
Vulnerability Metrics for Graph-based Configuration Security

Ibifubara Iganibo1 a, Massimiliano Albanese1 b, Marc Mosko2 c, Eric Bier2

and Alejandro E. Brito2

1Center for Secure Information Systems, George Mason University, Fairfax, U.S.A.
2Palo Alto Research Center, Palo Alto, U.S.A.

Keywords: Configuration Security, Vulnerability Analysis, Vulnerability Graphs, Metrics.

Abstract: Vulnerability analysis has long been used to evaluate the security posture of a system, and vulnerability graphs
have become an essential tool for modeling potential multi-step attacks and assessing a system’s attack surface.
More recently, vulnerability graphs have been adopted as part of a multi-faceted approach to configuration
analysis and optimization that aims at leveraging relationships between the components, configuration param-
eters, and vulnerabilities of a complex system to improve its security while preserving functionality. However,
this approach still lacks robust metrics to quantify several important aspects of the system being modeled.
To address this limitation, we introduce metrics to enable practical and effective application of graph-based
configuration analysis and optimization. Specifically, we define metrics to evaluate (i) the exploitation likeli-
hood of a vulnerability, (ii) probability distributions over the edges of a vulnerability graph, and (iii) exposure
factors of system components to vulnerabilities. Our approach builds upon standard vulnerability scoring sys-
tems, and we show that the proposed metrics can be easily extended. We evaluate our approach against the
Common Weakness Scoring System (CWSS), showing a high degree of correlation between CWE scores and
our metrics.

1 INTRODUCTION

For almost two decades, graph-based vulnerability
analysis has been used to evaluate the security posture
of a system, and vulnerability graphs have become
an essential tool for modeling potential multi-step at-
tacks and assessing a system’s attack surface (Am-
mann et al., 2002; Jajodia et al., 2005).

More recently, vulnerability graphs have been
adopted as part of a multi-layer graph approach to
configuration analysis and optimization, referred to
as SCIBORG (Soroush et al., 2020). This multi-
faceted approach aims at modeling relationships be-
tween the components, configuration parameters, and
vulnerabilities of a complex system by ingesting data
from a number of different data sources, including
but not limited to system documentation, operating
procedures, and reports from vulnerability scanners.
The resulting graph model is then analyzed with the
goal of improving the security of the system while
preserving its functionality. Ultimately, SCIBORG

a https://orcid.org/0000-0003-1321-8554
b https://orcid.org/0000-0002-2675-5810
c https://orcid.org/0000-0002-3270-8738

generates a detailed report containing, among other
valuable pieces of information, a list of recommended
configuration changes.

As cyber systems are becoming more complex
and connected, configuration analytics and optimiza-
tion are becoming increasingly critical for their cor-
rect and secure operation. Attackers usually rely on
unpatched vulnerabilities and configuration errors to
gain unauthorized access to system resources. Mis-
configuration can occur at any level of a system’s soft-
ware architecture, and correctly configuring systems
becomes more complex when many interconnected
systems are involved. In 2017, Security Misconfig-
uration was listed by OWASP amongst the ten most
critical web application security risks (owa, 2017).
Most current configuration security approaches focus
on tuning the configuration of individual components,
but lack a principled approach to managing the com-
plex relationships between the configuration parame-
ters of the components of a composed system.

SCIBORG’s approach tackles this problem by
building upon previous work on impact analysis of
multi-step attacks (Albanese and Jajodia, 2018) to de-
termine attack paths enabled under a given system

Iganibo, I., Albanese, M., Mosko, M., Bier, E. and Brito, A.
Vulnerability Metrics for Graph-based Configuration Security.
DOI: 10.5220/0010559402590270
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 259-270
ISBN: 978-989-758-524-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

259

configuration. However, it still lacks robust metrics to
quantify several important aspects of the system be-
ing modeled and effectively assess the security impli-
cations of configuration choices.

To address this limitation and enable practical and
effective application of configuration analytics and
optimization, we introduce metrics to augment vul-
nerability graphs, which are a critical component of
the graph models presented in (Albanese and Jajodia,
2018) and (Soroush et al., 2020). Specifically, we de-
fine the exploitation likelihood (or simply likelihood)
of a vulnerability as the probability that an attacker
will attempt to exploit that vulnerability, if certain
preconditions are met. Specific preconditions may
vary depending on the characteristics of each vulner-
ability, as certain configuration settings may prevent
access to vulnerable portions of the target software.

We identify several variables that influence an at-
tacker’s decision to exploit a given vulnerability, but
our model is general enough to account for additional
variables that one may deem relevant. We then define
probability distributions over the edges of a vulner-
ability graph – to model how an attacker may select
the next target exploit in a multi-step attack – and ex-
posure factors of system components to vulnerabili-
ties. We propose metrics to quantify these concepts,
building upon standard vulnerability scoring systems.
The proposed metrics have been evaluated against the
Common Weakness Scoring System, showing a high
degree of correlation.

In summary, the key contributions of this paper
are: (i) a general and extensible formal approach to
assess the likelihood that an attacker will attempt to
exploit a vulnerability as well as the impact that a suc-
cessful exploitation would entail; (ii) the use of Intru-
sion Detection System (IDS) rules in the computation
of both likelihood and impact; and (iii) a set of metrics
to complement graph models built around vulnerabil-
ity graphs, including but not limited to the multi-layer
graphs generated by SCIBORG.

The remainder of the paper is organized as fol-
lows. Section 2 discusses related work. Section 3
summarizes current standards in vulnerability scoring
and provides a brief overview of IDS rules. Next, Sec-
tion 4 gives an overview of the SCIBORG model in-
troduced in (Soroush et al., 2020). Then, Section 5 in-
troduces the proposed vulnerability metrics, and Sec-
tion 6 reports on the results of our evaluation. Finally,
Section 7 gives some concluding remarks and outlines
possible future research directions.

