
Output-feedback MPC for Robotic Systems under Bounded Noise

Lenka Kuklišová Pavelková a and Květoslav Belda b

The Czech Academy of Sciences, Institute of Information Theory and Automation,
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Abstract: The paper presents an output-feedback model predictive control applied to the motion control of a dynamic
model of a parallel kinematic machine. The controlled system is described by a stochastic linear discrete-time
model with bounded disturbances. An approximate uniform Bayesian filter provides set state estimates. The
choice of the specific point estimate from this set is a part of the optimization. The cost function includes
penalties on the tracking error and the actuation effort respecting increments. Illustrative examples show the
effectiveness of the proposed approach and provide a comparison with previous results.

1 INTRODUCTION

The state-space formulation for model predictive con-
trol (MPC) is getting increased attention at industrial
applications as the state-space model is suitable to
describe the complex multi-input multi-output sys-
tems. The involved system states are often unmeasur-
able. Then, output-feedback MPC is suitable to solve
the control problem mentioned above. Moreover,
the controlled system is usually influenced by distur-
bances that are related to the model inaccuracy and to
unmeasured noises. In many practical applications,
these disturbances are only known to be bounded,
and any additional information about their nature and
properties is unavailable (Khlebnikov et al., 2011).

The output-feedback MPC that considers a
bounded uncertainty is one of the recent research con-
cerns. The state estimates can be obtained by the
set-membership state estimation guaranteeing that the
real system state lies in the bounded set (Qiu et al.,
2020), (Brunner et al., 2018) or a specific robust
Kalman filter can be used (Zenere and Zorzi, 2017).
Recently, a tube-based robust MPC scheme, able to
handle bounded noise was proposed (Mammarella
and Capello, 2020), (Kögel and Findeisen, 2017).

In our research, we focus on the output-feedback
MPC intended for industrial stationary robots-mani-
pulators, specifically parallel kinematic machine
(PKM) (Luces et al., 2017). Here, the system outputs
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are predominantly positions both longitudinal and an-
gular. The relevant velocities correspond to unmea-
sured states, complemented possibly by accelerations.
In this setting, measurements are often influenced by
physically bounded uncertainties.

The previous paper of authors (Kuklišová Pa-
velková and Belda, 2019) deals with an output-
feedback MPC for discrete-time systems influenced
by bounded state and output disturbances. The con-
trol aim is to follow the reference trajectory that is
known in advance. Point state estimates are obtained
by a uniform Bayesian filter. The MPC design con-
siders a quadratic cost function. The results are illus-
trated on a dynamic model of chosen PKM.

This paper extends the previous results (Kuklišová
Pavelková and Belda, 2019) by considering set state
estimate instead of the point state estimate and by us-
ing the incremental algorithm to reduce the control
error.

Notation. Matrices are in capital letters (e.g. A),
vectors and scalars are in lowercase letters (e.g. b).
Ai j is the element of a matrix A on i-th row and j-
th column. Ai denotes the i-th row of A. We con-
sider column vectors. zt denotes the value of a vector
variable z at a discrete-time instant t ∈ {1, · · · , t} ; zt;i
is the i-th entry of zt ; z and z are lower and upper
bounds on z, respectively. ẑ denotes the estimate of
z. The symbol f (·|·) denotes a conditional probabil-
ity density function (pdf); names of arguments distin-
guish respective pdfs; no formal distinction is made
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between a random variable, its realisation and an ar-
gument of the pdf. Uz(z,z) denotes a multivariate uni-
form distribution of z, z≤ z≤ z, inequalities are meant
entrywise.

2 ROBOT MODEL

The chosen PKM, the redundant planar parallel robot-
manipulator (Belda, 2010) is characterised by a four-
dimensional input u (four torques) and a three-
dimensional output y (tool center point (TCP) posi-
tions xTCP and yTCP and rotation angle ϕTCP of robot
movable platform around the vertical axis), see Fig. 1.
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Figure 1: Wire frame model of robot.

