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Abstract: An Object Parsing-Expression Grammar (OPEG) is an extension of parsing expression grammars (PEG) in-
cluding generator expressions to directly produce object graphs from parsed text. This avoids typical abstrac-
tion mismatches of intermediate parse representations (e.g., decomposition mismatches). To develop language
families via extension, unification, and extension compositions, OPEGs can be composed—without preplan-
ning and with unmodified reuse. Composability is established by supporting both forming basic grammar
unions and performing grammar transformations between two or more OPEGs (e.g., rule extraction, sym-
bol rewriting). These transformation operators assist developers in mitigating the consequences of the non-
disjointness under composition of parsing expressions (e.g., language hiding). An implementation of OPEGs
is available as part of the multi-DSL development system DjDSL.

1 INTRODUCTION

Developing variable software languages shifts em-
phasis from developing and analysing a single lan-
guage to developing and to analysing composable de-
velopment artefacts for a language family. This am-
bition gave rise to approaches to language-product
line engineering (Méndez-Acuña et al., 2016; Kühn
et al., 2015; Jézéquel et al., 2015; Liebig et al., 2013)
and their supporting multi-language development sys-
tems. Their shared goals are to minimise preplanning
effort as well as, at the same time, to reuse develop-
ment artefacts and language tooling in an unmodified
manner.

The composability of language-definition artefacts
(e.g., definitions of abstract and concrete syntaxes,
context conditions, behaviour, and test cases) is a pre-
requisite for a variable design and implementation of
a language (Erdweg et al., 2015). Composability is
also required to adhere to the conditions of a modular
de- and re-composition, for example, preserving mod-
ular comprehensibility of grammars and grammar ex-
tensions (Johnstone et al., 2014). Language compo-
sition must be tackled at different levels of language
and processing (abstract syntax, context conditions,
behaviour implementation). The emphasis in this pa-
per is on composition of concrete-syntax definitions.

Syntax-level composition involves two or more
concrete-syntax definitions (e.g., production or pars-
ing grammars) to become combined. Text writ-
ten using the combined syntax must be processed—

by grammar-based parser generators, grammar inter-
preters, or parser combinators—as if it were pro-
duced from or recognised by distinct syntax defini-
tions. Each syntax piece is thought of as conform-
ing to one of the source syntaxes, or a mix of source-
syntax fragments. The definition of a resulting parser
(by a composed grammar or by a parser combina-
tor) is ideally formed by referencing the source def-
initions, rather than cloning them. This has the ben-
efit of tracking any modification in the source defi-
nitions without further intervention by the developer
(e.g., providing patch code to the generated parser).
Reusing the source definitions without modification
is the key objective.

Rendering syntax definitions composable presents
important challenges (Degueule, 2016, Section 3.3).
The main challenge is ambiguity under composition.

Ambiguity can arise as an unwanted consequence
of a composition: Two unambiguous grammars may
enter a composition and turn into an ambiguous com-
posed grammar (Diekmann and Tratt, 2014; van der
Storm et al., 2014). Ambiguous parsing is particularly
critical when each parse presents different and possi-
bly contradicting interpretations in terms of the under-
lying semantics. But also earlier, when constructing
higher-level parse representations such as an abstract-
syntax graph (ASG), each valid parse may translate
into a different ASG (van der Storm et al., 2014, Sec-
tion 2.2).

In parsing expression grammars (PEG), ambiguity
under composition takes a characteristic form: lan-
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E ← `Event` ON name:<alnum>+ ;
void: ON ← WS 'on' WS;

Listing 1: An excerpt from an Object Parsing-Expression
Grammar (OPEG), showing two parsing rules in EBNF-
like notation. The first rule exemplifies the inline mapping
of concrete-syntax elements to object-classes (Event) and
their properties (name).

guage hiding. Parsing expressions from two or more
grammars, when combined, may result in a composed
recogniser that hides a language’s syntax unintention-
ally.

This paper documents fine-grained grammar
transformations to prevent unintended language hid-
ing from happening when composing Object Parsing-
Expression Grammars (OPEG). OPEGs are a general
PEG extension for defining, in one, a concrete syn-
tax as well as a mapping between concrete syntax and
an object-oriented primary abstract syntax (ASG). For
production grammars, these became known as object
grammars (van der Storm et al., 2014).

The fine-grained grammar transformations intro-
duced in this paper include rule extractions with and
without symbol rewriting, transitive symbol rewriting
as well as rule removals (see Section 3).

A proof-of-concept implementation, the running
examples as well as the code listings in this paper
are available from a supplemental Web site as an exe-
cutable tutorial1.

2 PARSING TO OBJECT GRAPHS

A parsing expression grammar (PEG; Ford 2004) is
defined as a 4-tuple G = (N,T,R,eS). N denotes the
finite set of non-terminals, T is the finite set of ter-
minals, R is the finite set of rules, and eS is the start
expression. Each rule r ∈ R is a pair (A, e) typically
written as a maplet A← e, with A ∈ N and e being
another parsing expression.

A parsing expression defines a pattern to match
(recognise) and, if matched, to consume a specified
fragment of input. A parsing expression is defined
using the empty string (ε), the sets of terminals and
non-terminals (N, T ), as well as operator expressions
summarised in Table 1 (1–12).

The meaning of a PEG is given by a recogni-
tion program (Grune and Jacobs, 2010, Section 15.7).
A recognition program is a program for recognising
and structuring (incl. tokenising, parsing) a string.
The (operational) meaning of a PEG-based recogni-
tion program can be thought of character-level inter-

1https://github.com/mrcalvin/djdsl

preter of some input that works left-right, top-down to
recognise, and if recognised, to consume the matched
input. The interpreter always consumes the longest
possible matched prefix of some input. A given pars-
ing expression is said to succeed when it consumes
what it has recognised; if an expression fails (i.e.,
it does not recognise anything), it consumes nothing
from the input. This is even so when some of its sub-
expressions have succeeded.