2 RELATED WORK

The ultimate goal of configuration analytics and op-
timization is to reduce a system’s attack surface.
Thus, the ability to measure a system’s susceptibil-
ity to attacks is critical to achieve this goal. Over
the years, researchers and practitioners have proposed
various attack surface measurement techniques and
metrics (Bopche et al., 2019; Manadhata and Wing,
2011; Stuckman and Purtilo, 2012; Yoon et al., 2020).
However, these techniques do not typically consider
the relationships between system components, vul-
nerabilities, and configurations. This limitation pre-
vents existing metrics from accurately measuring a
system’s attack surface. An inaccurate assessment of
a system’s susceptibility to attacks may then result
in adopting inadequate countermeasures, which can
have devastating effects on the overall security pos-
ture of the system.

Furthermore, to develop comprehensive cyber sit-
uational awareness (Jajodia and Albanese, 2017), and
in line with more traditional risk analysis approaches,
one has to distinguish between the likelihood that a
vulnerability might be exploited and the impact an
actual exploitation would cause. Most current ap-
proaches provide overall scores that, while possibly
considering multiple variables, do not involve prob-
abilistic considerations. Furthermore, even the ap-
proaches that consider the effect of multiple variables
on the overall scores assigned to vulnerabilities can-
not be easily extended if one wants to consider ad-
ditional variables that were not originally taken into
account – such as the age of a vulnerability and the
set of IDS rules associated with it – and do not al-
low one to change the relative weights of these vari-
ables. Other recent metrics (Mukherjee and Mazum-
dar, 2018; Wang et al., 2019) use scores from the
Common Vulnerability Scoring Systems (CVSS) or
the Common Weakness Scoring Systems (CWSS) in
isolation or as the dominant factor in determining the
severity of a vulnerability.

The approach we propose in this paper addresses
these limitations by creating a general and extensible
system of metrics that builds upon existing literature
on vulnerability graphs and vulnerability scoring.

3 TECHNICAL BACKGROUND

The vulnerability metrics presented in this paper
rely on information from the National Vulnerability
Database (NVD) and on scores computed through the
Common Vulnerability Scoring System (CVSS). We
also rely on repositories of Intrusion Detection Sys-

SECRYPT 2021 - 18th International Conference on Security and Cryptography

260

tem (IDS) rules in the computation of our likelihood
and impact metrics. While our approach is general
and does not require the adoption of a specific intru-
sion detection system, we have used Snort1 and Suri-
cata2 in our implementation and experimental eval-
uation. The proposed metrics have then been vali-
dated against the Common Weakness Scoring System
(CWSS). This section provides a brief overview of
NVD, CVSS, CWSS, and IDS rules.

3.1 NVD

The National Vulnerability Database (NVD) is the
U.S. government repository of standards based vul-
nerability management data represented using the Se-
curity Content Automation Protocol (SCAP), and is
maintained by the National Institute of Standards and
Technology (NIST). This data enables automation
of vulnerability management, security measurement,
and compliance.

NVD is built upon and fully synchronized with
the Common Vulnerabilities and Exposures (CVE)
List, that is a list of records including an identification
number, a description, and public references for pub-
licly known cybersecurity vulnerabilities. The CVE
repository is maintained by MITRE, and NVD aug-
ments it with severity scores, and impact ratings based
on the Common Vulnerability Scoring System.

3.2 CVSS

As stated by the Forum of Incident Response and Se-
curity Teams (FIRST) – which currently maintains it
– the Common Vulnerability Scoring System (CVSS)
provides a means to “capture the principal charac-
teristics of a vulnerability and produce a numerical
score reflecting its severity”. This score is calculated
based on three different metrics:

• Base Score Metrics (required)
• Temporal Score Metrics (optional)
• Environmental Score Metrics (optional)

CVSS is currently at version 3.1, but, for our analysis,
we use CVSS version 2.10, as scores are available for
a larger number of vulnerabilities. Additionally, we
only consider Base Score Metrics in our analysis, as
the other metrics are not yet widely used. The Base
Score is computed via Equation 1 below.

BaseScore = (0.6 · I +0.4 ·E−1.5) · f (I) (1)

where I and E are the Impact and Exploitability scores
defined by Equations 2 and 3 respectively, and f (I)

1https://www.snort.org/
2https://suricata-ids.org/

is defined by Equation 4. The Impact score quanti-
fies the consequences of an exploit, whereas the Ex-
ploitability score captures how easy to exploit a vul-
nerability is.

I = 10.41 · (1− (1− IC) · (1− II) · (1− IA)) (2)

E = 20 ·AC ·A ·AV (3)

f (I) =
{

0, if I = 0
1.176, otherwise (4)

The IC, II , and IA scores in Equation 2 are the con-
fidentiality, integrity, and availability impact respec-
tively, as defined in Table 1.

Table 1: Impact Metrics.

Confidentiality Integrity Availability
Impact (IC) Impact (II) Impact (IA)

None 0.000 0.000 0.000
Partial 0.275 0.275 0.275
Complete 0.660 0.660 0.660

The AC, A, and AV scores in Equation 3 are the ex-
ploitability metrics Access Complexity, Authentica-
tion, and Access Vector, as defined in Table 2.

Table 2: Exploitability Metrics.

Access Compl. (AC) Authentication (A) Access Vector (AV)
High 0.35 Multiple 0.450 Local 0.395
Medium 0.61 Single 0.560 Adjacent 0.646
Low 0.71 None 0.704 Network 1.000

3.3 CWE and CWSS

Common Weakness Enumeration (CWE) is a system
that provides a structured list of clearly defined soft-
ware and hardware weaknesses3. A software weak-
ness is not necessarily a vulnerability, but weak-
nesses may become vulnerabilities. MITRE’s Com-
mon Weakness Scoring System (CWSS) provides a
mechanism for prioritizing software weaknesses that
are present within software applications in a con-
sistent and flexible manner4. It is a collaborative,
community-based effort that is addressing the needs
of its stakeholders across government, academia, and
industry.