The dynamics of the robot can be described by
a set of non-linear differential equations representing
equations of motion. They are composed using La-
grange equations (Belda et al., 2007)

ÿ = f(ẏ,y)+g(y)u (1)

where y = [ xTCP, yTCP, ϕTCP]
T . The corresponding

non-linear continuous-time state-space model is de-
fined as [

ẏ
ÿ

]
=

[
ẏ

f(ẏ,y)

]
+

[
0

g(y)

]
u (2)

y =
[

I 0
][

y
ẏ

]
.

The nonlinear dynamics in (2) can be transformed
into the linear-like form using a following lineariz-
ing decomposition (linearisation) (Valášek and Stein-
bauer, 1999)

f(ẏ,y) = a1(ẏ,y) ẏ+a0(ẏ,y)y =

 f1(ẏ,y)
f2(ẏ,y)
f3(ẏ,y)


f(ẏr = 0,yr = yarbitrary) = 0 (3)

f(ẏ,y) =
f(ẏ,y)− f(0,y)

. ẏ︸ ︷︷ ︸
a1(ẏ,y)

ẏ+
f(0,y)− f(0,yr)

.y︸ ︷︷ ︸
a0(ẏ,y) = 0

y

where dot notation (symbol ∗
.∗ ) in denominators

means division element by element. The individual
elements of a1(ẏ,y) are defined specifically as fol-
lows:

a1(ẏ,y) ẏ =
f1(ẏ,y)−f1(ẏx,y)

ẋ
f1(ẏx,y)−f1(ẏy,y)

ẏ
f1(ẏy,y)−f1(ẏϕ,y)

ϕ̇

f2(ẏ,y)−f2(ẏx,y)
ẋ

f2(ẏx,y)−f2(ẏy,y)
ẏ

f2(ẏy,y)−f2(ẏϕ,y)
ϕ̇

f3(ẏ,y)−f3(ẏx,y)
ẋ

f3(ẏx,y)−f3(ẏy,y)
ẏ

f3(ẏy,y)−f3(ẏϕ,y)
ϕ̇




ẋ

ẏ

ϕ̇

 (4)

ẏx = [0, ẏ, ϕ̇]T , ẏy = [0,0, ϕ̇]T and ẏϕ = [0,0,0]T . Note
that a0(ẏ,y) = 0 due to properties of the function
f(ẏ,y).

After the decomposition, a linear time-varying
(LTV) state-space model of robot can be written as
follows

ẋ = Ac x+Bc u (5)

y =C x (6)

where x =
[

y ẏ
]T, Ac =

[
0 I

a0(ẏ,y) a1(ẏ,y)

]
,

Bc =

[
0

g(y)

]
, C =

[
I 0

]
. Using standard time

discretisation and considering additive bounded dis-
turbances, the following discrete-time linear state-
space model (LSU model) is obtained

xt = At xt−1 +Bt ut−1︸ ︷︷ ︸
x̃t

+νt , νt ∼Uν(−ρ,ρ) (7)

yt = Cxt︸︷︷︸
ỹt

+nt , nt ∼Un(−r,r) (8)

where At = eAc Ts , Bt =
t Ts+Ts∫

t Ts

eAc (t Ts+Ts−τ) Bc dτ;

x̃t and ỹt correspond to the nominal values of xt and yt ;
νt and nt are independent and identically distributed
(i.i.d.) state and observation disturbances, they are
uniformly distributed within an orthotope with known
bounds ρ and r, respectively.
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3 BAYESIAN STATE
ESTIMATION OF LSU MODEL

Within the considered Bayesian framework
(Kárný et al., 2005), a controlled system is de-
scribed by:

time evolution model: f (xt |xt−1,ut−1) (9)
observation model: f (yt |xt) (10)

prior pdf: f (x0) (11)

Bayesian state estimation (filtering) consists
in the evolution of the posterior pdf f (xt |d(t)) where
d(t) is a sequence of observed data records dt =
(yt ,ut), d0 ≡ u0. The evolution of posterior pdf
f (xt |d(t)) is described by a two-steps recursion that
starts from the prior pdf f (x0|u0) ≡ f (x0) (11): (i)
time update that uses theoretical knowledge described
by model (9) and reflects the evolution xt−1 → xt ;
it provides prediction f (xt |d(t − 1)), and (ii) data
update that uses theoretical knowledge described by
model (10) and incorporates information about data
dt ; it provides f (xt |d(t)).