Table 1: Overview of the operators available for OPEG/PT
parsing expressions. The operators correspond to those of
other parsing-expression language implementations, e.g.,
Rats! (Grimm, 2006), APEG (Reis et al., 2015), Arpeg-
gio (Dejanović et al., 2016). Note that ε (epsilon) stands
for matching the empty string. OPEG extensions are gen-
erators (13–14; see Section 2.2). Other extensions are in-
herited from the reused parsing virtual machine (PT): rule
modifiers syntax-tree generation (e.g., void, leaf, value);
character classes (e.g., <alnum>, <digit>, <xdigit>).

op description desugared

1 e1 e2 sequence e1 e2

2 e1 / e2 prioritised (ordered) choice e1 / e2

3 ’d’ literal character ’d’
4 ’abc’ literal string ’a’ ’b’ ’c’
5 [A-z0-9] character ranges [A-z] / [0-9]
6 . any character .
7 (e) sub-expression (group) (e)
8 e? optional expression e / ε

9 e* inclusive-or (zero-or-more) e*
10 e+ inclusive-or (one-or-more) e e*
11 !e not predicate !e
12 &e and predicate !(!e)

13 `c` e instantiation generator `c` e
14 f:e assignment generator f← e
15 f:(`q` e) query generator f← `q` e

Parsing expressions can contain operator expres-
sions and operator behaviours not available in other
parsing approaches. Most importantly, for a given
expression, alternate subexpressions are tried in their
order of definition. The first one to succeed wins, any
remaining ones are discarded. This is referred to as
a prioritised or ordered choice (see operator 2 in Ta-
ble 1). Prioritised or ordered choice has been doc-
umented as the key discriminator between PEG and
CFG (Mascarenhas et al., 2014). On top, the choice
operator gives rise to all difficulties associated with
PEG regarding composition: ambiguity handling and
language hiding.
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2.1 Language Hiding

Parsing expressions build on ordered choices and un-
limited lookahead. These preclude the possibility of
ambiguous parses, but incur the risk of unwanted lan-
guage hiding. Language hiding is a practical conse-
quence of the absence of general semi-disjointness of
a choice expression (Schmitz, 2006) for the scope of
the language matched by a PEG.

Consider appending a parsing expression e2 as an
alternate to an existing parsing rule S ← e1, yield-
ing S ← e1/e2 as a result of composing two PEG.
This ordered choice is commutative only if e1 and e2
are semi-disjoint expressions, that is, they succeed in
consuming input from two languages that are semi-
disjoint. Otherwise, the choice is not commutative
and the order of composition becomes essential for
the parsing result.

Intuitively, e1 and e2 are semi-disjoint if e1
does not overlap with any prefix also recognised by
e2 (Schmitz, 2006, Section 4). Disjointness must also
hold for any super-expression that contains e1/e2 like
(e1/e2)e2. The parsing rule S ←('aa'/'a')'a', with
aa as parsing expression e1 and a as e2. This rule will
successfully consume one input: aaa. Input aa will be
rejected, on the ground that the e1 (aa) is tested first,
rejecting any input not having a third a. When flip-
ping the order between e1 and e2 from (’aa’/’a’)
to (’a’/’aa’), only aa will be consumed and aaa
becomes now rejected.

Covering all input, i.e., the language {aa, aaa},
in this one example with a single expression re-
quires an informed re-arrangement. First, the sub-
expression (e1/e2) must be moved to the right
yielding e2(e1/e2). This is equivalent to writing
(e2e1)/(e2e2) according to the distributive property
of the ordered choice (Ford, 2004, Section 3.7). This
way, e2 cannot fail the super-expression uncondition-
ally, the second alternate will be tested when e2 fails
the first one. Second, within the sub-expression, it
must be taken care that the expression consuming
more of the input (the longer prefix) on success is
tested first. This re-arrangment yields S ← 'a' ('aa
'/'a').

To summarise: Language hiding occurs when a
(greedy) alternate of a choice expression prevents a
later alternate from being applied to inputs that it
could otherwise succeed on. This is also called a pre-
emptive prefix capture (Redziejowski, 2008). See also
Section 3.7 in Ford 2004.

2 start idle
3

4 state idle
5 on doorClosed go active
6

7 state active
8 on lightOn go waitingForDrawer
9 on drawerOpened go waitingForLight

10

11 state waitingForDrawer
12 on drawerOpened go unlockedPanel
13

14 state unlockedPanel
15 go idle on panelClosed
16

17 state waitingForLight

Listing 2: Miss Grant is told to maintain a secret compart-
ment in her bedroom. This compartment requires a partic-
ular sequence of actions from her side to become unlocked
for her to open. The corresponding state-machine models
the modal behaviour of the software-based compartment
controller, reacting to Miss Grant’s input actions (Fowler,
2010, Section 1.1.1).

2.2 Object Parsing Expressions

A parsing grammar can contain extended parsing ex-
pressions to process the consumed syntactic structure
into an object graph. This way, an OPEG defini-
tion lays out two-in-one: (a) input recognition and
(b) mapping the recognised input onto objects, their
fields, and non-hierarchical relationships between the
mapped objects. This is shared spirit with object (pro-
duction) grammars (van der Storm et al., 2014).

In what follows, the extensions to parsing gram-
mars are highlighted by referring to the running ex-
ample of modelling the state machine driving “Miss
Grant’s Controller”. In later sections, this is referred
to as the State-Machine Definition Language (SMDL)
notation. Listing 2 depicts the concrete-syntax snip-
pet of a state-machine definition.

Object parsing expressions are only covered to the
extent necessary to provide a general background and
to render the contributions on grammar transforma-
tions in Section 3 understandable (object generation,
alternates, associations, and references). For a com-
prehensive coverage including details on multi-valued
properties and non-positional parsing, see Sobernig
(2020).

Object Generation. Parsing rules in parsing gram-
mars can contain special-purpose expressions at their
RHS that compute one or several instantiations of
object-classes when their rule is applied. These ex-
pressions are referred to as instantiation generators
(see Table 1, operator 13). Listing 1 shows a gram-
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T ←
`Transition` trigger:E GO target:<alnum>+ /
`Transition` GO target:<alnum>+ trigger:E;

Listing 3.

mar excerpt with two rules E and ON, with WS han-
dling and discarding whitespace characters (the WS
rule not being shown). Rule E consumes trigger-event
definitions for state machine transitions of the form on
doorClosed (line 5, Listing 2). It features the rule ele-
ment Event enclosed by single grave accents (`...`).
This is an instantiation generator that will translate
into an instantiation call for an object-class Event.