CWSS is organized into three metric groups: Base
Finding, Attack Surface, and Environmental. Each
group includes multiple metrics – also known as fac-
tors – that are used to compute a CWSS score for a
weakness. While discussing the formulation of these

3https://cwe.mitre.org/
4https://cwe.mitre.org/cwss/

Vulnerability Metrics for Graph-based Configuration Security

261

metrics goes beyond the scope of this paper and we re-
fer the reader to the documentation for further details,
in the following we focus our attention on the method
MITRE used to rank the most dangerous weaknesses.
In Section 6, we rely on this approach to validate our
metrics. Equation 5 defines the set of CVEs mapped
to a given CWE, and Equation 6 defines the number
of times each CWE is mapped to CVE entries5.

C(CWEi) = {CV E j ∈ NV D,CV E j→CWE j} (5)

Freqs = {|C(CWEi)|,CWEi ∈ NV D} (6)

Then Equations 7 and 8 respectively compute the fre-
quency and severity of a CWE, where the severity is
based on the average CVSS score. Both the frequency
and severity are normalized between 0 and 1.

Fr(CWEi) =
|C(CWEi)|−min(Freq)
max(Freq)−min(Freq)

(7)

Sv(CWEi) =
avgCWEi(CV SS)−min(CV SS)

max(CV SS)−min(CV SS)
(8)

Finally Equation 9 defines the overall score of a CWE
as the product of its frequency and severity, normal-
ized between 0 and 100.

Score(CWEi) = Fr(CWEi) ·Sv(CWEi) ·100 (9)

3.4 IDS Rules

In our approach, we use Intrusion Detection System
(IDS) rules as one of the factors influencing the com-
putation of both the likelihood of a vulnerability ex-
ploit and the exposure factor of a system component
to a vulnerability. However, we distinguish between
known and deployed rules, and only consider rules
that are explicitly mapped to CVE entries. We use the
term known IDS rule to refer to any IDS rule that is
available to the community through publicly accessi-
ble repositories. Our assumption is that the existence
of known IDS rules associated with a given vulnera-
bility may decrease the likelihood of exploiting that
vulnerability, as an attacker may prefer to target vul-
nerabilities that can be exploited without triggering
IDS alerts. As an example, Figure 1 shows the results
of searching the Snort rule repository for two differ-
ent CVEs, that is CVE-2018-12572 and CVE-2018-
12572 respectively.

5We slightly abuse notation and use CWEi ∈ NV D to
denote a CWE that is mapped to at least one CVE entry in
NVD.

Figure 1: Snort rules associate with different CVEs.

Instead, we use the term deployed IDS rule to refer
to any IDS rule that is being actively used by a de-
ployed IDS. Deployed rules may include a subset of
known rules or ad hoc rules developed by the sys-
tem’s administrators. An attacker may not be aware
of what IDS rules are actually in use, so these rules
do not affect the likelihood of exploiting a vulnerabil-
ity. However, early detection of intrusions may help
mitigate the consequences of an exploit, therefore we
take deployed rules into account in the computation
of exposure factors.

4 THE SCIBORG MODEL

This section describes the SCIBORG graph model
that was presented in (Soroush et al., 2020). The met-
rics we introduce in this paper are designed to address
previous limitations of this model by adding the capa-
bility of quantifying several important aspects of the
systems being modeled. However, we remark that our
approach is not limited to graphs generated by SCI-
BORG, and is applicable to any graph model that, like
SCIBORG, relies on vulnerability graphs.

Internet

Web Server (hA)

Mobile App Server (hC)

Catalog Server (hE)

Order Processing Server (hF)

DB Server (hG)

Local DB Server (hD)

Local DB Server (hB)

Figure 2: Network diagram of a notional distributed system.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

262

h
A
,f

s

8

h
E
, f

s

7

h
C
, f

s

7

h
F
, f

s

7

h
G
, f

s

8

h
D
, f

d

5
h

B
, f

d

5

h
S
, f

s

10
h

T
, f

s

7

h
I
, f

s

8
v

D
Ú v

E
Ú v

F

v
B
Ú v

C

0.70.3

0.8

0.2

1

1

1
1

v
A

v
E

v
C

v
F

v
G

v
D

v
B

Dependency

Subgraph

Attack

Subgraph

Configuration Subgraph

enable_debug_mode

mysql.allow_persistent

mysql.max_links

mysql.max_persistent

/proc/sys/fs/file-max

max_connections

/proc/sys/fs/file-max > max_connections

< max_connectionsmysql.max_links

>mysql.max_links mysql.max_persistent

ttenable_debug_mode = TRUE

ttmysql.allow_persistent = TRUE

enable_debug_mode

ttenable_debug_mode = TRUE

0.8

1

0.7

1

0.8

0.7

0.7

Figure 3: The SCIBORG graph for the system of Figure 2.

SCIBORG’s approach is based on modeling a dis-
tributed system as a three-layer directed graph encod-
ing all the information needed to reason upon the op-
timality of system configurations. The three layers,
described in more detail in the following subsections,
are (i) a dependency subgraph; (ii) a vulnerability sub-
graph; and (iii) a configuration subgraph. For illus-
trative purposes, a three-layer graph corresponding to
the notional distributed system of Figure 2 is depicted
in Figure 3.

4.1 Dependency Subgraph

Configuration changes in one component can impact
the security and functionality of other components.
Therefore, globally optimal security decisions need to
rely on dependency information. Several approaches
have been proposed to discover implicit or undoc-
umented dependencies (Bahl et al., 2006; Natrajan
et al., 2012), and SCIBORG can ingest dependency
information generated through multiple tools.

A node in the dependency subgraph represents a
system component (host, service, etc.), and a directed
edge represents a dependency between two compo-
nents. When dependencies are accurately captured,
dependency graphs are expected to be acyclic. To
capture a wide range of relationships between compo-
nents, SCIBORG models each dependency as a func-
tion of the form f : [0,1]n→ [0,1], with f (0, . . . ,0) =
0 and f (1, . . . ,1) = 1.