The LSU model (7), (8) can be equivalently de-
scribed, using pdf notation (9)–(11), as follows

f (xt |ut−1,xt−1) = Ux(x̃t −ρ, x̃t +ρ) (12)
f (yt |xt) = Uy(ỹt − r, ỹt + r) (13)

f (x0) = Ux(x0,x0) (14)

The exact solution of the Bayesian filtering of
LSU model (12), (13) leads to a very complex form
of posterior pdf. Recently, an approximate Bayesian
state estimation of this model was proposed by one of
authors (Jirsa et al., 2020). It provides the evolution
of the uniformly distributed posterior pdf f (xt |d(t))
as follows.
Time Update – The time update starts at t = 1 with
m0 = x0, m0 = x0 and it holds

f (xt |d(t−1))≈
`

∏
i=1

Uxt;i(mt;i−ρi,mt;i +ρi) =

= Uxt (mt −ρ,mt +ρ), (15)

where mt = [mt;1, . . . , mt;`]
′, mt = [mt;1, . . . , mt;`]

′, ` is
the size of x,

mt;i =
`

∑
j=1

min(Ai jxt−1; j +Biut−1,Ai jxt−1; j +Biut−1),

(16)

mt;i =
`

∑
j=1

max(Ai jxt−1; j +Biut−1,Ai jxt−1; j +Biut−1).

Data Update – In data update step, the observation
yt (13) is processed as yt − r ≤ Cxt ≤ yt + r by the

Bayes rule together with the prior (15) from the time
update. The resulting uniform pdf posses a support in
the form of polytope. It is approximated by a uniform
pdf with an orthotopic support

f (xt |d(t))≈Uxt (xt , xt). (17)

The proposed approximation is based on a minimis-
ing of Kullback-Leibler divergence of two pdfs (Jirsa
et al., 2020).

The result of the approximate Bayesian filtering
(17) says that the state estimate x̂t lies within a set

x̂t ∈ 〈xt ,xt〉 (18)

where all points have the same probability. In the
previous paper of authors (Kuklišová Pavelková and
Belda, 2019), the point state estimate for control al-
gorithm was chosen to correspond to the centre of the
orthotope in (17)

x̂t =
xt + xt

2
. (19)

Here, we integrate the choice of point estimate into
the optimisation step of control design.

4 CONTROL DESIGN

This section introduces two algorithms of output-
feedback MPC, namely the positional and the incre-
mental algorithm. To design an optimal control ac-
tion, MPC employs predictions of expected future
outputs of controlled system represented by a state
space model. The main design elements, i.e. equa-
tions of predictions and relevant quadratic cost func-
tion are introduced in the following subsections.

4.1 Predictions of Future Outputs

The equations of predictions express the relationship
between future predicted outputs and unknown con-
trol actions. They are composed using current state
estimate in nominal parts of model (7) and (8). For
simplicity, we omit here the time indices, i.e., At → A
and Bt → B, as for one optimisation step, the matrices
are constant for whole prediction horizon N.

Prediction equations for the positional control al-
gorithm (Kuklišová Pavelková and Belda, 2019) are
composed as follows

Ŷt+1 =
[
ŷT

t+1, · · · , ŷT
t+N
]T

= F1x̂t +G1 Ut ,

Ut =
[
uT

t , · · · ,uT
t+N−1

]T
(20)
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where

F1 =


CA
...

CAN−1

CAN

, G1 =


CB 0 · · · 0

...
. . . . . .