To become useful, a parsing rule can be extended
to include assignment generators (see Table 1, op-
erator 14). These generators mark recognised and
consumed values from the processed input as values
to become assigned to the properties of objects cre-
ated by an instantiation generator. Listing 1 shows
the example of an assignment generator for a prop-
erty name. The so-generated assignment binds any
value returned from applying the parsing expression
<alnum>+, that is, a string of at least one alphanumer-
ical character. In the example, this value denote the
event’s name.

Alternates. Each alternate at a RHS of a parsing
rule, i.e., the operand parsing expressions of an or-
dered choice, can define an instantiation generator.
The instantiation generators can point to the same or
different object-classes. Listing 3 demonstrates how
two alternative writing styles for transitions (i.e., on-
go vs. go-on) could be defined as alternates.

In accordance with the semantics of ordered
choices in parsing grammars, only the generator as
part of the matching choice branch will be evaluated.
For all but the transition definition on line 15, List-
ing 2, the first alternate applies; the second alternate
applies then to the input on line 15.

Associations and References. Assignment genera-
tors allow a developer to relate objects, as defined by
instantiation generators, in two ways: First, an assign-
ment generator refers to a bare parsing expression.
The result computed by this parsing expression will
be bound as value of an assignment. Given the hi-
erarchical relationship between parsing expressions,
objects are therefore related in a manner reflecting
the parsing hierarchy. A StateMachine references its
State instantiations, each State maintains Transi-
tions that, again, reference a trigger Event. This web
of relations corresponds to the parsing procedure.

Second, assignment generators can be used to re-
late objects independently from the parse. This is re-

M ← `StateMachine` START
start:(`$root states $0` <alnum>+)
states:S+ ;

Listing 4.

quired because an abstract-syntax graph typically in-
volves some form of circular initialisation (Servetto
et al., 2013). This refers to associations (references)
established between objects beyond those induced by
the parse, i.e., at different times of a parse. Circu-
larity requires, to be fully resolved, that all objects to
enter circular relationships have been fully initialised
before.

Lines 2 and 4 in in Listing 2 exemplify a circu-
lar dependency between two declaration statements.
Setting the start state to idle is in the preamble of
the definition (line 2). The state, however, is about to
be defined later (line 4). To defer the assignment, to
a moment the remainder of the object graph with all
states including idle has been constructed, an assign-
ment operator can be extended into a second form.
This second form nests a parsing expression with a
query generator (see Table 1, operator 15). In List-
ing 4, the assignment generator for the property start
is assigned a parsing expression that contains such a
query expression: $root states$0.

A query expression allows for navigating and for
accessing the object graph under construction. The
first word of a query (e.g., the command) roots the
query in the object graph: $root refers to the top-
level object corresponding to the root of the parse tree.
$parent refers to the ancestor object according to the
parse tree. $self is the self-reference to the receiver
of the assignment. In addition, a query generator can
refer to the parse matches of the surrounding parsing
expression in a positional manner. For example, in
Listing 4, $0 will bind the first value computed by the
first sub-expressions <alnum>+ at position 0 of the se-
quence expression.

The result of evaluating the query expression in an
environment that provides values for the predefined
variables (e.g., root, parent, 0) is then assigned to the
property denoted by the assignment generator. The
generated assignment, however, is deferred to a mo-
ment when all objects are guaranteed to being exist-
ing, according to the underlying parse.

3 COMPOSING PARSING
EXPRESSIONS

A grammar composition relates a receiving grammar
and one or more composed grammars, with grammars
as defined in Section 2. A composition produces a
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resulting grammar (Johnstone et al., 2014). The fun-
damental unit of composition is a grammar rule as a
pair of a non-terminal as the rule’s LHS and a pars-
ing expression as the RHS. A collection of rules hav-
ing the identical LHS, but different RHS are said to
be alternates. The multi-sets of all rules (R) of a re-
ceiving grammar and one or more composed gram-
mars enter the composition. Composition operations
on the rules sets fall into three coarse-grained groups:
overriding, combination, and restriction (Johnstone
et al., 2014). Concrete variations of these operation
types then propagate between rules and into the sub-
expression level (e.g., alternate selection).

In Section 3.1, concrete composition operations
for OPEGs are introduced. This also highlights
specifics to PEG (as opposed to production gram-
mars). The fit of the composition operations for dif-
ferent types of language compositions is elaborated
on in Sections 3.2 through 3.4.

3.1 Merges and Transforms

Object parsing grammars can be connected using a
merges relationship. A receiving grammar can merge
one or several composed grammars to obtain a result-
ing grammar, with and without intermittent grammar
transformations between the merged ones. Compo-
sition starts from a disjoint union of the rules set of
the receiving and composed grammars. To obtain a
disjoint union, all symbols at the RHS and the LHS
of the rules are qualified by their origin grammars.
This union of all rules is the basis for transformations
(extracts, rewrites) that yield the resulting OPEG. As
a default, if no transformations have been defined, a
simple union with override is performed.

The grammar definition in Listing 5 defines a
merge relationship between two grammars: G1 acts
as the receiving, G0 as the composed one.

OPEGs allow for multiple levels of defining
merges relationships. Before computing a resulting
grammar, the collection of composed definitions is
turned into an unambiguous linear order. This lin-
ear order preserves local-precedence orders. Viola-
tions (e.g., circular merges) under linearisation are
signalled at definition time2. This linearisation is then
used to resolve dependencies between rules and as the
basis for the subsequent transformations. The merges
relationship does not directly determine which kind
of composition operation is to be performed between

2Our OPEG implementation represents parsing gram-
mars as object-classes: The merges relationship is therefore
derived from an ordinary subclass-superclass relationship.
This way, OPEGs can leverage the built-in C3 linearisa-
tion (Barrett et al., 1996).

2 # G0 (composed grammar)
3 Grammar create ::G0 -start S
4

5 G0 loadRules {
6 S <- A B / 'a';
7 A <- 'a' A;
8 B <- 'b';
9 }

10

11 # G1 (receiving grammar)
12 Grammar create ::G1 -merges G0 -start A

{
13 A <- ('a' / 'A') A / D;
14 D <- 'd';
15 } {
16 # transformations
17 G0::B ==> ; # rule deletion
18 }

Listing 5.

receiving and composed grammars. This is achieved
in a separate step.