Each component has an intrinsic utility for the
owning organization and its dependency function de-
fines its ability to provide its expected utility, based
on the status of the components it depends on: the
arguments of this function are the percentage resid-

ual utilities of those components and are in turn com-
puted through each component’s respective depen-
dency function. A dependency function returns 1
when the component can provide 100% of its utility,
and 0 when it has been completely compromised.

Three types of dependency relationships are iden-
tified in (Soroush et al., 2020), namely redundancy
(fr), strict dependence (fs), and graceful degradation
(fd), but such classification is not intended to be ex-
haustive, and other dependency relationships can be
defined.

Figure 3 includes the dependency subgraph for
our notional system. An edge from hA to hB denotes
that hA depends on hB. Each component node is la-
beled with the type of dependency and its utility. Util-
ity values can be assigned by a domain expert or auto-
matically derived by computing graph-theoretic cen-
trality metrics (Kourtellis et al., 2015). In the secu-
rity field, ad-hoc centrality measures have been used
for botnet detection and mitigation (Venkatesan et al.,
2015).

4.2 Vulnerability Subgraph

Vulnerability subgraphs, also known as attack graphs,
are powerful conceptual tools to represent knowledge
about vulnerabilities and their dependencies. SCI-
BORG adopts a broader definition of vulnerability,
but for the purpose of the analysis presented in this
paper we refer to vulnerability graphs as formalized
in (Albanese and Jajodia, 2018). A node in the vul-
nerability subgraph represents a known vulnerability,
and an edge between two vulnerabilities, referred to
as an ENABLES edge, indicates that exploiting the
first vulnerability creates the preconditions to exploit
the second one. An edge from a node in the vul-
nerability subgraph to a node in the dependency sub-
graph, referred to as a DEGRADES edge, indicates
that the exploitation of a given vulnerability can im-
pact a component to an extent quantified by the expo-
sure factor labeling that edge.

The vulnerability subgraph for our notional sys-
tem is also depicted in Figure. 3. This graph can
be generated by combining information from network
scanners (e.g., Nessus) and vulnerability databases
(e.g., CVE, NVD), as shown in (Ammann et al., 2002;
Jajodia et al., 2005). The edges in the vulnerabil-
ity subgraph of Figure 3 are labeled with probabili-
ties, which can be used to infer the most likely paths
that an attacker might take in a multi-step attack.
Determining these probabilities is an open research
problem that we address in this paper, though useful
heuristics exist (Albanese et al., 2013; Albanese and
Jajodia, 2018), based on the assumption that vulnera-

Vulnerability Metrics for Graph-based Configuration Security

263

bilities that require more resources, time, and skill are
less likely to be exploited.

4.3 Configuration Subgraph

The configuration subgraph models relationships be-
tween configuration parameters, both within and
across components of the composed system. There
are two classes of nodes in this subgraph: Class 1
nodes represent per-component configuration param-
eters, whereas Class 2 nodes capture constraints on
one or more configuration parameters. Edges from
Class 1 nodes to a Class 2 node identify the param-
eters involved in a constraint. Directed edges from
a component in the dependency subgraph to Class 1
nodes in the configuration subgraph identify the con-
figuration parameters associated with that component.

Some of the constraints in the configuration sub-
graph may be specified in the system’s documenta-
tion. More importantly, some of the relationships be-
tween configuration parameters might enable or dis-
able preconditions for vulnerabilities in one or more
components. SCIBORG captures this information
with directed edges from Class 2 nodes in the config-
uration subgraph to relevant nodes in the vulnerability
subgraph.

4.4 Advantages and Limitations

SCIBORG’s approach differs from the traditional idea
of minimizing the attack surface of a system by min-
imizing, for instance, the number of exploitable re-
sources available to the adversary. Instead, SCI-
BORG focuses on minimizing the potential impact of
possible attacks by analyzing the paths that an adver-
sary can traverse in a multi-step attack that seeks to
achieve a well-defined goal (e.g., exfiltrating sensi-
tive information from a database), and evaluating the
impact resulting from such attacks. Therefore, the fo-
cus is shifted from minimizing the number of vulnera-
ble entry points to preventing or mitigating the attacks
with the highest potential security impact.

However, SCIBORG still lacks a systematic ap-
proach to estimate the probabilities labeling edges in
the vulnerability subgraph as well as the exposure fac-
tors labeling edges from vulnerability nodes to nodes
in the dependency subgraph. In this paper, we address
this limitation by proposing robust metrics to augment
any model based on vulnerability graphs – including
but not limited to SCIBORG – with the capability
of quantifying different aspects of the systems being
modeled.

5 VULNERABILITY METRICS

This section introduces the metrics we have devel-
oped to address current limitations of vulnerability
graphs. For the purpose of this analysis, we assume
that (i) the set of vulnerabilities in a system does not
change over time6, although configuration changes
might render some vulnerabilities not exploitable, and
(ii) each vulnerability v corresponds to a CVE entry.
The following subsections discuss in detail the differ-
ent metrics that we have introduced.

5.1 Exploit Likelihood

As incidentally mentioned earlier, a vulnerability’s
susceptibility to becoming a target for exploitation by
a malicious user may depend on a number of vari-
ables, including features of the vulnerability itself
and characteristics of potential attackers. While ap-
proaches considering the skills and resources avail-
able to different types of attackers have been explored
in the literature (Leversage and Byres, 2008), such
approaches are not useful in practice, as defenders
should always operate under worst-case assumptions,
and assume they are facing skilled and well-equipped
attackers. Therefore, we focus our attention on fea-
tures of the vulnerabilities themselves and on any in-
formation that may be available to potential attackers,
irrespective of their skills, and that could influence
their selection of target exploits.