...
CAN−2B · · · CB 0
CAN−1B · · · CAB CB

.
To achieve integral property in the design, the

nominal parts of model (7) and (8) are rewritten in
incremental forms as follows

∆x̂t+1 = x̂t+1− x̂t = A ∆x̂t +B ∆ut

∆ŷt+1 = ŷt+1− yt =C ∆x̂t+1.
(21)

The prediction equations for incremental control
algorithm are composed recursively using the model
(21). The recursivity is involved by the index j =
1, · · · ,N that determines individual discrete time in-
stants for the horizon N,

∆x̂t+ j = A j
∆x̂t +

j

∑
i=1

Ai−1B∆ut+ j−i (22)

∆ŷt+ j =CA j
∆x̂t +

j

∑
i=1

CAi−1B∆ut+ j−i (23)

The evolution of the full-value predictions
of the system outputs ŷ is

ŷt+ j = yt +
j

∑
i=1

∆ŷt+i (24)

The relevant matrix notation of (24) is as follows

Ŷt+1 = FI yt +F2 ∆x̂t +G2 ∆Ut (25)

where

Ŷt+1 = [ ŷ T
t+1 · · · ŷ T

t+N ]T ,FI = [ I · · · I ]T ,

F2 =


CA

...
N
∑
i=1

CAi

 , G2 =


CB · · · 0

...
. . .

...
N
∑
i=1

CAi−1B · · · CB


4.2 Cost Function

The behaviour of a control process is influenced by
the choice of the cost function. We use a quadratic
cost function. It balances control errors, i.e. differ-
ences between predicted outputs and reference values,
against amount of input energy given by control vec-
tor or control increments, respectively.

The cost function for the positional algorithm
(Kuklišová Pavelková and Belda, 2019) is

Jt =
N

∑
j=1

{
‖Qyw(ŷt+ j−wt+ j)‖2

2 +‖Quut+ j−1‖2
2
}
(26)

The cost function for the incremental algorithm is

Jt =
N

∑
j=1

{
‖(Qyw (ŷt+ j−wt+ j)‖2

2 +
∥∥Q∆u∆ut+ j−1

∥∥2
2

}
(27)

where ‖.‖2
2 means the squared Euclidean norm.

4.3 Minimization Procedure

Optimality criterion is defined as follows

min
Ut

Jt (Ŷt+1,Wt+1,Ut), Ut ∈ {Ut ,∆Ut} (28)

s. t. state space model (7) and (8)
set state estimate x̂t (18)

where Ŷt+1 are prediction equations (20) or (25), re-
spectively, Wt+1 represents a sequence of references

Wt+1 =
[
wT

t+1, · · · ,wT
t+N
]T

(29)

The involved cost function Jt (26) or (27) are
rewritten into the square-root form

Jt = JT
t Jt (30)

Positional Algorithm
The square-root Jt of the cost function Jt (30) is

Jt =

[
QYW 0

0 QU

][
Ŷt+1−Wt+1

Ut

]
=

[
QYW Fx̂t +QYW GUt −QYW Wt+1

QU Ut

]
. (31)

where QYW , Q
∆U and QU are penalisation matrices

defined as follows

QT
�Q� =

QT
∗ Q∗ 0

. . .
0 QT

∗ Q∗


∣∣∣∣∣∣
subscripts �, ∗ :
� ∈ {YW, ∆U, U}
∗ ∈ {yw, ∆u, u}

(32)

Considering minimization of the square-root Jt
as a specific solution of least-squares problem leads
to the following algebraic equation (Kuklišová Pa-
velková and Belda, 2019):[

QYW G QYW (Wt+1−Fx̂t)
QU 0

][
Ut
−I

]
= 0 (33)
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Incremental Algorithm
The square-root Jt of the cost function Jt (30) is

Jt =

[
QYW 0

0 Q
∆U

][
Ŷt+1−Wt+1

∆Ut

]
=

[
QYW (FI yt + F2∆xt +G2 ∆Ut −Wt+1)

Q∆U ∆Ut

]
. (34)

Considering minimization of the square-root Jt as
a specific solution of least-squares problem leads to
the following algebraic equation:[

QYW G2 QYW Z
Q∆U 0

][
∆Ut
−I

]
= 0 (35)

with Z =Wt+1−FI yt −F2 ∆xt .

———————————————–

The over-determined system (33) or (35), respec-
tively, can be rewritten into the condensed general
form A Ut = b.