In addition to establishing a merges relation-
ship, the receiving grammar can also define a script
of grammar transformations to implement different
composition operations. These include simple union
with override in the absence of transformations, as
well as different variants of extraction and of restric-
tion in the presence of transformations. Transforma-
tions are defined as a dedicated section of a Grammar
definition (see Listing 5). The transformations can
be called repeatedly, causing a flush of the resulting
grammar and a rerun of any transformations.

The composition behaviour in presence of trans-
formations is implemented on the procedure illus-
trated in an informal manner in Figure 1 (steps a–d).

First, the set of rules of the input grammars (G0,
G1) are processed to turn the non-terminals names
into qualified names (a): A qualified non-terminal is
a non-terminal whose name is prefixed by the name
of the owning grammar. For example, non-terminal
A becomes qualified as G0::A. Non-terminal B so
becomes G0::B3. Second, a union operation is per-
formed with precedence for rules from the receiving
grammars over those of the composed one (b). Due
to prior name qualification, this represents effectively
a disjoint-union operation. This has the consequence
that the original sets of rules enter the intermediate
set of rules in an unaltered and in a complete fash-
ion. Third, the defined transformations (e.g., extrac-
tion, restriction) are performed on this intermediate
set of rules (c). In Figure 1, the example refers to the
removal of the rule with the LHS non-terminal G0::B.
Fourth, after completion, standard grammar cleaning

3Johnstone et al. (2014) refer to this auxiliary transfor-
mation as introducing name hygiene.
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B <- ‘b’ A

A <- ‘a’ A

G0::B <- ‘b’ G0::A

G1::A <- ‘a’ G1::A

G0::B <- ‘b’ G0::A
G1::A <- ‘a’ G1::A

G1::A <- ‘a’ G1::A G1::A <- ‘a’ G1::A

(a) (b) (c) (d)

G0

G1

G1’

Figure 1: A procedural overview of creating a resulting grammar including transforms in four steps (a–d): (a) narrow: Non-
terminals in the input rules-sets are turned into qualified symbols; (b) compose: the (disjoint) union of the input rules-sets is
formed; (c) modify: the transformation operations (e.g., append, removal) are performed; (d) clean: cleaning operations on
unrealisable and unreachable non-terminals are performed.

is performed, most importantly: unrealisable (includ-
ing undefined) non-terminals are dropped, then un-
reachable non-terminals are removed (d).

As for the actual grammar transformations sup-
ported in step (c) of Figure 1, an overview of the
available operators is presented in Table 2. An (1)

Table 2.

op type description example

1 ⇐ binary extract w/o rewrite A ⇐ G0::A
2 ⇔ binary extract w/ rewrite A ⇔ G0::A

3 ∗⇐⇒ binary transitive extract w/rw A ∗⇐⇒ G0::A
4 ⇒ unary remove G0::B ⇒

5 ← binary op. 1 w/o generators A ← G0::A
6 ↔ binary op. 2 w/o generators A ↔ G0::A

none n/a union with override G1 merges set G0

extract w/o rewrite (⇐) selects the RHS expression
of the referenced rule (e.g., G0::A) and introduces it
into the receiving rules set. Introduction refers to ei-
ther creating a new rule G1::A with the extracted RHS
or appending the selected RHS as an additional alter-
nate to an existing rule. An (2) extract w/ rewrite (⇔)
proceeds as the extract. Additionally, it renames any
non-terminals reachable at the extracted RHS expres-
sion using the prefix of the receiving grammar (e.g.,
substituting prefix G1::* for G0::*). The (3) transi-
tive variant of extract w/ rewrite ( ∗⇐⇒) additionally im-
ports any rules providing definitions for the extracted
and renamed RHS non-terminals. These rule depen-
dencies are satisfied from the pool of linearised com-
posed grammars. Finally, (4) resulting grammars can
be restricted by using the removal operator (⇒). A
removal affects an entire rule or a rule alternate. To
selectively insert an extracted RHS as a new alternate,
the operators 1–3 allow for defining an insertion po-
sition, e.g.: A ⇐ G0::A 0. The extracted RHS expres-
sion becomes inserted at the first (zero-based) posi-
tion. That is, it is prepended as a new alternate to

a rule, if existing. The position qualifier defaults to
prepending extracted expressions4.

Generators. The generators for instantiations, as-
signments, and queries as part of object parsing ex-
pressions are integral parts of the parsing expressions
also under transformation. Generators become com-
bined, extracted, and removed with the surrounding
parsing expressions or sub-expressions (alternates)
according to the stipulated behaviour of the first four
operators (1–4). This is particularly important for
choice expressions. At their top level, generators
are elements of each alternate and can become in-
serted or removed during a transformation affecting
the respective alternate. However, to reference and to
reuse parsing (sub-)expressions without their genera-
tors (e.g., to attach matches to an alternative genera-
tor), there are two transform operators that operate on
the plain expressions, without generators (see opera-
tors 5 and 6 in Table 2). An (5) extract w/o rewrite
w/o generators (←) selects the RHS expression of the
referenced rule (e.g., G0::A), omitting any genera-
tors, and introduces it into the receiving rules set (see
also operator 1). An (6) extract w/ rewrite w/o gen-
erators (↔) performs the extraction/ introduction and
patches the namespace prefixes (see also operator 2),
again, omitting any generators. See Sections 3.2–3.4
for concrete applications of these two generator-free
operators.

As already explained, in absence of transforma-
tions, a merges relationship defaults to a union with
override. When forming the union, the receiving rules
take precedence over the composed ones.

The operand values consumed by the six operators
listed in Table 2 must be qualified (G0::A) or unquali-
fied non-terminal names (A). Unqualified names, both
on the left-hand side and on the right-hand side, will
be narrowed by automatically prepending the enclos-

4This default is a consequence of the issue of language
hiding in PEG.
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2 graph {
3 // node definitions
4 "1st Edition";
5 "2nd Edition";
6 "3rd Edition";
7 // edge definitions
8 "1st Edition" -- "2nd Edition"
9 [weight = 5];

10 "2nd Edition" -- "3rd Edition"
11 [weight = 10];
12 }

Listing 6: A definition of an undirected and weighted graph
using DOT notation.