We define the exploitation likelihood (or simply
likelihood) of a vulnerability as the probability that
an attacker will attempt to exploit that vulnerability, if
given the opportunity. An attacker has the opportunity
to exploit a vulnerability if certain preconditions are
met, most notably if they have access to the vulnera-
ble host. Specific preconditions may vary depending
on the specific characteristics of each vulnerability,
as certain configuration settings may prevent access
to vulnerable portions of the target software. We ar-
gue that the following variables are the main factors
influencing an attacker’s decision to exploit a given
vulnerability.

• The vulnerability’s exploitability score, as cap-
tured by CVSS.

6In real-world scenarios, the vulnerability landscape
might change for a number of reasons: applying patches,
adding or removing software, or simply discovering previ-
ously unknown vulnerabilities. Generalizing our analysis
to such a dynamic scenario would be relatively straightfor-
ward, and would involve treating various metrics and sub-
metrics, such as the number |IDSk(v)| of known IDS rules
associated with vulnerability v, as functions of time.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

264

• The amount of time since information about the
vulnerability became public.

• The number of known Intrusion Detection System
(IDS) rules associated with the vulnerability.

As discussed in Section 3, the CVSS Exploitability
score captures how easy it is to exploit a vulnerability,
based on different features captured by various met-
rics7, most notably Access Vector (AV) and Access
Complexity (AC). The Access Vector metric reflects
the context in which a vulnerability can be exploited.
Its value is higher for vulnerabilities that can be ex-
ploited remotely, and are therefore more likely to be
exploited as the number of potential attackers is larger
than the number of potential attackers that could ex-
ploit a vulnerability requiring physical access to the
vulnerable host. The Attack Complexity metric re-
flects the amount of effort and resources required for
a successful attack. Its value is higher for exploits that
require little or no effort, and are therefore more likely
to be exploited.

The time passed since details about the vulnerabil-
ity were made public also plays a role in determining
the likelihood of exploitation. In fact, the longer a
vulnerability has been known, the more exploits may
have been developed by the hacker community. While
it is true that the likelihood that patches have been
developed also increases with time, it is well-known
that patches are not applied promptly and consistently
across systems, thus giving attackers a window of op-
portunity to target known but unpatched vulnerabili-
ties.

Finally, the number of known IDS rules may influ-
ence the attacker’s choice of vulnerabilities to exploit.
With systems typically exposing multiple vulnerabil-
ities, attackers may choose to avoid exploits that are
more easily detectable.

Let Gv = (V,E) denote a vulnerability graph (e.g.,
the vulnerability subgraph of the SCIBORG model).
Based on the considerations above, we define the ex-
ploitation likelihood as a function ρ : V → [0,1] de-
fined as

ρ(v)=

(
1− e−α·

√
t(v)

)
·
(

1− e−β·Exploitability(v)
)

eγ·|IDSk(v)|
(10)

where t(v) is the time since vulnerability v was
discovered, Exploitability(v) is the the CVSS Ex-
ploitability score of v, and IDSk(v) is the set of known
IDS rules associated with v.
Each variable contributes to the overall likelihood as
a multiplicative factor between 0 and 1 that is formu-

7Access Vector (AV) and Access Complexity (AC) are
common across CVSS 2 and CVSS 3, whereas other ex-
ploitability metrics are specific to either version.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

⍴(
V)

|IDS(V)|

𝛄 = 0.05 𝛄 = 0.1 𝛄 = 0.15 𝛄 = 0.2 𝛄 = 0.25

Figure 4: Effect of |IDSk(v)| on the likelihood.

lated to account for diminishing returns. Factors cor-
responding to variables that contribute to increasing
the likelihood are of the form 1− e−c· f (x), where x
is the variable, f () is a function such that x1 < x2→
f (x1) < f (x2), and c is a constant. Similarly, factors
corresponding to variables that contribute to decreas-
ing the likelihood are of the form e−c· f (x) = 1

ec· f (x) .
This formulation provides several practical advan-
tages: (i) the resulting likelihood is normalized be-
tween 0 and 1; (ii) accounting for the effect of ad-
ditional independent variables would be straightfor-
ward; and (iii) ignoring the effect of a variable would
simply entail setting the constant c such that the cor-
responding factor evaluates to 1 (i.e., c =+∞ for fac-
tors increasing the likelihood and c = 0 for factors de-
creasing the likelihood).

Figure 4 shows the effect of |IDSk(v)| on the like-
lihood for various values of γ, assuming that all other
factors evaluate to 1. As an example, for γ = 0.25,
the existence of 3 known IDS rules associated with a
vulnerability v cuts the likelihood of exploiting v ap-
proximately in half.

As for the function f (), in most cases we define it
as the linear function f (x) = x, but in the case of the
time t since the vulnerability was disclosed, we use
f (t) =

√
t to model a less-than-linear relationship, as

suggested by Tripwire8.

5.2 Edge Probability

In the previous section, we defined the exploitation
likelihood of a vulnerability as the probability that an
attacker will attempt to exploit that vulnerability, if
given the opportunity. In other words, in computing
the likelihood we do not take the context in which
vulnerabilities are exploited into account. When at-

8https://www.tripwire.com/solutions/
vulnerability-and-risk-management

Vulnerability Metrics for Graph-based Configuration Security

265

𝑢

𝑣

ℎ

𝑐

ENABLES

ENA
BLES

DEGRADES

𝑤

𝑒𝑓 𝑣, ℎ

Pr 𝑢
, 𝑤

Pr
𝑢, 𝑣ENA

BLE
S

Figure 5: Example of edges in the SCIBORG graph model.

tempting to penetrate a complex networked system,
attackers usually engage in multi-step attacks, which
can be modeled through vulnerability graphs, as de-
scribed in Section 4.2. At every step of the attack, ad-
versaries will typically be able to choose among sev-
eral vulnerabilities to exploit next in order to advance
the attack. Therefore, for each node in the vulnerabil-
ity subgraph, we need to compute a probability distri-
bution over the outgoing ENABLES edges. As all the
variables that can influence the attacker’s choice of
vulnerabilities to exploit have been factored into each
vulnerability’s likelihood, this probability distribution
can be computed by normalizing the likelihood val-
ues of the enabled vulnerabilities and using the nor-
malized values to label the corresponding ENABLES
edges. Therefore, given an ENABLES edge e = (u,v)
(shown in Figure 5), the probability of exploiting v
after u is given by

Pr(e) =
ρ(v)

∑v′ s.t.(u,v′)∈E ρ(v′)
(11)

The same reasoning can be applied to any ENABLES
edge e = (c,u) between a constraint (Class 2 node) in
SCIBORG’s configuration subgraph and a vulnerabil-
ity.