This form can be transformed by orthogonal-
triangular decomposition (Lawson and Hanson, 1995)
into the following form and solved for unknown Ut

QT A Ut = QT b assuming that A = QR

R1 Ut = c1 (36)

where Ut ∈ {Ut ,∆Ut}, QT is an orthogonal matrix
that transforms matrix A into upper triangle R1.

It is indicated by the following equation diagram

A Ut = b

⇒

@
@
@@

R1

0

Ut = c1

cz

(37)

Vector cz represents a loss vector. Euclidean norm
‖cz||2 corresponds to the square-root of the minimum
of cost function (26) or (27), i.e., Jt = cT

z cz.
In the previous paper of authors (Kuklišová Pa-

velková and Belda, 2019), the transformation into
(36) was performed once using the point state esti-
mate (19).

Here, we consider the set estimate (18). The
transformation into (36) is performed successively for
properly selected points from the whole set. Sub-
sequently, the realisation with the minimal value of
‖cz||2 is chosen as the result.

For control, only the first elements corresponding
to ut are used from computed vector Ut . Then, for the
positional algorithm

ut = MUt (38)

and for the incremental algorithm

ut = ut−1 +M ∆Ut (39)

where matrix M is defined as M = [Inu , 0nu , · · · , 0nu ],
nu is dimension of vector of control actions ut .

Algorithmic Summary
The following summary describes a sequence per-
formed during the control process.

Initialisation:

i. set the initial state x̂0 ∈ 〈x0,x0〉 and control u0

ii. set t := 1, t ≥ 1

iii. load the reference trajectory w1, w2, . . . , wt

iv. initialise nonlinear continuous model (1)

v. set r and ρ for LSU model (7) and (8)

vi. set N, Q∗ in (26) or (27), respectively

On-line phase:

1. update the model matrices At , Bt in (7) and (8)

2. select representative points from the set (18)

3. compute cz (37) for selected points

4. choose the control input ut (38) or (39) that cor-
responds to minimal ‖cz‖2

5. simulate a new state of model (1) in t +1

6. set time t := t +1

7. measure disturbed system output yt

8. obtain the set state estimate x̂t ∈ 〈xt ,xt〉 (18)

9. if t < t, go to 1.

End, result evaluation.

5 EXPERIMENTS

This section demonstrates the proposed output-
feedback MPC applied to the motion control of PKM
robot depicted in Figure 1 represented by the model of
the machine dynamics. It is described in Sec. ’Robot
model’, specifically by the equations (1)-(8).

5.1 Experiment Setup

The real controlled system, as depicted in Figure 2
on the left, is simulated by (1) with an added uni-
form noise. The testing trajectory is depicted in Fig-
ure 2 on the right.
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Figure 2: Considered robot ’Moving Slide’ and used testing trajectory.

The state estimates x̂t ∈ 〈xt ,xt〉 (18)
are obtained using the model (7) and (8)
with the noise bounds set as follows:
ρ = 10−6[m,m,rad,ms−1,ms−1,rad s−1]T ,
r = 10−3[m,m,rad]T . The control parameters in
(26) or (27) are set as follows: N = 10; Qyw = I,
Qu = 10−2 I, Q∆u = 2.5 ·10−5 I, where I is the identity
matrix of the appropriate order.

The quality of the control process is evaluated by
the visual comparison of the results and by the root
mean square error (RMSE) between outputs yt and
references wt

RMSEi =

√√√√1
t

t

∑
t=1

(yt;i−wt;i)
2, i = {1,2,3}. (40)

The following experiments were performed for
the robot motion along the reference trajectory as de-
picted in Figure 2:

control algorithm state estimate
Exp.1 positional (38) point (19)
Exp.2 positional (38) set (18)
Exp.3 incremental (39) point (19)
Exp.4 incremental (39) set (18)

5.2 Results and Discussion

The results of individual experiments are shown in
Figures 3–8. Figure 3 and Figure 4 show time histo-
ries for the positional algorithm. The positional algo-
rithm with set state estimate (Exp. 2) reaches smaller
dispersion control errors. Control errors do not tend
to zero since both experiments Exp. 1 and Exp. 2
were realized with positional algorithm that has pro-
portional character only. It is useful for fast repeated

manipulation motion that does not need track the ref-
erence trajectory or stay in one position precisely but
with smaller dynamic demands on robot drives.