G ← `Graph` GRAPH OBRACKET
StmtList CBRACKET;

StmtList ← (Stmt SCOLON)*;
Stmt ← edges:EdgeStmt / NodeStmt;
EdgeStmt ← `Edge`

a:(`$root nodes $0` NodeID
)

EDGEOP
b:(`$root nodes $0` NodeID

);
NodeStmt ← `Node` name:NodeID;
NodeID ← QUOTE Id QUOTE;
Id ← !QUOTE (<space>/<alnum>)+;

Listing 7: A base notation for graphs w/o weight attributes.
Some definitions are omitted for brevity; OBRACKET: ”[”,
CBRACKET: ”]”, SCOLON: ”;”, QUOTE: ”"”, GRAPH: ”graph”,
EDGEOP: ”--”.

ing grammar’s name. The transformations are exe-
cuted in their order of definition, without any partic-
ular precedence of one operator over the other (see,
e.g., Listing 5). Varying transforms can be applied,
repeatedly or consecutively, to obtain different result-
ing grammars.

In the following subsections, the application of
these parsing grammar compositions (union, extrac-
tion, and restriction) is exemplified in the context of
the recurring types of language composition (Erd-
weg et al., 2012): extension, unification, and exten-
sion composition. The running composition examples
are tutorial throughout literature: DOT/ GPL, SMDL
(Miss Grant’s Controller), and BCEL (see Figure 2).
They highlight the capabilities or restrictions of ex-
ternal syntax composition, in general, and for object
parsing grammars, in particular.

3.2 Syntax Extension

A language developer composes a base language, e.g.,
for defining graphs using DOT in Listing 6, with a
language extension. A language extension is an in-
complete language fragment which depends directly

# a) receiving rules
EdgeStmt ← `Edge` CoreEdge WeightAttr;
WeightAttr ← OSQBRACKET WEIGHT EQ

weight:Weight CSQBRACKET;
Weight ← `Weight` value:<digit>+;
# b) transforms
CoreEdge ↔ Dot::EdgeStmt
G ∗⇐⇒ Dot::G
{EdgeStmt end} ⇒

Listing 8: The rules set of an extension grammar (a) and ex-
plicit transformations (b) to produce a resulting (extended)
grammar from the base grammar in Listing 7. Auxiliary,
attribute-specific rule definitions (WEIGHT, EQ) are not de-
picted for clarity.

on the base language for completion (in terms of
the concrete syntax, the abstract syntax, and the be-
haviours; Erdweg et al. 2012). For example, graph
definitions using DOT node and edge statements
should be extended to model edge-weighted graphs
(see Listing 7). For this, the DOT notation must be
extended accordingly to support attribute statements,
so that edge weights can be captured as attributes (see
Figure 2a).

Listing 7 shows an object parsing grammar
incl. generators for instantiations, assignments, and
queries recognising graph definitions w/o weight at-
tributes: the base notation. The object parsing gram-
mar establishes three correspondences between pars-
ing expressions (their matches) and a class model of
graphs:
1. Matches obtained by NodeStmt map to instantia-

tions of the Node class.

2. Matches obtained by EdgeStmt map to instantia-
tions of the Edge class.

3. Matches obtained by the top-level or start rule G
map to instantiations of the Graph class.

In addition, the Node instantiations must be initialised
to the provided node names. The Edge instantiations
must obtain references to the Node instantiations iden-
tified by the node names given in DOT edge state-
ments. Finally, all Edge instantiations must be as-
signed to the edges property of the Graph.

To allow for edge statements to carry attribute
statements in-between brackets defining edge weights
(see lines 7 and 8 in Listing 6), among others, the
base grammar can be composed with a grammar ex-
tension. This extension can be realised in different
manners using OPEGs. Options include a straightfor-
ward union between two OPEGs or a grammar trans-
formation. In the following, OPEG transforms are ex-
hibited.

As for extra rules (the receiving grammar’s rules
in Listing 8a, the rules WeightAttr and Weight de-
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(DOT)

G0

(DOT, 
weighted)

G1

merges

(a)

(SMDL)

G0

(SMDL + 
BCEL)

G2

merges

(BCEL)

G1

(b)

(weighted)

G1

(weighted,
coloured)

G2

merges

(product)

G3

(DOT)

G0

merges

(c)

Figure 2: A structural overview of the merges relationships for (a) syntax extension, (b) syntax unification, and (c) syntax-
extension composition. DOT is the graph-definition notation as available from the Graphviz toolchain, on top of a Graph
Product Line (GPL; Lopez-Herrejon and Batory 2001). The State Machine Definition Language notation (SMDL) is inspired
by Miss Grant’s Controller, (Fowler, 2010, pp. 4), modelling a software-based controller for a secret compartment. The
Boolean and Comparison Expression Language (BCEL) exemplifies both a notation of an Expression Product Line, (Liebig
et al., 2013), as well as an embeddable notation in terms of a kernel expression language (Völter, 2018), made to become
combined with a second language.

fine the actual extension (attribute) syntax. The rule
for EdgeStmt links the former with the base syntax of
edge statements. This is achieved by referencing the
corresponding base rule for edge statements as-is via
a non-terminal CoreEdge; and amending it in subse-
quent steps.

Consider the transforms shown in Listing 8b, one
step (line) at a time: Recall that in presence of trans-
forms, merging produces a disjoint union of two sets
of rules, with all rules and non-terminals being prefix-
qualified by their originating grammars (see Figure 1,
step b). Therefore, at the start, there will be effec-
tively two EdgeStmt rules in the intermediate set of
rules: Dot::EdgeStmt from the base grammar and
ExtDot::EdgeStmt from the extension grammar (see
Listing 8a).

Based on this intermediate set, the transforms can
be used to extract the RHS of Dot::EdgeStmt, park
it in a helper rule for ExtDot::CoreEdge, and refer-
ence this helper from the RHS of ExtDot::EdgeStmt.
This corresponds to what is achieved by the↔ trans-
form of Listing 8. Then, to integrate this revised
EdgeStmt with the remainder of the composed gram-
mar, the transitive-extraction transform ( ∗⇐⇒) is used
to draw the entirety of the composed grammar into the
namespace of the receiving grammar. This starts from
the start symbol Dot::G. The operation will pick up
the previously defined, revised ExtDot::EdgeStmt.
This, in turn, activates the added syntax for weight
attributes via ExtDot::CoreEdge.