5.3 Exposure Factor

Finally, the exposure factor (EF) – as typically de-
fined in risk analysis terminology – represents the rel-
ative damage that an undesirable event – the exploita-
tion of a vulnerability in our case – would cause to
the affected asset. The single loss expectancy (SLE)
of such an incident is then computed as the product
between its exposure factor and the asset value (AV),
that is SLE = EF×AV .

Factors influencing the exposure factor include the
CVSS impact score – which in turn considers the im-
pact on confidentiality, integrity, and availability –
and the number of deployed IDS rules that can poten-
tially mitigate the consequences of an exploit. For-
mally, given a DEGRADES edge (v,h), we define the
exposure factor for this edge as

e f (v,h) =
0.1 · Impact(v)

eδ·|IDSd(v)|
(12)

Note that the notation e f (v,h) is redundant, as h is
uniquely determined by v, which represents a spe-
cific instance of a known vulnerability that exists on
a given component. If multiple components have
the same vulnerability, this scenario is represented
through multiple vulnerability nodes in the vulnera-
bility subgraph, one per component.

6 EXPERIMENTAL EVALUATION

This section describes how we validated the proposed
metrics against CWE. First, we ranked the 2020 CWE
Top 25 Most Dangerous Software Weaknesses9 using
an ad hoc score based on our metrics but designed to
be consistent with the logic behind the CWE score,
therefore making the two rankings comparable. Sec-
ond, we gathered and validated the data necessary to
extend our analysis beyond the top 25 CWEs. Third,
we compared our rankings of all the CWEs associated
with 2018 and 2019 NVD data with rankings based
on CWE scores, and showed a high degree of correla-
tion. The experiments described in this section were
run with α = 0.75, β = 0.25, γ = 0, and δ = 0, unless
otherwise specified. We set γ= 0 and δ= 0 to enable a
meaningful comparison with CWE scores, which do
not use information about IDS rules. However, we
have already illustrated how IDS rules influence the
likelihood (see Figure 4), and we further discuss the
effect of considering IDS rules in Section 6.4.

6.1 Comparison Against Top 25 CWEs

MITRE published the 2020 CWE Top 25 list based on
NVD data about vulnerabilities from years 2018 and
2019, which consists of approximately 27,000 CVEs
that are associated with a weakness. Table 3 shows the
2020 CWE Top 25 with important scoring informa-
tion. It includes the number of CVE entries mapped
to a particular CWE and the average CVSS score for
each weakness. Note that the CWE overall scores are
normalized, as discussed in Section 3.3.

9https://cwe.mitre.org/top25/

SECRYPT 2021 - 18th International Conference on Security and Cryptography

266

R² = 0.646

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

0 5 10 15 20 25 30 35 40 45 50

O
ur

 S
co

re

CWE Score

Figure 6: Correlation between MITRE’s overall scores and
our scores for the 2020 CWE Top 25.

Table 4 shows again the 2020 CWE Top 25, but this
time it includes the average likelihood and exposure
factor for each CWE and the ad hoc score – here-
inafter referred to as our score – we computed to com-
pare our metrics against the CWE scores shown in Ta-
ble 3. Our score of a CWE is defined as the product
of the number of vulnerabilities mapped to that CWE,
their average likelihood, and their average exposure
factor. Differently from MITRE’s score, it is not nor-
malized, but this is irrelevant for the purpose of ana-
lyzing the correlation. Note that the numbers of CVEs
shown in Table 4 differ slightly from those in Table 3
for the reason explained in the following subsection.
Our analysis shows a 80.3% correlation R2 = 0.646)
between the overall CWE scores in Table 3 and our
scores in Table 4, as shown in Figure 6.

Table 3: Sample of 2020 CWE Top 25.

Rank CWE ID NVD Count Avg CVSS Score
1 CWE-79 3,788 5.80 46.82
2 CWE-787 2,225 8.31 46.17
3 CWE-20 1,910 7.35 33.47
4 CWE-125 1,578 7.13 26.50
5 CWE-119 1,189 8.08 23.73
...
25 CWE-862 236 6.90 3.77

Table 4: Sample of 2020 CWE Top 25 with our score.

Average Average Our
Rank CWE ID No. CVEs Likelihood Exp. Factor Score

1 CWE-787 2,012 6.02 0.73 8,850.36
2 CWE-78 777 7.29 0.88 4,974.04
3 CWE-119 1231 5.59 0.67 4,642.55
4 CWE-20 1,887 4.45 0.55 4,619.00
5 CWE-416 934 5.69 0.68 3,622.81
...
25 CWE-77 109 6.38 0.75 519.95

6.2 Extending the Analysis

To further validate our metric, we extended our anal-
ysis beyond the Top 25 CWEs. As MITRE provides
NVD counts and average CVSS scores only for the
top 25 CWEs (plus an additional 15, for a total of 40),
we needed to make this information available for all
CWEs in order to compute Equation 9. After process-
ing data from 2018 and 2019 (the same years used in
the evaluation of the 2020 CWE Top 25), we found
27,437 CVEs and identified 179 CWEs, based on the
data that was available in NVD as of the time of our
experiments. As already noted in the previous subsec-
tion, the counts of CVEs in each CWE category that
we identified differ slightly from MITRE’s official
counts (as reported in Table 3 for the top 25 CWEs).
These differences are due to the fact that MITRE did
not provide a list of CVEs in each CWE category, but
just their counts at the time the Top 25 ranking was
computed. However, NVD is updated approximately
every two hours irrespective of the CVE year, so a dif-
ferent number of CVEs may be returned when query-
ing the database by year at different times. To verify
that our own counts of CVEs in each CWE category
would enable us to compute CWE scores consistent
with those reported in Table 3, we evaluated the cor-
relation between MITRE’s NVD counts and our own
counts, and found the correlation to be about 90%.