Figure 5 shows the values ‖cz||2 in (37) for the po-
sitional algorithm (38) and the state estimate set (18)
in the selected times, namely 1s, 2s, 3s, 4s, 5s and 6s.
Filled blue circle indicates the searched cost function
minimum that is used for the control design in accord
with (37).

Figure 6 and Figure 7 show time histories for the
incremental algorithm. The incremental algorithm
with set state estimate (Exp. 4) reaches smaller disper-
sion control errors again. Control errors do not tend
to zero, but they are symmetrically distributed around
horizontal axis x since both experiments Exp. 1 and
Exp. 2 were realized with incremental algorithm that
push controlled system towards zero. However, due
to noise, it is asymptotic trend.

Figure 8 shows the values ‖cz||2 in (37) for the
incremental algorithm (39) and the state estimate set
(18) in the selected times, namely 1s, 2s, 3s, 4s, 5s
and 6s. Filled blue circle indicates the searched cost
function minimum that is used for the control design
in accord with (37).

The numerical comparison of RMSEi values for
experiments Exp.1– Exp.4 is presented in Table 1.
The results are comparable. However, the optimisa-
tion in Exp. 2 and Exp. 4 takes into account cost val-
ues that balance not only control error but also mag-
nitudes of control actions or their increments.

6 CONCLUSION

The paper proposes a novel solution to the output-
feedback MPC under bounded state and output dis-
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Figure 3: Time histories of control errors and control actions (Exp. 1).

Figure 4: Time histories of control errors and control actions (Exp. 2).

||cz ||2

Figure 5: Selected time instants with the cost function for the set state estim. (Exp. 2).

Table 1: RMSEi (40) for the individual experiments Exp.1–
Exp.4.

RMSE1 RMSE2 RMSE3

Exp.1 0.694·10−3 0.705·10−3 0.705·10−3

Exp.2 0.694·10−3 0.721·10−3 0.731·10−3

Exp.3 0.622·10−3 0.633·10−3 0.669·10−3

Exp.4 0.626·10−3 0.644·10−3 0.678·10−3

turbances. Comparing to the previous work of author
(Kuklišová Pavelková and Belda, 2019), the proposed
algorithm enables further reduction of the involved
cost function (28) by considering set state estimates
(18) and their inclusion into the minimization step.
The selection of a suitable points from (18) is made
by the user.

The proposed solution considers an unconstrained
positional and incremental MPC. The overshoot of

possible constraints is prevented by the appropriate
design of reference trajectory and its suitable time
parametrisation (Belda and Novotný, 2012).

The presented research is important for mechan-
ical systems where bounded noises are present fre-
quently but usually modelled by unbounded Gaussian
distribution. In practice, the use of unbounded noises
leads to over-conservative design, which induces a re-
markable increase in the costs. The stochastic mod-
els built on bounded noises prevent these problems
(d’Onofrio, 2013).

Next research will try to formulate the optimal se-
lection of the points from the set (18). Also, a more
flexible sets of estimates will be considered, namely
zonotopes (Combastel, 2015), that will provide the
less conservative guaranteed estimates comparing to
the currently used orthotopic set.
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Figure 6: Time histories of control errors and control actions (Exp. 3).

Figure 7: Time histories of control errors and control actions (Exp. 4).

||cz ||2

Figure 8: Several time instants with the cost function for the set state estim. (Exp. 4).
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Kárný et al. (2005). Optimized Bayesian Dynamic Advising:
Theory and Algorithms. Springer.

Khlebnikov, M. V., Polyak, B. T., and Kuntsevich, V. M.
(2011). Optimization of linear systems subject to
bounded exogenous disturbances: The invariant el-
lipsoid technique. Automation and Remote Control,
72(11):2227–2275.
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