Syntax extensions using explicit OPEG transfor-
mations, rather than a union with override (also sup-
ported), avoids duplicated rules. Besides, all changes
to the base (composed) grammar will be automati-
cally tracked by the extended (resulting) one. In addi-
tion, accidental overrides are avoided by maintaining
the merged sets of rules in separate namespaces.

state active
on lightOn go waitingForDrawer
on drawerOpened go waitingForLight

[ counter > 3 ]

Listing 9: One guarded transition for Miss Grant’s Con-
troller.

3.3 Syntax Unification

Composing two or more, otherwise free-standing and
independent languages and their syntaxes has been re-
ferred to as language unification. Unification of the
two or more languages mandates that they maintain
their standalone functional properties, and still, when
composed, interoperate without modifying their im-
plementation. A unification must preserve the com-
posed syntaxes, leaving them intact and unmodified.
In this setting, the same basic composition operations
provided between two or more OPEGs apply, as for
language extension or extension compositions. Im-
portant differences arise from the fact that unintended
or accidental overrides, for instance, are much more
likely. This is because one syntax definition might
contend with the other’s symbol names, whitespace
conventions, and reserved literals (e.g., keywords).

Consider two separately developed languages.
These are a Boolean and comparison expression lan-
guage (BCEL) and a state-machine-definition lan-
guage (SMDL). See also Figure 2. The BCEL is
a candidate of a functional kernel language (Völter,
2018) to become unified with SMDL to implement
guarded transitions. A guarded transition is a transi-
tion that is annotated by a guard expression and whose
firing is controlled by the prior evaluation of the at-
tached guard expression. If the guard is evaluated to
true at that time, the transition is enabled, otherwise,
it is disabled and will not fire. Listing 9 shows two
transitions, one with and the other without a guard
expression.
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# a) receiving rules
T ← `Transition` OrigT OBRACKET

guard:Expression CBRACKET;
void: OBRACKET ← WS '\[' WS;
void: CBRACKET ← WS '\]' WS;

# b) transforms
OrigT ↔ MissGrants2::T
Expression ⇐ BCEL::Expression
GM ∗⇐⇒ MissGrants2::M

Listing 10: A minimal unifying grammar that integrates the
state-machine language with the BCEL language.

A unification is marked by two or more com-
posed grammars being merged by a receiving (unify-
ing) grammar. The running example requires the de-
veloper to define a receiving grammar (e.g., Guarded-
MGC) that merges the BCEL’s grammar and the SMDL
grammar. The definitional content of the unifying
grammar is documented by Listing 10. Guard expres-
sions are attached to the Transition instantiations.

Intuitively, the unification is achieved in three
transformational steps (see Listing 10b): First, a re-
vised rule definition for transition definitions is pro-
vided. This rule derives from the original definition
via the rewrite transform named OrigT. Note that gen-
erators are excluded from the rewrite transform. This
is to avoid duplication of the instantiation generator
for Transition in the resulting grammar. The re-
vamped rule T becomes extended by an assignment
generator guard. This will establish the guard refer-
ence between an instance of Transition and an in-
stance of Expression. Second, the assignment gen-
erator is related to the Expression rule of the BCEL
grammar. This rule becomes referenced on the second
to last line of Listing 10. Third, and finally, the entire
SMDL rules set is dragged into the resulting grammar
(on the last line).

These transforms resemble closely the ones for a
syntax extension, regarding the provision of an ex-
tension point in the state-machine language (OrigT).
The main difference comes with the referencing of a
syntax element from the second composed language
(extract w/o rewrite): BCEL::Expression. As this
happens to be the start symbol of BCEL, the entire
BCEL rules set is effectively incorporated into the re-
sulting grammar. This is achieved in a way that avoids
conflicts with the state-machine rules set (thanks to
prefixing of non-terminals).

To summarise, OPEGs with transforms allow for
the unanticipated, the unmodified, and the controlled
reuse of two independently developed syntaxes to
form a unified syntax.

graph {
// node definitions
"1st Edition";
"2nd Edition";
"3rd Edition";
// edge definitions
"1st Edition" -- "2nd Edition"

[weight = 5];
"2nd Edition" -- "3rd Edition"

[colour = #000];
}

Listing 11: A definition of an undirected graph with
weight or colour attributes using DOT notation.

3.4 Syntax-extension Composition

Extension composition captures situations in which
two or more syntax extensions can be composed with
one another or can be co-present as an extension to
a base syntax. Two or more extensions may be com-
posed incrementally (step-wise) into a base language,
one at a time. Alternatively, the extensions can be
composed first, and the resulting grammar becomes
merged once with a base grammar. The first is some-
times referred to as incremental extension composi-
tion, the second as extension unification. OPEGs sup-
port both variants of syntax-extension composition,
with incremental compositions being a flavour of syn-
tax extensions as described in Section 3.2. In what
follows, the emphasis is on extension unification. As
the name implies, this combines aspects of syntax
extension (Section 3.2) and syntax unification (Sec-
tion 3.3).

In an extension unification, the points of depar-
ture are the extension grammars per se. First, the ex-
tensions become composed, then, as a last step the
unified (resulting) grammar is merged into the base
grammar (see Figure 2c). The unified extension gram-
mar is, as its merged extension grammars, abstracted,
that is they must be completed by merging a base
grammar.

Consider the example of a second syntax exten-
sion to the DOT-like graph-modelling language intro-
duced in Section 3.2. This extension’s aim is to add a
colour attribute to edge definitions. Colour attributes
carry 3-digit hex codes of colours as part of edge def-
initions, as depicted in Listing 11.