6.3 Comparison for 2018-2019 CWEs

We conducted additional, separate experiments for
the years 2018 and 2019. We calculated our over-
all scores for the 2018 CWEs and compared them
against the CWE scores for the same year. The re-
sults, reported in Table 5, indicate a 90% correlation
(R2 = 0.81), as shown in Figure 7. Note that the CWE
scores that we computed for all the 2018 CWEs are
not normalized, but this is irrelevant for the purpose
of computing the correlation with our scores.

Table 5: Our ranking of 2018 weaknesses.

Average Average Our
Rank CWE ID No. CVEs Likelihood Exp. Factor Score

1 CWE-787 914 6.10 0.75 4,161.62
2 CWE-119 854 5.54 0.67 3,182.77
3 CWE-20 1,038 4.48 0.56 2,633.75
4 CWE-78 380 7.27 0.87 2,398.87
5 CWE-416 481 5.77 0.68 1,894.30
6 CWE-89 501 5.57 0.61 1,729.16
7 CWE-79 2,078 2.54 0.29 1,561.72
8 CWE-352 454 5.20 0.59 1,397.68
9 CWE-125 812 3.58 0.42 1,207.28

10 CWE-190 657 3.27 0.37 801.79

We repeated the same analysis for vulnerability data

Vulnerability Metrics for Graph-based Configuration Security

267

R² = 0.81

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

O
ur

 S
co

re

CWE Score

Figure 7: Correlation between MITRE’s and our ranking of
2018 weaknesses.

R² = 0.824

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

O
ur

 S
co

re

CWE Score

Figure 8: Correlation between MITRE’s and our ranking of
2019 weaknesses.

from 2019. The results, reported in Table 6, indicate a
90.8% correlation (R2 = 0.824), as shown in Figure 8.

Table 6: Our ranking of 2019 weaknesses.

Average Average Our
Rank CWE ID No. CVEs Likelihood Exp. Factor Score

1 CWE-787 1,098 5.95 0.72 4,689.04
2 CWE-78 397 7.31 0.89 2,575.34
3 CWE-20 849 4.42 0.53 1,986.21
4 CWE-416 453 5.59 0.68 1,728.50
5 CWE-119 377 5.70 0.68 1,460.02
6 CWE-89 409 5.60 0.63 1,443.55
7 CWE-79 1,766 2.58 0.30 1,379.04
8 CWE-125 792 3.68 0.43 1,254.00
9 CWE-352 423 4.76 0.54 1,091.00

10 CWE-120 213 6.02 0.73 941.75

In conclusion, these results show that not only the pro-
posed metrics are sound, as they are consistent with
an established scoring system, but they also exhibit
several important advantages:

• While CWE scores are computed at an aggregate

level, our equivalent score is calculated based on
vulnerability-level metrics, allowing one to easily
drill down the analysis at a finer level of granular-
ity.

• Our system of metrics can separately model the
likelihood and the impact of a vulnerability and
offers a flexible approach to considering multiple
variables and to adjusting their relative weights
based on a specific application scenario and op-
erational context.

6.4 Effect of Considering IDS Rules

The experiments described in the previous subsec-
tions have been run for γ = 0 to ignore the effect of
IDS rules on the likelihood, since our objective was
to validate our metrics against CWE scores, which do
not consider IDS rules. Therefore, using a practical
example, we now show the effect of IDS rules on the
computation of the likelihood. Consider the two vul-
nerabilities identified by CVD IDs CVE-2018-11776
and CVE-2018-12572. When the effect of IDS rules
is ignored, CVE-2018-11776 appears to be slightly
more likely. However, while CVE-2018-12572 has
only one associated IDS rule in Snort, CVE-2018-
11776 has 7 known IDS rules. Thus, when IDS
rules are considered in the computation, the likeli-
hood of CVE-2018-11776 gets drastically reduced, as
reported in Table 7.

Table 7: Effect of IDS rules on likelihood.

Likelihood Likelihood
CVE ID No. IDS rules for γ = 0 for γ = 0.25
CVE-2018-11776 7 0.9861 0.0141
CVE-2018-12572 1 0.8587 0.6680

Similarly, when the effect of deployed IDS rules
is considered, the impact factor of a vulnerability with
multiple deployed rules is significantly reduced to re-
flect the fact that such a vulnerability can be more eas-
ily mitigated.

6.5 Tuning of Parameters

The metrics presented in this paper involve several
tunable parameters, namely α, β, and γ in Equation 10
and δ in Equation 12. In Section 5, we explained how
these parameters can be set to ignore the effect of a
variable from the overall computation. More gener-
ally, these parameters can be used to weight the con-
tribution of the different variables to the overall score.
By adjusting these parameters, one can tune the re-
sults to specific applications and operational contexts.
We plan to further investigate the subject of parameter

SECRYPT 2021 - 18th International Conference on Security and Cryptography

268

tuning as part of our future work. For the purpose of
our analysis, we chose values of the parameters that
maximized the correlation between our scores and
CWE scores.

7 CONCLUSIONS

In this paper, we have introduced metrics to en-
able practical and effective application of graph-based
configuration analytics and optimization. Our sys-
tem of metrics builds upon literature on vulnerability
graphs and vulnerability scoring, and can effectively
complement systems like SCIBORG, a graph-based
framework providing a fully automated pipeline to in-
gest information about a networked system, build a
graph model of the system based on this information,
and recommend configuration changes to optimize se-
curity while preserving functionality. In particular,
we defined metrics to evaluate (i) the likelihood of ex-
ploiting a vulnerability, (ii) probability distributions
over the edges of a vulnerability graph, and (iii) ex-
posure factors of system components to vulnerabili-
ties. Our approach builds upon standard vulnerabil-
ity scoring systems, and we showed that the proposed
metrics can be easily extended. We have evaluated
our approach against the Common Weakness Scoring
System (CWSS), showing a high degree of correla-
tion between CWE scores and our metrics. As part
of our future work, we plan to explore tuning of the
parameters used in the likelihood and exposure factor
equations and develop an overall metric to score and
compare configurations.

