements allow for faster path 
computation.  

As directions for future works, we plan to extend 
PPUE for allowing its use with semi-trailer trucks.  
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