The basic flow of an extension unification is exem-
plified in Listing 12 for a colour- and weight-enabled
graph syntax. The two main steps are identified as
steps (2) and (3). In step (2), a unified extension is
created by composing the two grammars documented
(as excerpts) in Listings 13 (for weight attributes) and
in Listing 14 (for colour attributes). The actual unifi-
cation of the underlying rules sets in accomplished by
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2 # 1) weighted extension
3 Grammar create WeightedExtGrm \
4 -start EdgeStmt $weightedGrmStr
5

6 # 2) unified (coloured+weighted) extension
7 Grammar create ColouredWeightedExtGrm \
8 -start EdgeStmt \
9 -merges [WeightedExtGrm] $colouredGrmStr

{
10 EdgeStmt <*> WeightedExtGrm::EdgeStmt
11 }
12

13 # 3) base + unified extension
14 Grammar create FinalGrm \
15 -start G \
16 -merges [list [ColouredWeightedExtGrm

resulting] $dotGrammar] {} {
17 # transforms
18 ColouredWeightedExtGrm::WS ==>
19 ColouredWeightedExtGrm::CoreEdge ==>
20 CoreEdge <-> Dot::EdgeStmt
21 EdgeStmt <*>

ColouredWeightedExtGrm::EdgeStmt
22 G <*> Dot::G
23 }

Listing 12: An actual extension unification implementation.
First, two Grammar instances embody the extension gram-
mars: WeightedExtGrm, ColouredWeightedExtGrm. The
latter reifies the unified grammar of the two extensions. Fi-
nally, the FinalGrm becomes composed from the unified
extensions and the original DOT grammar (whose defini-
tion is not shown here).

2 # rules
3 EdgeStmt ← `Edge` CoreEdge
4 WeightAttr ;
5 WeightAttr ← OSQBRACKET WEIGHT
6 EQ weight:Weight
7 CSQBRACKET;
8 Weight ← `Weight`
9 value:<digit>+;

10 # deferred
11 CoreEdge ← '';
12 void: WS ← '';

Listing 13: Excerpt from the extension grammar for the
weighted feature, as used for extension unification.

a single, fetch-all transform on line 10 of Listing 12:

EdgeStmt <*> WeightedExtGrm::EdgeStmt

The result of this transform is a unified extension,
without dependence on a base (i.e., the DOT) gram-
mar. To render the unified extension independent
from a base grammar, the two extension gram-
mars must be defined in a self-sufficient manner.
Most importantly, the start symbols (EdgeStmt) must
be defined. Any deferred non-terminals must be
matched by placeholder definitions (ε-expressions).

2 # rules
3 EdgeStmt ← `Edge` CoreEdge
4 ColourAttr ;
5 ColourAttr ← OSQBRACKET COLOUR
6 EQ colour:Colour
7 CSQBRACKET;
8 Colour ← `Colour` value:('#'
9 <xdigit>

10 <xdigit>
11 <xdigit>);
12 # deferred
13 CoreEdge ← '';
14 void: WS ← '';

Listing 14: Excerpt from the extension grammar for the
coloured feature, as used for extension unification.

See WS and CoreEdge in Listings 13 and 14 for
examples. In step (3), the base (DOT) gram-
mar is merged together with the unified extension
(ColouredWeightedExtension) into a completed
and operative grammar (FinalGrm). From this final
grammar, a parser can be derived.

Two details are noteworthy about this final com-
positional step: First, this final receiving grammar
does not introduce any new rules. Second, it is the
resulting grammar of the unified extension becoming
merged into the final grammar, and not the receiving
grammar of the unification itself. See line 16 of List-
ing 12.

As for the first detail: There are no dedicated rules
for the final grammar because its rules set is popu-
lated purely from running grammar transformations
(see lines 18–22 in Listing 12). This is not only per-
mitted in OPEGs, but also corresponds to the nature
of an extension unification. The first three transforms
(lines 18–20) provide actual definitions for the de-
ferred non-terminals coming with the unified exten-
sions (WS and CoreEdge). Without the upfront re-
moval of the ε-placeholders, the resulting grammar
would remain dysfunctional. Recall that definitions
present in the grammars under composition are turned
into alternates of a combined rule. The subsequent
two lines 21 and 22 load the sets of rules of the
two composed grammars into the final resulting one.
This is equivalent to the use of the transitive extract/
rewrite transformation, as applied for syntax exten-
sion and for syntax unification.

To recap, extension unification differs from step-
wise syntax extensions in that at the time of compos-
ing the extensions, they are treated in isolation from
any base grammar. Most importantly, any undefined
or deferred non-terminal definitions must be provided
either by the extension grammars themselves or any
intermediate (unified) grammar (at least in terms of
placeholders). This complicates a unification, as com-
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pared to repeated syntax extensions. However, uni-
fication also presents immediate benefits. One up-
side is that the extension unification is defined under
a closed-world assumption: The start symbols point
to parsing rules introduced by the extension gram-
mars; any deferred non-terminals are clearly marked
as such5. Another consequence is that an exten-
sion unification is symmetric as opposed to incremen-
tal composition. Extensions are composed as peers,
without one taking precedence over the other. In addi-
tion, extension unification provides more control over
a syntax composition (see derivatives in Section 4).

4 DISCUSSION

Language Hiding Revisited. Language hiding
(a.k.a. pre-emptive prefix capture) is a practical con-
sequence of the absence of general semi-disjointness
of a choice expression for the scope of the language
matched by a PEG (see Section 2.1). This is counter
the otherwise practical, advantageous consequence of
PEGs precluding ambiguity. Language hiding has im-
plications for composition operations as introduced
in Section 3.1, in that alternates become automati-
cally (combination) or selectively added (extraction
w/ and w/o insertion position). Any added alternate
may unintentionally hide others, and, therefore, im-
portant fragments of the matched language.

The implementation of OPEGs tries to minimize
unintended language hiding for two or more com-
posed grammars, by applying precautionary defaults:
For example, alternates introduced by DSL exten-
sions are prepended to those of the receiving gram-
mar. This follows from the assumption that, in exten-
sions, the aim is to capture longer prefixes. Beyond
that point, manual inspection (Redziejowski, 2018)
and fine-grained control during composition are sup-
ported (explicit alternate positioning).