ACKNOWLEDGEMENTS

This work was funded by the US Department of De-
fense under the DARPA ConSec program. Any opin-
ions expressed herein are those of the authors and do
not necessarily reflect the views of the U.S. Depart-
ment of Defense or any other agency of the U.S. Gov-
ernment.

REFERENCES

(2017). OWASP top 10 - 2017: The ten most critical
web application security risks. Technical report, The
OWASP Foundation.

Albanese, M. and Jajodia, S. (2018). A graphical model
to assess the impact of multi-step attacks. Journal of
Defense Modeling and Simulation, 15(1):79–93. Se-

lected by the Guest Editor, Alexander Kott, as an arti-
cle of particular value.

Albanese, M., Pugliese, A., and Subrahmanian, V.
(2013). Fast activity detection: Indexing for tempo-
ral stochastic automaton-based activity models. IEEE
Transactions on Knowledge and Data Engineering,
25(2):360–373.

Ammann, P., Wijesekera, D., and Kaushik, S. (2002).
Scalable, graph-based network vulnerability analy-
sis. In Proceedings of the 9th ACM Conference on
Computer and Communications Security (CCS 2002),
pages 217–224, Washington, DC, USA. ACM.

Bahl, P., Barham, P., Black, R., Chandra, R., Goldszmidt,
M., Isaacs, R., Kandula, S., Li, L., MacCormick, J.,
Maltz, D., Mortier, R., Wawrzoniak, M., and Zhang,
M. (2006). Discovering dependencies for network
management. In Proceedings of the 5th ACM Work-
shop on Hot Topics in Networking (HotNets-V), pages
97–102, Irvine, CA, USA. ACM.

Bopche, G. S., Rai, G. N., Denslin Brabin, D. R., and
Mehtre, B. M. (2019). A proximity-based measure
for quantifying the risk of vulnerabilities. In Thampi,
S. M., Perez, G. M., Ko, R., and Rawat, D. B., edi-
tors, Proceedings of the 7th International Symposium
on Security in Computing and Communication (SSCC
2019), volume 1208 of Communications in Computer
and Information Science, pages 41–59. Springer.

Jajodia, S. and Albanese, M. (2017). Theory and Models
for Cyber Situation Awareness, volume 10030 of Lec-
ture Notes in Computer Science, chapter An Integrated
Framework for Cyber Situation Awareness, pages 29–
46. Springer.

Jajodia, S., Noel, S., and O’Berry, B. (2005). Managing
Cyber Threats: Issues, Approaches, and Challenges,
volume 5 of Massive Computing, chapter Topological
Analysis of Network Attack Vulnerability, pages 247–
266. Springer.

Kourtellis, N., De Francisci Morales, G., and Bonchi, F.
(2015). Scalable online betweenness centrality in
evolving graphs. IEEE Transactions on Knowledge
and Data Engineering, 27(9):2494–2506.

Leversage, D. J. and Byres, E. J. (2008). Estimating a sys-
tem’s mean time-to-compromise. IEEE Security &
Privacy, 6(1):52–60.

Manadhata, P. K. and Wing, J. M. (2011). An attack surface
metric. IEEE Transactions on Software Engineering,
37(3):371–386.

Mukherjee, P. and Mazumdar, C. (2018). Attack difficulty
metric for assessment of network security. In Proceed-
ings of 13th International Conference on Availability,
Reliability and Security (ARES 2018), Hamburg, Ger-
many. ACM.

Natrajan, A., Ning, P., Liu, Y., Jajodia, S., and Hutchin-
son, S. E. (2012). NSDMiner: Automated discov-
ery of network service dependencies. In Proceedings
of the 31st Annual IEEE International Conference on
Computer Communications (IEEE INFOCOM 2012),
pages 2507–2515, Orlando, FL, USA. IEEE.

Soroush, H., Albanese, M., Asgari Mehrabadi, M., Iganibo,
I., Mosko, M., Gao, J. H., Fritz, D. J., Rane, S., and
Bier, E. (2020). SCIBORG: Secure configurations
for the IoT based on optimization and reasoning on

Vulnerability Metrics for Graph-based Configuration Security

269

graphs. In Proceedings of the 8th IEEE Conference on
Communications and Network Security (CNS 2020).
IEEE.

Stuckman, J. and Purtilo, J. (2012). Comparing and ap-
plying attack surface metrics. In Proceedings of
the 4th International Workshop on Security Measure-
ments and Metrics (MetriSec 2012), pages 3–6, Lund,
Sweden. ACM.

Venkatesan, S., Albanese, M., and Jajodia, S. (2015). Dis-
rupting stealthy botnets through strategic placement of
detectors. In Proceedings of the 3rd IEEE Conference
on Communications and Network Security (IEEE CNS
2015), pages 55–63, Florence, Italy. IEEE. Best Paper
Runner-up Award.

Wang, L., Zhang, Z., Li, W., Liu, Z., and Liu, H.
(2019). An attack surface metric suitable for het-
erogeneous redundant system with the voting mech-
anism. In Proceedings of the International Confer-
ence on Computer Information Science and Applica-
tion Technology (CISAT 2018), volume 1168 of Jour-
nal of Physics: Conference Series, Daqing, China.
IOP Publishing.

Yoon, S., Cho, J.-H., Kim, D. S., Moore, T. J., Free-Nelson,
F., and Lim, H. (2020). Attack graph-based moving
target defense in software-defined networks. IEEE
Transactions on Network and Service Management,
17(3):1653–1668.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

270