Grammar Cleaning. In Section 3.1, it was es-
tablished that techniques for reducing (“cleaning”)
object parsing grammars from unrealisable and un-
reachable non-terminals is a building block for mod-
elling and implementing certain composition opera-
tions (see Figure 1). For production grammars (CFG),
this is a matter of static analysis (Aho and Ullman,
1972, Section 2.4.2). For parsing grammars, in the

5These are not only matters of definitional clarity, but
also an implementation-level requirement: Once composed,
the resulting grammar will be cleaned from useless non-
terminals. To prevent this from happening, there must be
placeholder definitions.

general case, finding useless (non-recognising, unde-
fined, and unused) non-terminals is known to be un-
decidable (see Grune and Jacobs 2010, p. 507 and
Ford 2004, Section 3.5). This is, again, due to the is-
sue of non-disjointness of the ordered-choice operator
(see Section 2.1): The evaluation of some alternate is
conditional on the success or failure of its preceding
alternates.

The parsing expression with two alternates 'a' /
'ab' is pathological because it will only recognise
a in all inputs prefixed by a single a (e.g., aa, ab).
The second alternate is realisable (i.e., it recognises a
literal string) but is effectively shadowed by the first
alternate (’a’). Therefore, even if an alternate expres-
sion can be statically marked as realisable (i.e., it does
recognise and possibly consume at least one terminal
on the input stream), it may be actually unreachable
in the order of any evaluation of a given choice ex-
pression.

(Practical) Workarounds are tool-supported man-
ual inspection (Redziejowski, 2018) or leveraging
higher-level CFG that are transformed into corre-
sponding PEG, said being well-behaved having only
choice expressions containing alternates then known
to be disjoint (Mascarenhas et al., 2014). None of
these apply to automated grammar cleaning, however.
For the scope of this work, a conservative approxima-
tion is applied. An approximative cleaning of pars-
ing grammars will lead to false negatives. A false
negative is a non-terminal marked as realisable that
may still turn out unreachable, conditionally. There-
fore, for an OPEG, it is not able to obtain fully re-
duced grammars and fully optimised parsers. How-
ever, the approximation is sufficient for cleaning re-
sulting grammars from composition artefacts, such as
non-terminals becoming undefined.

Additional Composition Types. Beyond the basic
types covered in Section 3, one can realise language
restrictions and higher-order extension unifications
(derivatives).

By default, and to maintain closure under com-
position, rules are combined as alternates. This ef-
fectively widens the matching space of the resulting
grammar as compared to the composed one. If the re-
sulting syntax should be restricted to disallow previ-
ously allowed syntax elements, one must restrict the
resulting grammar by removing alternates explicitly.
This restriction can be achieved by employing the re-
move operator (⇒; see Table 2, operator 4).

In syntax-extension composition, a developer
must realise a dual goal. A developer must (a) pro-
vide for coordination code to accommodate the two
co-present syntax extensions. In addition, the devel-
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oper must to (b) implement the coordination code in
a way that both syntax extensions remain deployable
in isolation from each other. OPEGs help achieve this
double goal by derivative extension composition. Co-
ordination code can be provided as a dedicated gram-
mar (derivative grammar; Liu et al. 2006). This gram-
mar provides for extra rules and transforms to resolve
unwanted interactions such as syntax failures of two
or more syntax extensions (composed grammars).

5 RELATED WORK

The relevant context is set by approaches to compos-
able and modular grammars. Grammar (definition)
reuse without modification (Erdweg et al., 2012) is
referred to, but mainly with respect to the limitations
perceived at the time. These include conflicting lexers
(token scanners) vs. scannerless parsing and parser
generators being limited to single and closed gram-
mar definitions.

To overcome these limitations, first contributions
included syntax modules of the series of Syntax Defi-
nition Formalisms (SDF, SDF2, SDF3; Visser 1997),
the grammar-inclusion mechanism by TXL (Cordy,
2006) and grammar imports by ANTLR (Parr, 2013,
pp. 257). These approaches turned grammars into
open definitions. SDF starting with version 2 intro-
duced parametrised syntax modules. Modules can
import from each other. When an imported module
exposes non-terminals or terminals as named module
parameters, they can be bound under different names
in the importing module. The same can be achieved in
SDF using explicit renaming, without formal parame-
ters. SDF is contained by a number of language devel-
opment systems, including Spoofax and RascalMPL.
SDF also addressed composability issue by operat-
ing on scannerless and generalised parsing (i.e., scan-
nerless GLR). It is noteworthy that the support for
parametrised modules has been discontinued starting
from SDF3.

TXL allowed a developer to place rules over dif-
ferent files, rooted under one start symbol though. In
addition, TXL provided for a refine to replace or add
a new alternate to a given rule. ANTLR, as elaborated
on in this section, applies a union-with-override tech-
nique, with particularities regarding different types of
definition artefacts. As ANTLR serves as the parsing
infrastructure for several language development sys-
tems such as Xtext (Bettini, 2013), MontiCore (Krahn
et al., 2010), MetaDepth (Meyers et al., 2012), gram-
mar imports have seen uptake.

Throughout Section 3, the PEG-based system
Rats! was referred to, mainly because Rats! provides

for basic grammar composition on the basis of rules
and alternates using dedicated transformations (add,
delete, append). In addition, Grimm (2006) highlights
important barriers to composing PEG-based syntax
definitions (e.g., ordering).

6 CONCLUDING REMARKS

This paper departs from the foundations of ad-
vanced parsing expression grammars (PEG) and de-
livers object parsing-expression grammars (OPEGs)
to define—in one—a concrete syntax and the map-
ping to an object-oriented primary abstract syntax
(language model). The double aim is to avoid com-
mon abstraction mismatches of parse representations
(e.g., decomposition mismatches) and to render the
extended parsing grammars composable. The ex-
tended parsing grammars support different compo-
sition techniques under the umbrella of a uniform
framework: simple grammar unions and fine-grained
grammar transformations. The latter transformations
are backed by well-defined operators taking as input
the sets of parsing rules of two or more OPEGs at
different levels (e.g., rule-wise, alternates) to form
a valid OPEG as their output. The transformation
procedure and the provided operators enable devel-
opers to mitigate the consequences of unwanted lan-
guage hiding by PEGs under composition. This cov-
erage of robust composition techniques is shown to
be necessary to enable a developer to implement the
different grammar compositions relevant for realising
language-product lines: extensions, unification, ex-
tension composition, and derivative grammars.
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